

Die Holzbauschraube für eine schnelle und flexible Verarbeitung.

Die Schraubenspitze mit den drei Rippen sorgt für ein schnelles Anbissverhalten und fungiert zugleich als Vorbohrer. Diese Eigenschaften erleichtern das Ansetzen der Schraube und reduzieren merklich das Spaltverhalten im Material.

Die erhöhte Gewindesteigung verkürzt die Einschrauzeit, wodurch der Anwender Projekte wirtschaftlicher abwickeln kann.

Die neuartige Schraubengeometrie ermöglicht ein punktgenaues Ansetzen und ein gutes Herausarbeiten des Holzmehls. Dies ermöglicht geringe Rand- und Achsabstände und macht verschie-

dene Holzkonstruktionen erst möglich.

Die neu entwickelten Schaftfräsrippen sind optimal abgestimmt auf die Kernfräser-Gewindegeometrie und vermindern in Kombination das Einschraubdrehmoment.

Die Hochleistungs-Wachsbeschichtung reduziert das Einschraubdrehmoment. Für eine längere Akkulaufzeit und für ein gleichmäßiges und sanftes Einschraubgefühl.

Stufensenkkopf

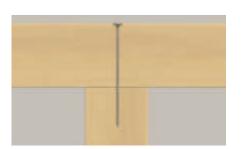
Im Gegensatz zu einem normalen Tellerkopf lässt sich der Stufensenkkopf komplett im Holz versenken und steht nicht über. Somit kann ein zweites Bauteil bündig aufliegen oder angeschraubt werden.

Senkkopf

Die Unterkopfgeometrie mit optimiertem Doppelkonus und Frästaschen sorgen für weniger Beschädigungen an Anbauteilen aus Holz und Metall, wodurch diese weniger zu Korrosion neigen. Zusätzlich vermeiden die Frästaschen Überstände bei Metallanbauteilen und erleichtern das Anbauen der weiteren Konstruktionen.

Tellerkopf

Im Vergleich zu Senkkopfschrauben können aufgrund des größeren Kopfdurchmessers höhere Ausziehwiderstände realisiert werden. Dies wirkt sich auch beim Zusammenziehen von Bauteilen deutlich positiv aus.



Sechskantkopf mit angepresster Scheibe

Der Sechskantkopf mit angepresster Scheibe ermöglicht eine sehr hohe Kraftübertragung und eignet sich dadurch beispielsweise für Verschraubungen in Hartholz sowie Metall-Holzverbindungen.

Für unterschiedlichste Anwendungen

Pfosten-Riegel-Verbindungen

Stahlblech-Holz-Verbindungen

Befestigung von Aufdachdämmungen - Senkkopfschraube

Dachstühle

Carports

Befestigung von Aufdachdämmungen - Tellerkopfschraube

Geeignet für Baustoffe wie beispielsweise

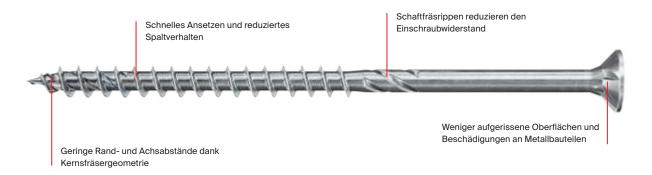
- · Brettschichtholz aus Nadelholz
- · Brettsperrholz
- · Grobspanplatten (z.B. OSB-Platten)
- Konstruktionsvollholz
- · Leimholzplatten auf Vollholz
- · Nadelholz Vollholz (z.B. Douglasie, Fichte, Kiefer, Tanne, ...)
- · Laubholz (Vollholz) aus Buche, Esche oder Eiche
- · Brettschichtholz aus Buche, Esche oder Eiche
- · Furnierschichtholz LVL
- · BauBuche
- · Balkenschichtholz Duo-und Triobalken

Weitere Verarbeitungsmöglichkeit

 Für die Verarbeitung der PowerFast II Holzbauschraube kann auch ein Tangentialschlagschrauber verwendet werden.

Prüfzeichen:

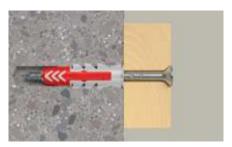
ETA-19/0175



Weitere Eignung

Die PowerFast II Holzbauschraube ist auch für die Anwendung im Dübel geeignet.

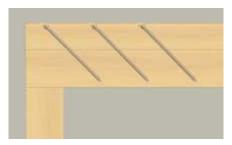
Entdecken Sie auch die anderen fischer-Markenschrauben.

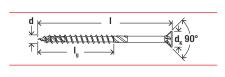

Spanplattenschraube PowerFast II

Holzschalung

Anwendung im Dübel

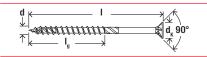
Vollgewindeschraube PowerFull II


Haupt-Nebenträger-Verbindung


Sortiment, Lasten und viele weitere Informationen zu allen Schrauben von fischer finden Sie auf unserer Website: fischer.de/markenschrauben

Balkenaufdopplung

Sortiment

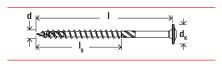


Ø 8,0

Holzbauschraube PowerFast II FPF II CTP 8,0

FPF II CTP BC

		Zu- las- sung		Länge	Gewindelänge	Kopf-Ø	Antrieb	Verkaufs- einheit
			d	I	l _g	d _K		
	ArtNr.	ETA	[mm]	[mm]	[mm]	[mm]		[Stück]
Artikelbezeichnung								
FPF II CTP 8,0 x 80 BC 50	566309	•	8,0	80	60	14,4	TX40	50
FPF II CTP 8,0 x 100 BC 50	566310	•	8,0	100	60	14,4	TX40	50
FPF II CTP 8,0 x 120 BC 50	566311	•	8,0	120	80	14,4	TX40	50
FPF II CTP 8,0 x 140 BC 50	566312	•	8,0	140	80	14,4	TX40	50
FPF II CTP 8,0 x 160 BC 50	566313	•	8,0	160	80	14,4	TX40	50
FPF II CTP 8,0 x 180 BC 50	566314	•	8,0	180	100	14,4	TX40	50
FPF II CTP 8,0 x 220 BC 50	568156	•	8,0	220	100	14,4	TX40	50
FPF II CTP 8,0 x 300 BC 50	568160	•	8,0	300	100	14,4	TX40	50
FPF II CTP 8,0 x 380 BC 50	568164	•	8,0	380	100	14,4	TX40	50
FPF II CTP 8,0 x 400 BC 50	568165	•	8,0	400	100	14,4	TX40	50
FPF II CTP 8,0 x 280 BC 50	568159	•	8,0	280	100	14,4	TX40	50
FPF II CTP 8,0 x 240 BC 50	568157	•	8,0	240	100	14,4	TX40	50
FPF II CTP 8,0 x 260 BC 50	568158	•	8,0	260	100	14,4	TX40	50
FPF II CTP 8,0 x 200 BC 50	568155	•	8,0	200	100	14,4	TX40	50
FPF II CTP 8,0 x 340 BC 50	568162	•	8,0	340	100	14,4	TX40	50
FPF II CTP 8,0 x 320 BC 50	568161	•	8,0	320	100	14,4	TX40	50
FPF II CTP 8,0 x 360 BC 50	568163	•	8,0	360	100	14,4	TX40	50

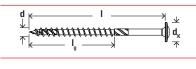

Ø 10,0

Holzbauschraube PowerFast II FPF II CTP 10,0

•

FPF II CTP BC

		Zu- las- sung	Durchmesser	Länge	Gewindelänge	Kopf-Ø	Antrieb	Verkaufs- einheit
			d	1	I _g	d _K		
	ArtNr.	ETA	[mm]	[mm]	[mm]	[mm]		[Stück]
Artikelbezeichnung								
FPF II CTP 10,0 x 80 BC 50	566315	•	10,0	80	60	18,4	TX40	50
FPF II CTP 10,0 x 100 BC 50	566316	•	10,0	100	60	18,4	TX40	50
FPF II CTP 10,0 x 120 BC 50	566317	•	10,0	120	80	18,4	TX40	50
FPF II CTP 10,0 x 140 BC 50	566318	•	10,0	140	80	18,4	TX40	50
FPF II CTP 10,0 x 160 BC 50	566319	•	10,0	160	80	18,4	TX40	50
FPF II CTP 10,0 x 180 BC 50	566320	•	10,0	180	100	18,4	TX40	50
FPF II CTP 10,0 x 200 BC 50	566321	•	10,0	200	100	18,4	TX40	50
FPF II CTP 10,0 x 220 BC 50	566322	•	10,0	220	100	18,4	TX40	50
FPF II CTP 10,0 x 240 BC 50	566323	•	10,0	240	100	18,4	TX40	50
FPF II CTP 10,0 x 260 BC 50	566324	•	10,0	260	100	18,4	TX40	50
FPF II CTP 10,0 x 280 BC 50	566325	•	10,0	280	115	18,4	TX40	50
FPF II CTP 10,0 x 300 BC 50	566326	•	10,0	300	115	18,4	TX40	50
FPF II CTP 10,0 x 320 BC 50	566327	•	10,0	320	115	18,4	TX40	50
FPF II CTP 10,0 x 340 BC 50	566328	•	10,0	340	115	18,4	TX40	50
FPF II CTP 10,0 x 360 BC 50	566329	•	10,0	360	115	18,4	TX40	50
FPF II CTP 10,0 x 380 BC 50	566330	•	10,0	380	115	18,4	TX40	50
FPF II CTP 10,0 x 400 BC 50	566331	•	10,0	400	115	18,4	TX40	50

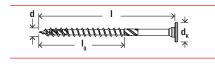


Ø 8,0

Holzbauschraube PowerFast II FPF II WTP 8,0

FPF II WTP BC

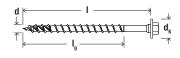
	Zu la: su		Länge	Gewindelänge	Kopf-Ø	Antrieb	Verkaufs- einheit
		d	1	I _g	d _K		
	ArtNr. E	TA [mm]	[mm]	[mm]	[mm]		[Stück]
Artikelbezeichnung							
FPF II WTP 8,0 x 80 BC 50	566332	8,0	80	60	21,0	TX40	50
FPF II WTP 8,0 x 100 BC 50	566333	8,0	100	60	21,0	TX40	50
FPF II WTP 8,0 x 120 BC 50	566334	8,0	120	80	21,0	TX40	50
FPF II WTP 8,0 x 140 BC 50	566335	8,0	140	80	21,0	TX40	50
FPF II WTP 8,0 x 160 BC 50	566336	8,0	160	80	21,0	TX40	50
FPF II WTP 8,0 x 180 BC 50	566337	8,0	180	100	21,0	TX40	50
FPF II WTP 8,0 x 200 BC 50	568166	8,0	200	100	21,0	TX40	50
FPF II WTP 8,0 x 220 BC 50	568167	8,0	220	100	21,0	TX40	50
FPF II WTP 8,0 x 240 BC 50	568168	8,0	240	100	21,0	TX40	50
FPF II WTP 8,0 x 260 BC 50	568169	8,0	260	100	21,0	TX40	50
FPF II WTP 8,0 x 280 BC 50	568170	8,0	280	100	21,0	TX40	50
FPF II WTP 8,0 x 300 BC 50	568171	8,0	300	100	21,0	TX40	50
FPF II WTP 8,0 x 320 BC 50	568172	8,0	320	100	21,0	TX40	50
FPF II WTP 8,0 x 340 BC 50	568173	8,0	340	100	21,0	TX40	50
FPF II WTP 8,0 x 360 BC 50	568174	8,0	360	100	21,0	TX40	50
FPF II WTP 8,0 x 380 BC 50	568175	8,0	380	100	21,0	TX40	50
FPF II WTP 8,0 x 400 BC 50	568176	8,0	400	100	21,0	TX40	50


Ø 10,0

Holzbauschraube PowerFast II FPF II WTP 10,0

FPF II WTP BC

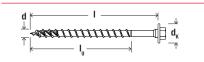
		Zu- las- sung	Durchmesser	Länge	Gewindelänge	Kopf-Ø	Antrieb	Verkaufs- einheit
			d	1	l _g	d _K		FOU" - 1.3
Artikalhazaiahnung	ArtNr.	ETA	[mm]	[mm]	[mm]	[mm]		[Stück]
Artikelbezeichnung	566338	•	10,0	80	60	25,5	TX40	50
FPF II WTP 10,0 x 80 BC 50		-	,		1 1			
FPF II WTP 10,0 x 100 BC 50		•	10,0	100	60	25,5	TX40	50
FPF II WTP 10,0 x 120 BC 50	566340	•	10,0	120	80	25,5	TX40	50
FPF II WTP 10,0 x 140 BC 50	566341	•	10,0	140	80	25,5	TX40	50
FPF II WTP 10,0 x 160 BC 50	566342	•	10,0	160	80	25,5	TX40	50
FPF II WTP 10,0 x 180 BC 50	566343	•	10,0	180	100	25,5	TX40	50
FPF II WTP 10,0 x 200 BC 50	566344	•	10,0	200	100	25,5	TX40	50
FPF II WTP 10,0 x 220 BC 50	566345	•	10,0	220	100	25,5	TX40	50
FPF II WTP 10,0 x 240 BC 50	566346	•	10,0	240	100	25,5	TX40	50
FPF II WTP 10,0 x 260 BC 50	566347	•	10,0	260	100	25,5	TX40	50
FPF II WTP 10,0 x 280 BC 50	566348	•	10,0	280	115	25,5	TX40	50
FPF II WTP 10,0 x 300 BC 50	566349	•	10,0	300	115	25,5	TX40	50
FPF II WTP 10,0 x 320 BC 50	566350	•	10,0	320	115	25,5	TX40	50
FPF II WTP 10,0 x 340 BC 50	566351	•	10,0	340	115	25,5	TX40	50
FPF II WTP 10,0 x 360 BC 50	566352	•	10,0	360	115	25,5	TX40	50
FPF II WTP 10,0 x 380 BC 50	566353	•	10,0	380	115	25,5	TX40	50


Ø 8,0

Holzbauschraube PowerFast II FPF II STP 8,0

FPF II STP BC

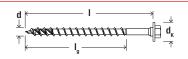
		Zu- las- sung		Länge	Gewindelänge	Kopf-Ø	Antrieb	Verkaufs- einheit
	ArtNr.	ETA	d [mm]	[mm]		d _K [mm]		[Stück]
Artikelbezeichnung	AIL-NI.	EIA	[IIIIII]	[IIIIII]	[IIIIII]	[IIIII]		[Stuck]
FPF II STP 8,0 x 80 BC 50	566355	•	8,0	80	60	21,0	TX40	50
FPF II STP 8,0 x 100 BC 50	566356	•	8,0	100	60	21,0	TX40	50
FPF II STP 8,0 x 120 BC 50	566357	•	8,0	120	80	21,0	TX40	50
FPF II STP 8,0 x 140 BC 50	566358	•	8,0	140	80	21,0	TX40	50
FPF II STP 8,0 x 160 BC 50	566359	•	8,0	160	80	21,0	TX40	50
FPF II STP 8,0 x 180 BC 50	566360	•	8,0	180	100	21,0	TX40	50
FPF II STP 8,0 x 200 BC 50	566361	•	8,0	200	100	21,0	TX40	50
FPF II STP 8,0 x 220 BC 50	566362	•	8,0	220	100	21,0	TX40	50
FPF II STP 8,0 x 240 BC 50	566363	•	8,0	240	100	21,0	TX40	50
FPF II STP 8,0 x 260 BC 50	566364	•	8,0	260	100	21,0	TX40	50
FPF II STP 8,0 x 280 BC 50	566365	•	8,0	280	100	21,0	TX40	50
FPF II STP 8,0 x 300 BC 50	566366	•	8,0	300	100	21,0	TX40	50
FPF II STP 8,0 x 320 BC 50	566367	•	8,0	320	100	21,0	TX40	50
FPF II STP 8,0 x 340 BC 50	566368	•	8,0	340	100	21,0	TX40	50
FPF II STP 8,0 x 360 BC 50	566369	•	8,0	360	100	21,0	TX40	50
FPF II STP 8,0 x 380 BC 50	566370	•	8,0	380	100	21,0	TX40	50
FPF II STP 8,0 x 400 BC 50	566371	•	8,0	400	100	21,0	TX40	50


Ø 8,0

Holzbauschraube PowerFast II FPF II HWTF 8,0

FPF II HWTF BC

		Zu- las- sung	Durchmesser	Länge	Gewindelänge	Kopf-Ø	Antrieb	Verkaufs- einheit
	ArtNr.	ETA	[mm]	[mm]	[mm]	(mm)		[Stück]
Artikelbezeichnung								
FPF II HWTF 8,0 x 80 BC 50	566372	•	8,0	80	75	18,0	TX40 / SW 13	50
FPF II HWTF 8,0 x 100 BC 50	566373	•	8,0	100	75	18,0	TX40 / SW 13	50
FPF II HWTF 8,0 x 120 BC 50	566374	•	8,0	120	100	18,0	TX40 / SW 13	50
FPF II HWTF 8,0 x 140 BC 50	566375	•	8,0	140	100	18,0	TX40 / SW 13	50


Ø 10,0

Holzbauschraube PowerFast II FPF II HWTF 10,0

FPF II HWTF BC

		Zu- las- sung	Durchmesser	Länge	Gewindelänge	Kopf-Ø	Antrieb	Verkaufs- einheit
	ArtNr.	ETA	d [mm]	[mm]	I _g [mm]	d _K [mm]		[Stück]
Artikelbezeichnung								
FPF II HWTF 10,0 x 80 BC 50	566376	•	10,0	80	75	21,3	TX40 / SW 15	50
FPF II HWTF 10,0 x 100 BC 50	566377	•	10,0	100	75	21,3	TX40 / SW 15	50
FPF II HWTF 10,0 x 120 BC 50	566378	•	10,0	120	115	21,3	TX40 / SW 15	50
FPF II HWTF 10,0 x 140 BC 50	566379	•	10,0	140	115	21,3	TX40 / SW 15	50

Ø 12,0

Holzbauschraube PowerFast II FPF II HWTF 12,0

FPF II HWTF BC

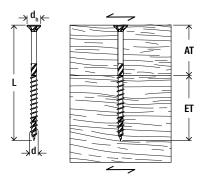
		Zu- las- sung	Durchmesser	Länge	Gewindelänge	Kopf-Ø	Antrieb	Verkaufs- einheit
			d	[]		d _K		rou" - 1.1
	ArtNr.	ETA	[mm]	[mm]	[mm]	[mm]		[Stück]
Artikelbezeichnung								
FPF II HWTF 12,0 x 100 BC 25	566380	•	12,0	100	80	23,4	TX50 / SW 17	25
FPF II HWTF 12,0 x 120 BC 25	566381	•	12,0	120	100	23,4	TX50 / SW 17	25
FPF II HWTF 12,0 x 140 BC 25	566382	•	12,0	140	120	23,4	TX50 / SW 17	25

fischer Bemessungssoftware WOOD-FIX.

Sichere und komfortable Bemessung

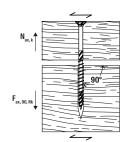
- Bemessung erfolgt nach ETA-Bewertung bzw. DIN EN 1995-1-1 (Eurocode EC5), inklusive frei wählbarem nationalem Anwendungsdokument (NAD).
- Einfache und schnelle Bedienung, durch Werteeingabe in die Toolbox.
- Sicher und zuverlässig: Das Programm erkennt Fehleingaben bezüglich der geometrischen Randbedingungen.
- Übersichtlich und flexibel: Durch wahlweise Darstellung in 2D oder 3D. Grafik kann gedreht geschwenkt, geneigt und gezoomt werden.
- Immer aktuell, durch automatische oder manuelle "Live Update"-Funktion.

Die anwendungsbasierte Software

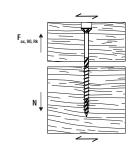

 Die Software enthält eine Vielzahl von verschiedenen und neu ergänzten Anwendungsfällen aus der täglichen Arbeitspraxis.
 Das ermöglicht Ihnen als Verwender oder Planer ein effizientes Arbeiten und Bemessen Ihrer Projekte, die Sie mit fischer Schrauben realisieren. Berechnung von Anwendungen mit fischer PowerFast II Schrauben (Ø 3 x 12 – 10 x 400 mm) und fischer PowerFull II Schrauben (Ø 6.0 x 100 – 10 x 600 mm).

Beispiele Aufsparrendämmung:

- · Pultdach
- · Satteldach
- · Walmdach
- Allgemeine Verbindung (Holz/Holz, Stahlblech/Holz)
- · Anschluss Haupt-/Nebenträger
- · Auflagerquerdruckverstärkung
- Ausklinkung
- · Balkenaufdoppelung
- · Balkenkopfsanierung
- · Durchbruch
- · Querzugverstärkung
- · Zugscherverbindung
- · Querschanschluss
- · NEU Fassadendämmung
- · NEU Sparren-Pfettenverbindung


Lasten

Lasttabelle für die Holzbauschrauben PowerFast II Senkkopf


Charakteristischer bzw. zulässiger Gewinde-Ausziehwiderstand ETA-19/0175 DIN EN 1995-1-1 + NA

Einschraubwinkel zur Faserrichtung ϵ_{AT} und ϵ_{ET} = 90°

Charakteristischer bzw. zulässiger Kopfdurchziehwiderstand ETA-19/0175 DIN EN 1995-1-1 + NA

Einschraubwinkel zur Faserrichtung ϵ_{AT} und $\epsilon_{ET} = 90^{\circ}$

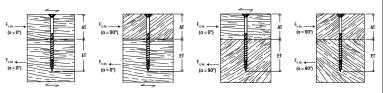
Sen	1,1		mf
Sen	ΚI	KH	D

эенккорі								
d	1	d _h	AT	ET	F _{ax,90,Rk}	zul. F _{ax,90}	F _{ax,90,Rk}	zul. F _{ax,90}
[mm]	[mm]	[mm]	[mm]	[mm]	[kN]	[kN]	[kN]	[kN]
8,0	80	14,4	40	40	3,84	1,90	2,59	1,28
8,0	100	14,4	50	50	4,80	2,37	2,59	1,28
8,0	120	14,4	50	70	7,08	3,50	2,59	1,28
8,0	140	14,4	60	80	8,28	4,09	2,59	1,28
8,0	160	14,4	80	80	8,28	4,09	2,59	1,28
8,0	180	14,4	80	100	10,68	5,28	2,59	1,28
8,0	400	14,4	300	100	10,68	5,28	2,59	1,28
10,0	80	18,4	40	40	4,60	2,27	4,06	2,01
10,0	100	18,4	40	60	6,90	3,41	4,06	2,01
10,0	120	18,4	50	70	8,05	3,98	4,06	2,01
10,0	140	18,4	60	80	9,20	4,55	4,06	2,01
10,0	160	18,4	80	80	9,20	4,55	4,06	2,01
10,0	180	18,4	80	100	11,88	5,87	4,06	2,01
10,0	200	18,4	100	100	11,88	5,87	4,06	2,01
10,0	220	18,4	120	100	11,88	5,87	4,06	2,01
10,0	240	18,4	140	100	11,88	5,87	4,06	2,01
10,0	260	18,4	160	100	11,88	5,87	4,06	2,01
10,0	280	18,4	165	115	13,91	6,88	4,06	2,01
10,0	400	18,4	285	115	13,91	6,88	4,06	2,01

Für Schrauben 8.0×200 bis 8.0×380 mm gelten dieselben Werte wie für 8.0×180 . Voraussetzung: Anbauteildicke AT = mind. 80 mm, Mindesteinschraubtiefe ET = mind. 100 mm. Für Schrauben 10,0 x 300 bis 10,0 x 380 mm gelten dieselben Werte wie für 10,0 x 280. Voraussetzung: Anbauteildicke AT = mind. 165 mm, Mindesteinschraubtiefe ET = mind. 175 mm.

¹¹ Toleranz des Lochdurchmessers im Stahlblech muss gemäß DIN EN 1995-1-1 ≤ 0,1 · d sein. Bei Stahlblechdicken t zwischen 0,5 · d und d, dürfen die Quertragfähigkeiten interpoliert werden.

Allgemeines:

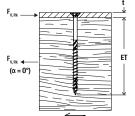

Die ETA-19/0175 ist zu beachten.

Die EIA-19/01/5 ist zu beachten. Bemessung ausschließlich gültig für Einzelschrauben nach ETA-19/0175 bzw. DIN EN 1995-1-1 mit NA. Bei Schraubengruppen sind Abminderungen der Tragfähigkeit je Schraube vorzunehmen (nef gemäß ETA-19/0175). Bei kombinierter Zug- und Querzugbeanspruchung oder bei Biegebeanspruchung sind die Lasten abzumindern - siehe ETA-19/0175. Angesetzte Holzrohdichte: $\rho_k = 350 \text{ kg/m}^3$. Einschraubwinkel: $\epsilon = 90^\circ$ zur Oberfläche und somit zur Holzfaserrichtung. Die Werte bezgl. der Quertragfähigkeit beziehen sich auf galvanisch verzinkte Schrauben. Mindesteinschraubtiefe (ET) für tragende Verbindungen: Min. $h_{\text{ef}} = 4 \cdot \text{d}$.

Charakteristischer Widerstand der Querkraft bzw. zulässige Querkraft in Holz-Holz-Verbindungen ETA-19/0175

DIN EN 1995-1-1 + NA

Einschraubwinkel zur Faserrichtung ϵ_{AD} und ϵ_{ET} = 90° Winkel zwischen Querkraft und Faserrichtung: 0 - 90°



Charakteristischer Widerstand der Querkraft bzw. zulässige Querkraft in Stahl-Holz-Verbindungen ETA-19/0175

Stahl-Holz

DIN EN 1995-1-1 + NA

Stahl-Holz dünnes Stalblech $t \le 0.5 \cdot d$ $\epsilon_{\text{ET}} = 90^{\circ}$ Winkel Querkr.- Faser: 0 - 90°

dickes Stahlblech $t \ge d^{1)}$ $\varepsilon_{\rm eff} = 90^{\circ}$ Winkel Querkr.- Faser: 0 - 90° $(\alpha = 90^{\circ})$

F _{v,Rk}	zul. F _v	t	ET	F _{v,Rk}	zul. F _v	t	ET	F _{v,Rk}	zul. F _v
[kN]	[kN]	[mm]	[mm]	[kN]	[kN]	[mm]	[mm]	[kN]	[kN]
2,57	1,27	4	76	3,54	1,75	8	72	4,66	2,30
3,06	1,51	4	96	3,81	1,89	8	92	4,90	2,42
3,13	1,55	4	116	4,38	2,17	8	112	5,47	2,70
3,26	1,61	4	136	4,68	2,32	8	132	5,77	2,85
3,26	1,61	4	156	4,68	2,32	8	152	5,77	2,85
3,26	1,61	4	176	5,23	2,58	8	172	6,37	3,15
3,26	1,61	4	396	5,23	2,58	8	392	6,37	3,15
3,27	1,62	5	75	4,08	2,02	10	70	5,83	2,88
3,80	1,88	5	95	5,17	2,55	10	90	6,91	3,42
4,12	2,04	5	115	5,68	2,81	10	110	7,20	3,56
4,49	2,22	5	135	5,97	2,95	10	130	7,49	3,70
4,68	2,32	5	155	5,97	2,95	10	150	7,49	3,70
4,68	2,32	5	175	6,64	3,28	10	170	8,16	4,03
4,68	2,32	5	195	6,64	3,28	10	190	8,16	4,03
4,68	2,32	5	215	6,64	3,28	10	210	8,16	4,03
4,68	2,32	5	235	6,64	3,28	10	230	8,16	4,03
4,68	2,32	5	255	6,64	3,28	10	250	8,16	4,03
4,68	2,32	5	275	7,14	3,53	10	270	8,66	4,28
4,68	2,32	5	395	7,14	3,53	10	390	8,66	4,28

Rand- / Achsabstände und Mindest- Bauteilabmessungen nach ETA-19/0175 sowie DIN EN 1995-1-1 mit NA.

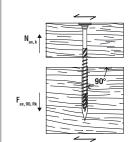
Rand- / Acnsabstande und Mindest- Bauteilabmessungen nach E IA-19/01/5 sowie DIN EN 1995-1-1 mit NA.

Die Bemessung der Quertragfähigkeit wurde nach dem genauen Verfahren gemäß DIN EN 1995-1-1 Abschnitt 8.2 geführt.

Werte der Quertragfähigkeit gelten für nicht vorgebohrte Löcher. Bei vorgebohrten Löchern sind evtl. höhere Werte der Quertragfähigkeit möglich.

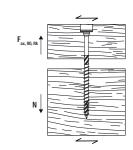
Zur Ermittlung der zulässigen Last wurde γ_M = 1,3; γ_{Eglobal} = 1,4 und k_{mod} = 0,9 (z.B. KLED = kurz und NKL 2) angesetzt.

Nachweise in den Stahlblechen wie z.B. Lochleibung und Durchstanzen sind bauseits zu führen.


Alle angegebenen mechanischen Werte sind in Abhängigkeit von den getroffenen Annahmen zu betrachten und stellen Bemessungsbeispiele dar. Alle Werte gelten vorbehaltlich Satz- und Druckfehlern.

Lasttabelle für die Holzbauschrauben PowerFast II Stufensenkkopf und Teilgewinde

ΑT AND THE PROPERTY OF ET


Charakteristischer bzw. zulässiger Gewinde-Ausziehwiderstand ETA-19/0175 DIN EN 1995-1-1 + NA

Einschraubwinkel zur Faserrichtung ϵ_{AT} und ϵ_{ET} = 90°

Charakteristischer bzw. zulässiger Kopfdurchziehwiderstand ETA-19/0175 DIN EN 1995-1-1 + NA

Einschraubwinkel zur Faserrichtung ϵ_{AT} und $\epsilon_{ET} = 90^{\circ}$

Stufensenkkonf

Sturensenkkopi								
d	I	d _h	AT	ET	F _{ax,90,Rk}	zul. F _{ax,90}	F _{ax,90,Rk}	zul. F _{ax,90}
[mm]	[mm]	[mm]	[mm]	[mm]	[kN]	[kN]	[kN]	[kN]
8,0	80	21,0	40	40	3,84	1,90	5,95	2,94
8,0	100	21,0	50	50	4,80	2,37	5,95	2,94
8,0	120	21,0	50	70	7,08	3,50	5,95	2,94
8,0	140	21,0	60	80	8,28	4,09	5,95	2,94
8,0	160	21,0	80	80	8,28	4,09	5,95	2,94
8,0	180	21,0	80	100	10,68	5,28	5,95	2,94
8,0	400	21,0	300	100	10,68	5,28	5,95	2,94

Für Schrauben 8,0 x 200 bis 8,0 x 380 mm gelten dieselben Werte wie für 8,0 x 180. Voraussetzung: Anbauteildicke AT = mind. 80 mm, Mindesteinschraubtiefe ET = mind. 100 mm. ¹⁾ Toleranz des Lochdurchmessers im Stahlblech muss gemäß DIN EN 1995-1-1 ≤ 0,1 · d sein. Bei Stallblechdicken t zwischen 0,5 · d und d, dürfen die Quertragfähigkeiten interpoliert werden.

Allgemeines:

Die ETA-19/0175 ist zu beachten.

Bemessung ausschließlich gültig für Einzelschrauben nach ETA-19/0175 bzw. DIN EN 1995-1-1 mit NA.

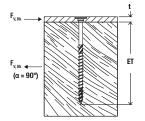
Bei Schraubengruppen sind Abminderungen der Tragfähigkeit je Schraube vorzunehmen (nef gemäß ETA-19/0175).

Bei kombinierter Zug- und Querzugbeanspruchung oder bei Biegebeanspruchung sind die Lasten abzumindern - siehe ETA-19/0175.

Angesetzte Holzrohdichte: $\rho_k = 350 \text{ kg/m}^3$. Einschraubwinkel: $\epsilon = 90^\circ$ zur Oberfläche und somit zur Holzfaserrichtung. Die Werte bezgl. der Quertragfähigkeit beziehen sich auf galvanisch verzinkte Schrauben. Mindesteinschraubtiefe (ET) für tragende Verbindungen: Min. $h_{\text{ef}} = 4 \cdot d$.

Charakteristischer Widerstand der Querkraft bzw. zulässige Querkraft in Holz-Holz-Verbindungen ETA-19/0175 DIN EN 1995-1-1 + NA

Einschraubwinkel zur Faserrichtung ϵ_{AD} und ϵ_{ET} = 90° Winkel zwischen Querkraft und Faserrichtung: 0 - 90°


Charakteristischer Widerstand der Querkraft bzw. zulässige Querkraft in Stahl-Holz-Verbindungen ETA-19/0175 DIN EN 1995-1-1 + NA

Stahl-Holz dünnes Stalblech $t \le 0.5 \cdot d$

 $\epsilon_{\text{ET}} = 90^{\circ}$ Winkel Querkr.- Faser: 0 - 90°

ET $(\alpha = 0^{\circ})$

Stahl-Holz dickes Stahlblech $t \ge d^{1)}$ $\varepsilon_{\rm eff} = 90^{\circ}$ Winkel Querkr.- Faser: 0 - 90°

$F_{v,Rk}$	zul. F _v	t	ET	F _{v,Rk}	zul. F _v	t	ET	F _{v,Rk}	zul. F _v
[kN]	[kN]	[mm]	[mm]	[kN]	[kN]	[mm]	[mm]	[kN]	[kN]
2,89	1,43	4	76	3,54	1,75	8	72	4,66	2,30
3,61	1,78	4	96	3,81	1,89	8	92	4,90	2,42
3,97	1,96	4	116	4,38	2,17	8	112	5,47	2,70
4,10	2,03	4	136	4,68	2,32	8	132	5,77	2,85
4,10	2,03	4	156	4,68	2,32	8	152	5,77	2,85
4,10	2,03	4	176	5,23	2,58	8	172	6,37	3,15
4,10	2,03	4	396	5,23	2,58	8	392	6,37	3,15

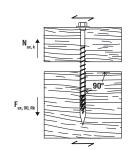
Rand- / Achsabstände und Mindest- Bauteilabmessungen nach ETA-19/0175 sowie DIN EN 1995-1-1 mit NA.

Die Bemessung der Quertragfähigkeit wurde nach dem genauen Verfahren gemäß DIN EN 1995-1-1 Abschnitt 8.2 geführt.

Werte der Quertragfähigkeit gelten für nicht vorgebohrte Löcher. Bei vorgebohrten Löchern sind evtl. höhere Werte der Quertragfähigkeit möglich.

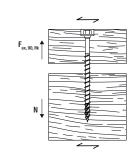
Zur Ermittlung der zulässigen Last wurde $\gamma_M=1,3; \gamma_{Eglobal}=1,4$ und $k_{mod}=0,9$ (z.B. KLED = kurz und NKL 2) angesetzt. Nachweise in den Stahlblechen wie z.B. Lochleibung und Durchstanzen sind bauseits zu führen.

Alle angegebenen mechanischen Werte sind in Abhängigkeit von den getroffenen Annahmen zu betrachten und stellen Bemessungsbeispiele dar.


Alle Werte gelten vorbehaltlich Satz- und Druckfehlern.

Lasttabelle für die Holzbauschrauben PowerFast II Sechskantkopf mit angeformter U- Scheibe und Teilgewinde

ΑT ET


Charakteristischer bzw. zulässiger Gewinde-Ausziehwiderstand ETA-19/0175 DIN EN 1995-1-1 + NA

Einschraubwinkel zur Faserrichtung ϵ_{AT} und ϵ_{ET} = 90°

Charakteristischer bzw. zulässiger Kopfdurchziehwiderstand ETA-19/0175 DIN EN 1995-1-1 + NA

Einschraubwinkel zur Faserrichtung $\epsilon_{_{AT}}$ und $\epsilon_{_{ET}}\,$ = 90°

беспяканткорг								
d	1	d _h	AT	ET	F _{ax,90,Rk}	zul. F _{ax,90}	F _{ax,90,Rk}	zul. F _{ax,90}
[mm]	[mm]	[mm]	[mm]	[mm]	[kN]	[kN]	[kN]	[kN]
8,0	80	18,0	40	40	3,84	1,90	3,24	1,60
8,0	100	18,0	40	60	5,88	2,91	3,24	1,60
8,0	120	18,0	40	80	8,28	4,09	3,24	1,60
8,0	140	18,0	40	100	10,68	5,28	3,24	1,60
10,0	80	21,3	40	40	4,60	2,27	4,54	2,24
10,0	100	21,3	40	60	6,90	3,41	4,54	2,24
10,0	120	21,3	40	80	9,20	4,55	4,54	2,24
10,0	140	21,3	40	100	11,88	5,87	4,54	2,24
12,0	100	23,4	50	50	6,18	3,06	5,48	2,71
12,0	120	23,4	60	60	7,42	3,67	5,48	2,71
12,0	140	23,4	60	80	9,89	4,89	5,48	2,71

¹⁾ Toleranz des Lochdurchmessers im Stahlblech muss gemäß DIN EN 1995-1-1 ≤ 0,1 · d sein. Bei Stahlblechdicken t zwischen 0,5 · d und d, dürfen die Quertragfähigkeiten interpoliert werden.

Allgemeines:

Die ETA-19/0175 ist zu beachten.

Bemessung ausschließlich gültig für Einzelschrauben nach ETA-19/0175 bzw. DIN EN 1995-1-1 mit NA.

Bei Schraubengruppen sind Abminderungen der Tragfähigkeit je Schraube vorzunehmen (nef gemäß ETA-19/0175).

Bei kombinierter Zug- und Querzugbeanspruchung oder bei Biegebeanspruchung sind die Lasten abzumindern - siehe ETA-19/0175.

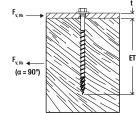
Angesetzte Holzrohdichte: $\rho_k = 350 \text{ kg/m}^3$. Einschraubwinkel: $\epsilon = 90^\circ$ zur Oberfläche und somit zur Holzfaserrichtung. Die Werte bezgl. der Quertragfähigkeit beziehen sich auf galvanisch verzinkte Schrauben. Mindesteinschraubtiefe (ET) für tragende Verbindungen: Min. $h_{ef} = 4 \cdot d$.

Charakteristischer Widerstand der Querkraft bzw. zulässige Querkraft in Holz-Holz-Verbindungen ETA-19/0175

DIN EN 1995-1-1 + NA

Einschraubwinkel zur Faserrichtung ϵ_{AD} und ϵ_{ET} = 90° Winkel zwischen Querkraft und Faserrichtung: 0 - 90°

Charakteristischer Widerstand der Querkraft bzw. zulässige Querkraft in Stahl-Holz-Verbindungen ETA-19/0175 DIN EN 1995-1-1 + NA


Stahl-Holz

dünnes Stalblech $t \le 0.5 \cdot d$ $\epsilon_{\text{ET}} = 90^{\circ}$ Winkel Querkr.- Faser: 0 - 90°

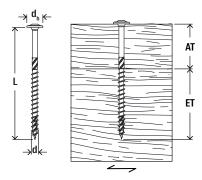
ET $(\alpha = 0^{\circ})$

dickes Stahlblech $t \ge d^{1)}$ $\varepsilon_{\rm eff} = 90^{\circ}$ Winkel Querkr.- Faser: 0 - 90°

Stahl-Holz

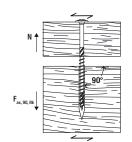
$F_{v,Rk}$	zul. F _v	t	ET	F _{v,Rk}	zul. F _v	t	ET	F _{v,Rk}	zul. F _v
[kN]	[kN]	[mm]	[mm]	[kN]	[kN]	[mm]	[mm]	[kN]	[kN]
2,74	1,35	4	76	3,54	1,75	8	72	4,66	2,30
2,98	1,47	4	96	4,08	2,02	8	92	5,17	2,55
2,98	1,47	4	116	4,68	2,32	8	112	5,77	2,85
2,98	1,47	4	136	5,23	2,58	8	132	6,37	3,15
3,39	1,67	5	75	4,08	2,02	10	70	5,83	2,88
3,92	1,94	5	95	5,17	2,55	10	90	6,91	3,42
3,92	1,94	5	115	5,97	2,95	10	110	7,49	3,70
3,92	1,94	5	135	6,64	3,28	10	130	8,16	4,03
4,57	2,26	6	94	5,81	2,87	12	88	8,11	4,01
5,21	2,58	6	114	6,80	3,36	12	108	8,85	4,38
5,59	2,76	6	134	7,42	3,67	12	128	9,47	4,68

Rand- / Achsabstände und Mindest- Bauteilabmessungen nach ETA-19/0175 sowie DIN EN 1995-1-1 mit NA.

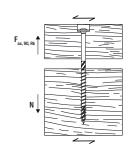

Die Bemessung der Quertragfähigkeit wurde nach dem genauen Verfahren gemäß DIN EN 1995-1-1 Abschnitt 8.2 geführt.

Werte der Quertragfähigkeit gelten für nicht vorgebohrte Löcher. Bei vorgebohrten Löchern sind evtl. höhere Werte der Quertragfähigkeit möglich.

Zur Ermittlung der zulässigen Last wurde $\gamma_M=1,3; \gamma_{F,global}=1,4$ und $k_{mod}=0,9$ (z.B. KLED = kurz und NKL 2) angesetzt. Nachweise in den Stahlblechen wie z.B. Lochleibung und Durchstanzen sind bauseits zu führen.


Alle angegebenen mechanischen Werte sind in Abhängigkeit von den getroffenen Annahmen zu betrachten und stellen Bemessungsbeispiele dar. Alle Werte gelten vorbehaltlich Satz- und Druckfehlern.

Lasttabelle für die Holzbauschrauben PowerFast II Tellerkopf


Charakteristischer bzw. zulässiger Gewinde-Ausziehwiderstand ETA-19/0175 DIN EN 1995-1-1 + NA

Einschraubwinkel zur Faserrichtung ϵ_{AT} und ϵ_{ET} = 90°

Charakteristischer bzw. zulässiger Kopfdurchziehwiderstand ETA-19/0175 DIN EN 1995-1-1 + NA

Einschraubwinkel zur Faserrichtung ϵ_{AT} und $\epsilon_{ET} = 90^{\circ}$

Tell	lerk	ont

renerkopi								
d	I	d _h	AT	ET	F _{ax,90,Rk}	zul. F _{ax,90}	F _{ax,90,Rk}	zul. F _{ax,90}
[mm]	[mm]	[mm]	[mm]	[mm]	[kN]	[kN]	[kN]	[kN]
8,0	80	21,0	40	40	3,84	1,90	6,31	3,12
8,0	100	21,0	50	50	4,80	2,37	6,31	3,12
8,0	120	21,0	50	70	7,08	3,50	6,31	3,12
8,0	140	21,0	60	80	8,28	4,09	6,31	3,12
8,0	160	21,0	80	80	8,28	4,09	6,31	3,12
8,0	180	21,0	80	100	10,68	5,28	6,31	3,12
8,0	400	21,0	300	100	10,68	5,28	6,31	3,12
10,0	80	25,5	40	40	4,60	2,27	8,19	4,05
10,0	100	25,5	40	60	6,90	3,41	8,19	4,05
10,0	120	25,5	50	70	8,05	3,98	8,19	4,05
10,0	140	25,5	60	80	9,20	4,55	8,19	4,05
10,0	160	25,5	80	80	9,20	4,55	8,19	4,05
10,0	180	25,5	80	100	11,88	5,87	8,19	4,05
10,0	200	25,5	100	100	11,88	5,87	8,19	4,05
10,0	220	25,5	120	100	11,88	5,87	8,19	4,05
10,0	240	25,5	140	100	11,88	5,87	8,19	4,05
10,0	260	25,5	160	100	11,88	5,87	8,19	4,05
10,0	280	25,5	165	115	13,91	6,88	8,19	4,05
10,0	400	25,5	285	115	13,91	6,88	8,19	4,05

Für Schrauben 8,0 x 200 bis 8,0 x 380 mm gelten dieselben Werte wie für 8,0 x 180. Voraussetzung: Anbauteildicke AT = mind. 80 mm, Mindesteinschraubtiefe ET = mind. 100 mm. Für Schrauben 10,0 x 300 bis 10,0 x 380 mm gelten dieselben Werte wie für 10,0 x 280. Voraussetzung: Anbauteildicke AT = mind. 165 mm, Mindesteinschraubtiefe ET = mind. 175 mm.

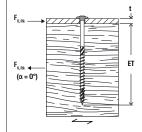
¹¹ Toleranz des Lochdurchmessers im Stahlblech muss gemäß DIN EN 1995-1-1 ≤ 0,1 · d sein. Bei Stahlblechdicken t zwischen 0,5 · d und d, dürfen die Quertragfähigkeiten interpoliert werden.

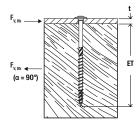
Allgemeines:

Die ETA-19/0175 ist zu beachten.

Die EIA-19/01/5 ist zu beachten. Bemessung ausschließlich gültig für Einzelschrauben nach ETA-19/0175 bzw. DIN EN 1995-1-1 mit NA. Bei Schraubengruppen sind Abminderungen der Tragfähigkeit je Schraube vorzunehmen (nef gemäß ETA-19/0175). Bei kombinierter Zug- und Querzugbeanspruchung oder bei Biegebeanspruchung sind die Lasten abzumindern - siehe ETA-19/0175. Angesetzte Holzrohdichte: $\rho_k = 350 \text{ kg/m}^3$. Einschraubwinkel: $\epsilon = 90^\circ$ zur Oberfläche und somit zur Holzfaserrichtung. Die Werte bezgl. der Quertragfähigkeit beziehen sich auf galvanisch verzinkte Schrauben. Mindesteinschraubtiefe (ET) für tragende Verbindungen: Min. $h_{\text{ef}} = 4 \cdot \text{d.}$

Charakteristischer Widerstand der Querkraft bzw. zulässige Querkraft in Holz-Holz-Verbindungen ETA-19/0175 DIN EN 1995-1-1 + NA


Einschraubwinkel zur Faserrichtung ϵ_{AD} und ϵ_{ET} = 90° Winkel zwischen Querkraft und Faserrichtung: 0 - 90°


Charakteristischer Widerstand der Querkraft bzw. zulässige Querkraft in Stahl-Holz-Verbindungen ETA-19/0175 DIN EN 1995-1-1 + NA

Stahl-Holz

dünnes Stalblech $t \le 0.5 \cdot d$ $\epsilon_{\text{ET}} = 90^{\circ}$ Winkel Querkr.- Faser: 0 - 90° dickes Stahlblech $t \ge d^{1)}$ $\epsilon_{\text{ET}} = 90^{\circ}$ Winkel Querkr.- Faser: 0 - 90°

Stahl-Holz

F _{v,Rk}	zul. F _v	t	ET	F _{v,Rk}	zul. F _v	t	ET	F _{v,Rk}	zul. F _v
[kN]	[kN]	[mm]	[mm]	[kN]	[kN]	[mm]	[mm]	[kN]	[kN]
2,89	1,43	4	76	3,54	1,75	8	72	4,66	2,30
3,61	1,78	4	96	3,81	1,89	8	92	4,90	2,42
4,05	2,00	4	116	4,38	2,17	8	112	5,47	2,70
4,19	2,07	4	136	4,68	2,32	8	132	5,77	2,85
4,19	2,07	4	156	4,68	2,32	8	152	5,77	2,85
4,19	2,07	4	176	5,23	2,58	8	172	6,37	3,15
4,19	2,07	4	396	5,23	2,58	8	392	6,37	3,15
3,40	1,68	5	75	4,08	2,02	10	70	5,83	2,88
4,51	2,23	5	95	5,17	2,55	10	90	6,91	3,42
5,12	2,53	5	115	5,68	2,81	10	110	7,20	3,56
5,52	2,73	5	135	5,97	2,95	10	130	7,49	3,70
5,72	2,83	5	155	5,97	2,95	10	150	7,49	3,70
5,72	2,83	5	175	6,64	3,28	10	170	8,16	4,03
5,72	2,83	5	195	6,64	3,28	10	190	8,16	4,03
5,72	2,83	5	215	6,64	3,28	10	210	8,16	4,03
5,72	2,83	5	235	6,64	3,28	10	230	8,16	4,03
5,72	2,83	5	255	6,64	3,28	10	250	8,16	4,03
5,72	2,83	5	275	7,14	3,53	10	270	8,66	4,28
5,72	2,83	5	395	7,14	3,53	10	390	8,66	4,28

Rand- / Achsabstände und Mindest- Bauteilabmessungen nach ETA-19/0175 sowie DIN EN 1995-1-1 mit NA.

Rand- / Acnsabstande und Mindest- Bauteilabmessungen nach E IA-19/01/5 sowie DIN EN 1995-1-1 mit NA.

Die Bemessung der Quertragfähigkeit wurde nach dem genauen Verfahren gemäß DIN EN 1995-1-1 Abschnitt 8.2 geführt.

Werte der Quertragfähigkeit gelten für nicht vorgebohrte Löcher. Bei vorgebohrten Löchern sind evtl. höhere Werte der Quertragfähigkeit möglich.

Zur Ermittlung der zulässigen Last wurde γ_M = 1,3; γ_{Eglobal} = 1,4 und k_{mod} = 0,9 (z.B. KLED = kurz und NKL 2) angesetzt.

Nachweise in den Stahlblechen wie z.B. Lochleibung und Durchstanzen sind bauseits zu führen.

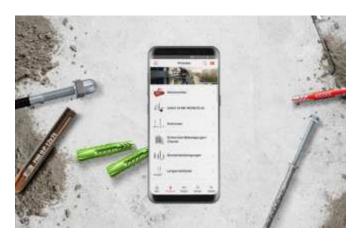
Alle angegebenen mechanischen Werte sind in Abhängigkeit von den getroffenen Annahmen zu betrachten und stellen Bemessungsbeispiele dar. Alle Werte gelten vorbehaltlich Satz- und Druckfehlern.

fischer Service.

Unser 360°-Service für Sie.

Von Softwarelösungen, über Schulungen, bis hin zur persönlichen Beratung. Wir stehen Ihnen als verlässlicher Partner jederzeit gerne mit Rat und Tat zur Seite.

Bemessungssoftware: FiXperience Suite.


Die fischer FiXperience Software unterstützt Sie als Planer, Statiker und Handwerker sicher und zuverlässig beim Bemessen Ihrer Projekte. Sie ist modular aufgebaut und umfasst eine Ingenieursoftware und verschiedene Anwendungs-Module.

Jetzt testen und kostenlos herunterladen: www.fischer.de/fixperience

fischer PRO. Der mobile Befestigungsexperte für den Handwerker.

Mit der fischer PRO App können Sie sich schnell und einfach über Produkte informieren, den Händler in Ihrer Nähe finden oder die passende Lösung zu Ihrem Anwendungsfall erhalten. Jetzt im Apple oder Google Play Store herunterladen.

www.fischer.de

Dafür steht fischer

Befestigungssysteme Automotive fischertechnik Consulting **Electronic Solutions**

fischerwerke GmbH & Co. KG

Klaus-Fischer-Straße 1 · 72178 Waldachtal T +49 7443 12 - 6000 · F +49 7443 12 - 8297 www.fischer-international.com · info@fischer.de

fischer Austria GmbH

Wiener Straße 95 · 2514 Traiskirchen Österreich T +43 2252 53730 - 0 · F +43 2252 53730 - 70 www.fischer.at · technik@fischer.at