

261

281

WBAZ310

HOLZ

TEILGEWINDE - SENKKOPF BEFESTIGUNG VON PLATTEN HBS PLATE......212 SHS......16 SHS AISI41020 HBS PLATE EVO...... 222 HTS......26 HBS PLATE A4......227 HBS......30 LBS......228 HBS SOFTWOOD......44 LBS EVO234 HBS COIL50 LBS HARDWOOD......238 HBS EVO52 LBS HARDWOOD EVO......244 HBS EVO C5.....58 LBA250 HBS HARDWOOD......60 DWS......259 HUS68 XYLOFON WASHER73 BETON TEILGEWINDE - TELLERKOPF HOLZ-BETON TBS76 TBS SOFTWOOD 88 CTC 262 TBS MAX......92 TC FUSION270 TBS FRAME98 TBS EVO102 TBS EVO C5......108 BETON UND MAUERWERK KOP110 MBS | MBZ......274 SKR EVO | SKS EVO......276 **VOLLGEWINDE - ZYLINDERKOPF** SKR | SKS | SKP......278 VGZ......120 VGZ EVO C5......152 **METALL** VGZ HARDWOOD.....154 HOLZ-METALL **VOLLGEWINDE - SENKKOPF** SBD......284 VGS......164 SBS......292 VGS EVO.......180 SBS A2 | AISI304......296 VGS EVO C5......186 SPP......298 VGS A4......188 BEFESTIGUNG VON BLECHEN VGU......190 SBN - SBN A2 | AISI304 302 RTR.....196 SAR 304 DOPPELGEWINDE MCS A2 | AISI304306 DGZ......202 MTS A2 | AISI304.....308 DRS......208 CPL......309

DRT......210

313 ZUSATZPRODUKTE

I TERRASSEN UND FASSADEN

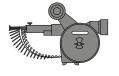
SCHRAUBEN

SCI HCR	316
SCI A4 AISI316	318
SCI A2 AISI304	320
KKT COLOR A4 AISI316	324
KKT A4 AISI316	328
KKT COLOR	332
FAS A4 AISI316	336
KKZ A2 AISI304	338
KKZ EVO C5	342
EWS AISI410 EWS A2	344
KKF AISI410	348
KKA AISI410	352
KKA COLOR	354

CLIP

FLAT FLIP	
SNAP360	
TVM362	
GAP	
TERRALOCK 370	

UNTERKONSTRUKTION


JFA	.374
SUPPORT	.378
ALU TERRACE	386
GROUND COVER	.392
NAG	.392
GRANULO	.393
TERRA BAND UV	394
PROFID	394
STAR	394
SHIM	395
SHIM LARGE	395

DÄMMSTOFFBEFESTIGUNG

THERMOWASHER	396
ISULFIX	397
WRAF	398

SCHRAUBER UND NAGLER

A 12	402
A 18 ASB 18	402
KMR 3373	403
KMR 3372	403
KMR 3352	404
KMR 3338	404
KMR 3371	405
B 13 B	405
ANKERNAGLER	406
D 38 RLE	407

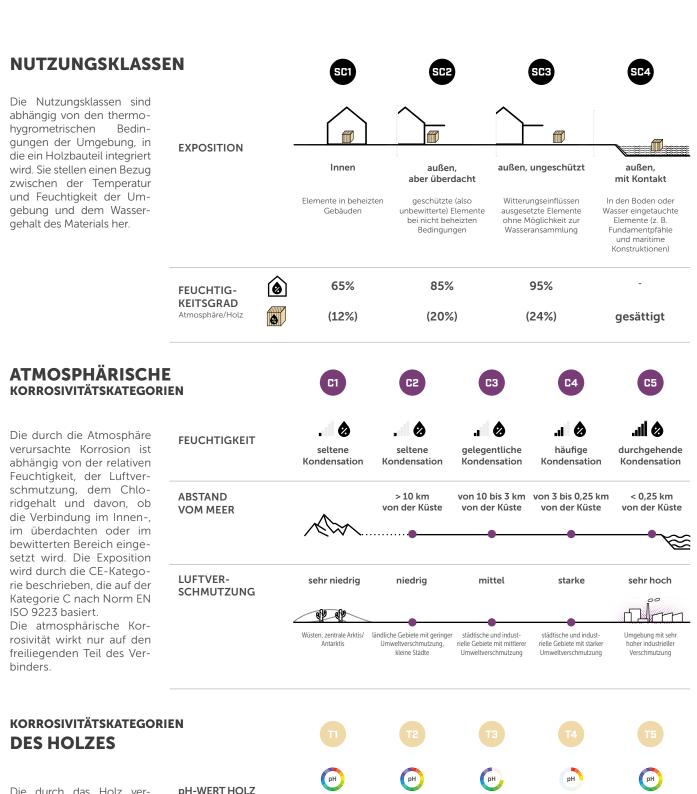
ZUBEHÖR UND MONTAGELEHREN

CATCH	408
TORQUE LIMITER	408
JIG VGU	409
JIG VGZ 45°	409
BIT STOP	410
DRILL STOP	410
JIG ALU STA	411
COLUMN	411
BEAR	412
CRICKET	412

HEBETECHNIK

WASP	 413
RAPTOR	 413

BOHRER UND BIT



LEWIS	414
SNAIL HSS	415
SNAIL PULSE	416
RIT	<i>4</i> 17

Zum Verbinden gemacht **HAUPTSITZ** Produktentwicklung Zertifizierung Qualitätskontrolle WERK IMMER SCHNELLERE, SICHERERE UND SPEZIALISIERTERE VERBINDUNGEN Wir haben ein neues Werk in Italien, das die der Erde. Unsere Schrauben sind mit einem Entwicklung, Produktion und den Vertrieb uneindeutigen Identifikationscode verknüpft, der serer Schrauben und Verbindern fördert. die Rückverfolgbarkeit von der Vermarktung Wir unterstützen den Holzbau seit über 30 bis zum Rohmaterial. Jahren, da wir davon überzeugt sind, dass dies der richtige Weg in eine bessere Zukunft ist. Welten, Materialien und Menschen miteinan-Wir entwerfen in Südtirol, produzieren in Italien der zu verbinden ist seit jeher unsere Stärke. und weltweit und exportieren in jeden Winkel f in 🖸 rothoblaas.de

Für weitere Informationen siehe SMARTBOOK SCHRAUBEN www.rothoblaas.de.

Zum Download des SMARTBOOK den QR-Code scannen

rothoblaas.de

Solutions for Building Technology

I KOMPLETTES PRODUKTSORTIMENT

KÖPFE UND SPITZEN

KOPFTYP TBS FRAME SCI HCR

SENKKOPF MIT FRÄSRIPPEN

HBS, HBS COIL, HBS EVO C4/C5, HBS S, VGS, VGS EVO C4/C5, VGS A4, SCI A2/A4, SBS, SPP, MBS

TELLERKOPF

TBS, TBS MAX, TBS EVO C4/C5, TBS S, FAS A4

TELLERKOPF

SENKKOPF GLATT

HTS, DRS, DRT, SKS EVO, SBS A2, SBN, SBN A2,

SENKKOPF 60°

SHS, SHS AISI410, HBS H

RUNDKOPF

LBS, LBS EVO, LBS H, LBS H EVO

SECHSKANTKOPF

KOP, SKR EVO, VGS, VGS EVO, MTS A2, SAR

KEGELKOPF

KKT A4 COLOR, KKT A4, KKT COLOR

KEGELUNTERKOPF

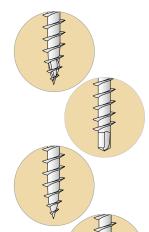
HBS P, HBS P EVO, KKF AISI410

KEGELUNTERKOPF VERSTÄRKT

HBS PLATE, HBS PLATE EVO, HBS PLATE A4

LINSENKOPF

EWS A2, EWS AISI410, MCS A2


ZYLINDERKOPF

VGZ, VGZ EVO C4/C5, VGZ H, DGZ, CTC, MBZ, SBD, KKZ A2, KKZ EVO C5, KKA AISI410, KKA COLOR

TROMPETENKOPF

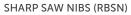
DWS, DWS COIL

SPITZENTYP

3 THORNS

HBS, HTS, HBS COIL, HBS EVO C4/C5, HBS PLATE, HBS PLATE EVO, TBS, TBS MAX, TBS EVO C4/C5, TBS FRAME, VGZ, VGZ EVO C4/C5, VGS, VGS EVO C4/C5, DGZ, CTC, SHS, SHS AISI410, KKF AISI410, SCI A2

SELF-DRILLING


VGZ, VGS, VGS A4

SHARP

LBS, LBS EVO, DRS, DRT, DWS, DWS COIL, MCS A2, KKT COLOR A4, KKT A4, EWS A2, EWS AISI410, SCI HCR, SCI A4, FAS

SHARP SAW

HBS S, TBS S

SHARP 2 CUT

KKT COLOR

STANDARD FÜR HOLZ

MBS, MBZ, KOP, MTS A2

HARD WOOD TIMBER

HBS H, VGZ H

HARD WOOD (STEEL - to - TIMBER)

LBS H, LBS H EVO

HARD WOOD (DECKING)

KKZ A2, KKZ EVO C5

BETON

SKR EVO, SKS EVO

METALL (TAPERED TIP)

METALL (MIT RIPPEN)

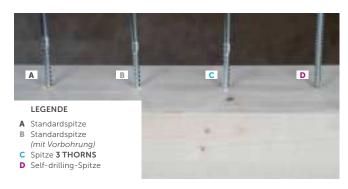
SBS, SBS A2, SPP

METALL (OHNE RIPPEN)

SBD, SBN, SBN A2, KKA AISI 410, KKA COLOR

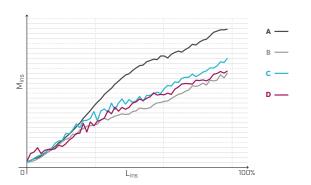
FORSCHUNG & ENTWICKLUNG

SPITZE 3 THORNS


Umfangreiche Versuchsreihen in den eigenen Rothoblaas-Laboren und in externen Einrichtungen auf Softwood, Hardwood und LVL ermöglichten die Entwicklung eines in jeder Hinsicht leistungsstarken Produkts.

Dank der Spitze 3 THORNS werden die Mindestabstände reduziert.

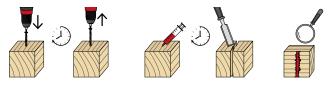
Mehr Schrauben können auf geringerem Raum und größere Schrauben in kleineren Elementen verwendet werden. Die Kosten und der Zeitaufwand für die Umsetzung des Projekts verringern sich.


EINFACHES UND SCHNELLES EINDREHEN

Die Spitze 3 THORNS ist mit geprägten Spaltelementen und einem Schirmgewinde bis zum Schraubenende ausgestattet. Dies sorgt für ein schnelles Anbeißen und eine reibungsarme Montage, reduziert die Torsionskraft auf die Schraube und minimiert die Beschädigung des Holzes. Das Finish bietet eine hervorragende Optik.

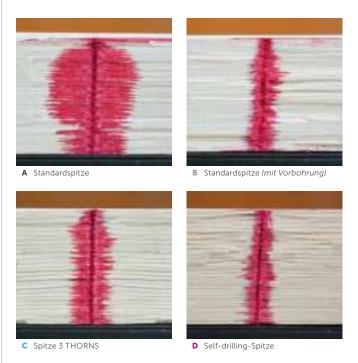
Im Bild ist das Eindrehen von Schrauben mit unterschiedlicher Spitze dargestellt, wobei die Änderung der Durchzugstiefe nach einer Einschraubzeit von 1,0 Sekunden hervor-

Zum Eindrehen muss die Schraube die Widerstandskraft des Holzes überwinden. Die Einschraubkraft, die durch das Einschraubmoment (M_{ins}) gemessen wird, kann nur mit einer leistungsstarken Spitze minimiert werden.


Die Grafik zeigt den Verlauf des Einschraubmoments für Schrauben mit unterschiedlichen geometrischen Spitzen und den gleichen Rahmenbedingungen (Schraubendurchmesser, Gewindelänge und -typ, Holzwerkstoff, aufgebrachte Kraft) abhängig von der Einschraublänge (L_{ins}).

Die Torsionskraft, die an der Schraube mit einer Spitze 3 THORNS (C) während des Eindrehens akkumuliert wird, ist deutlich niedriger als bei Schrauben mit Standardspitzen (A) und nähert sich dem Einschraubwert mit Vorbohrung (B).

REDUZIERUNG DER MINDESTABSTÄNDE


Dank der Spaltelemente im Gegengewinde erleichtert die Spitze 3 THORNS ein Eindrehen der Schraube in die Fasern, ohne sie zu beschädigen.

Sie wirkt wie eine Lochführung und ermöglicht die Verringerung der Abstände zu den Rändern und zwischen den Schrauben. Gleichzeitig verhindert sie Risse im Holzelement sowie Sprödbrüche der Verbindung.

Die Sequenz stellt den Testverlauf zur Bewertung der Mindestabstände der Schrauben bei axialem Abscheren nach FAD 130118-01-0603 dar

Für den Test wird die Schraube eingedreht und nach 24 Stunden wieder gelöst. Daraufhin wird das Loch mit Farbstoff gefüllt, um ihre Diffusion innerhalb des Holzelements zu überprüfen. Der vom Eindrehen der Schraube betroffene Bereich ist proportional zur roten Fläche.

Die Spitze 3 THORNS (C) verhält sich ähnlich wie die Standardschraube, die in eine Vorbohrung eingedreht wird (B), tendenziell wie die Self-drilling-Spitze (D).

KOMPLETTES PRODUKTSORTIMENT

MATERIALIEN UND BESCHICHTUNG

KOHLENSTOFFSTAHL MIT BESCHICHTUNG

ROSTSCHUTZBESCHICHTUNG C5 EVO

Mehrschichtige Beschichtung, die Außenumgebungen mit C5-Klassifizierung nach ISO 9223 standhält. Expositionszeit in Salzsprühnebel (SST) gemäß ISO 9227 über 3000 Stunden (Prüfung an zuvor verschraubten und gelösten Schrauben in Douglasie).

ROSTSCHUTZBESCHICHTUNG C4 EVO

Mehrschichtige Beschichtung auf anorganischer Basis mit einer äußeren Funktionsschicht mit Epoxidmatrix und Aluminiumflakes. Eignung für die Korrosionskategorie C4, nachgewiesen durch RISE.

ORGANISCHE ROSTSCHUTZBESCHICHTUNG

Farbige Beschichtung auf organischer Basis, die eine ausgezeichnete Beständigkeit gegen atmosphärische Korrosion und Holzkorrosion bei Außenanwendungen bietet.

GALVANISCHE VERZINKUNG

Beschichtung aus einer Schicht aus galvanischer Verzinkung mit Chrompassivierung; Standard für die meisten Verbinder.

FDFI STAHI

HIGH CORROSION RESISTANT - CRC V

Super-austenitischer Edelstahl. Er zeichnet sich durch einen hohen Molybdängehalt und niedrigen Kohlenstoffgehalt aus. Er bietet eine sehr hohe Beständigkeit gegenüber allgemeiner Korrosion, Spannungsrisskorrosion, interkristalliner Korrosion und Lochfraß. Die richtige Wahl für exponierte Befestigungen in Hallenbädern.

EDELSTAHL A4 | AISI316 - CRC III

Austenitischer Edelstahl. Das vorhandene Molybdän verleiht eine hohe Beständigkeit gegenüber allgemeiner Korrosion und Spaltkorrosion.

EDELSTAHL A2 | AISI304 - CRC II

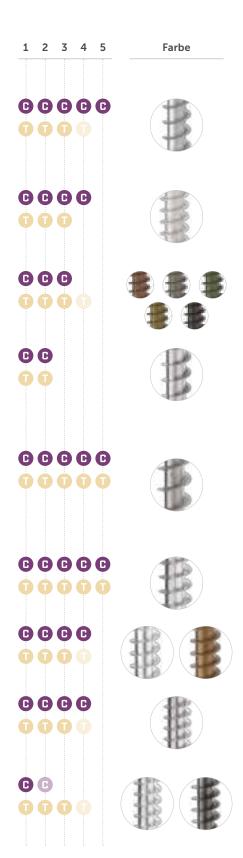
Austenitischer Edelstahl. Der häufigste unter den austenitischen Werkstoffen. Er bietet einen hervorragenden Schutz gegen allgemeine Korrosion.

EDELSTAHL A2 | AISI305 - CRC II

Austenitischer Edelstahl ähnlich A2 | AISI304. Die Legierung enthält etwas mehr Kohlenstoff im Vergleich zum A2 | AISI304, wodurch er sich in der Produktion besser verarbeiten lässt.

EDELSTAHL AISI410

Martensitischer Edelstahl, charakterisiert durch seinen hohen Kohlenstoffgehalt. Geeignet für Außenanwendungen (SC3). Unter den rostfreien Stählen ist er derjenige mit der höchsten mechanischen Leistung.


Erfahrung Rothoblaas

Erfahrung Rothoblaas

Korrosivitätskategorie, definiert gemäß EN 14592:2022 nach EN ISO 9223 und EN 1993-1-4:2014 (für Edelstahl wurde unter alleiniger Berücksichtigung des Einflusses von Chloriden und ohne Reinigungsverfahren eine äquivalente Korrosionskategorie bestimmt). Korrosivitätskategorie des Holzes nach EN 14592:2022.

Für weitere Informationen siehe SMARTBOOK SCHRAUBEN www.rothoblaas.de.

I FORSCHUNG & ENTWICKLUNG

EVO COATINGS

Im Rahmen der Rothoblaas-Forschungsprojekte entstehen Beschichtungen, die den komplexesten Anforderungen des Marktes gerecht werden. Unser Ziel ist es, hochmoderne Befestigungslösungen anzubieten, die mechanische Leistung und Korrosionsbeständigkeit ohne Kompromisse gewährleisten.

C4 EVO

Korrosivitätskategorie C4: Bereich mit hoher Konzentration an Schadstoffen, Salzen oder Chloriden Zum Beispiel städtische und industrielle Gebiete mit hoher Umweltverschmutzung und Küstengebiete.

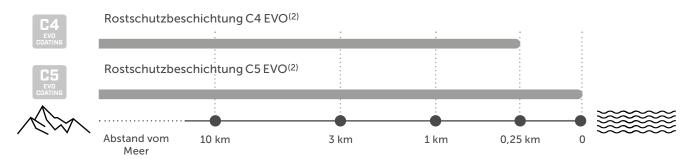
Mehrschichtige Beschichtung auf anorganischer Basis mit einer äußeren Funktionsschicht mit Epoxidmatrix und Aluminiumflakes.

C5 EVO

Korrosivitätskategorie C5: Bereich mit sehr hoher Konzentration an Salzen, Chloriden oder korrosiven Stoffen aus Produktionsprozessen. Zum Beispiel Orte in Küstennähe oder Gebiete mit hoher industrieller Verschmutzung.

Mehrschichtige Beschichtung auf organischer Basis mit einer Funktionsschicht. Die Deckschicht hat eine abdichtende Funktion, die den Beginn der Korrosionsreaktion verzögert.

Expositionsstunden im Salzsprühtest gemäß EN ISO 9227:2012 ohne Rotrost.



ABSTAND VOM MEER

BESTÄNDIGKEIT GEGEN CHLORIDEINWIRKUNG^[1]

⁽¹⁾ C4 und C5 sind nach EN 14592:2022 entsprechend EN ISO 9223 definiert.

⁽²⁾ EN 14592:2022 begrenzt derzeit die Nutzungsdauer alternativer Beschichtungen auf 15 Jahre.

HOLZ

SHS SENKKOPFSCHRAUBE 60°16	VGS VOLLGEWINDE-VERBINDER MIT SENK- ODER
SHS AISI410 SENKKOPFSCHRAUBE 60°	SECHSKANTKOPF
HTS SENKKOPFSCHRAUBE MIT VOLLGEWINDE	VOLLGEWINDE-VERBINDER MIT SENK- ODER SECHSKANTKOPF
HBS SENKKOPFSCHRAUBE	VGS EVO C5 SENKKOPFSCHRAUBE MIT VOLLGEWINDE
HBS SOFTWOOD SENKKOPFSCHRAUBE	VGS A4 SENKKOPFSCHRAUBE MIT VOLLGEWINDE
HBS COIL GEBUNDENE HBS-SCHRAUBEN	VGU 45° UNTERLEGSCHEIBE FÜR VGS190
HBS EVO SENKKOPFSCHRAUBE	RTR ARMIERUNGSSYSTEM196
HBS EVO C5 SENKKOPFSCHRAUBE	DGZ
HBS HARDWOOD SENKKOPFSCHRAUBE FÜR HARTHÖLZER	DOPPELGEWINDESCHRAUBE FÜR DÄMMSTOFFE202 DRS
HUS GEDREHTE BEILAGSCHEIBE	ABSTANDSSCHRAUBE HOLZ - HOLZ
XYLOFON WASHER ENTKOPPLUNGSSCHEIBE FÜR SCHRAUBEN	ABSTANDSSCHRAUBE HOLZ - MAUERWERK
	HBS PLATE SCHRAUBE MIT KEGELUNTERKOPF FÜR PLATTEN212
TBS TELLERKOPFSCHRAUBE76	HBS PLATE EVO SCHRAUBE MIT KEGELUNTERKOPF222
TBS SOFTWOOD TELLERKOPFSCHRAUBE88	HBS PLATE A4 SCHRAUBE MIT KEGELUNTERKOPF FÜR PLATTEN227
TBS MAX TELLERKOPFSCHRAUBE XL	LBS RUNDKOPFSCHRAUBE FÜR PLATTEN228
TBS FRAME TELLERBAUSCHRAUBE	LBS EVO RUNDKOPFSCHRAUBE FÜR PLATTEN234
TBS EVO TELLERKOPFSCHRAUBE	LBS HARDWOOD RUNDKOPFSCHRAUBE FÜR LOCHBLECHE
TBS EVO C5 TELLERKOPFSCHRAUBE	AUF HARTHÖLZERN
KOPSCHLÜSSELSCHRAUBE DIN571	RUNDKOPFSCHRAUBE FÜR LOCHBLECHE AUF HARTHÖLZERN244
VGZ	LBA ANKERNAGEL
SCHRAUBE MIT VOLLGEWINDE UND ZYLINDERKOPF120 VGZ EVO	DWS GIPSPLATTENSCHRAUBE259
VOLLGEWINDESCHRAUBE MIT ZYLINDERKOPF	
VGZ EVO C5 VOLLGEWINDESCHRAUBE MIT ZYLINDERKOPF	
VGZ HARDWOOD VERBINDER MIT VOLLGEWINDE FÜR HARTHÖLZER	

SHS

SENKKOPFSCHRAUBE 60°

KLEINER KOPF UND 3 THORNS-SPITZE

Der 60°-Kopf und die Spitze 3 THORNS ermöglichen ein leichtes Einschrauben der Schraube in kleine Anbauteile ohne ein Spalten des Holzes.

GRÖSSERES MITNAHMEPROFIL

Im Vergleich zu handelsüblichen Holzbauschrauben verfügt sie über ein größeres Torx-Innensechsrund: TX 25 für Ø4 und 4,5, TX 30 für Ø5. Die richtige Schraube für alle, die Robustheit und Präzision verlangen.

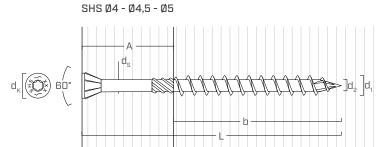
BEFESTIGUNG VON DIELEN MIT NUT UND FEDER

Zur Befestigung von Spundbrettern oder kleinen Elementen; die Ausführung mit einem Durchmesser von 3,5 mm eignet sich perfekt für die Anwendung in der Nut.

ANWENDUNGSGEBIETE

- Dielen mit Nut und Feder
- Holzwerkstoffplatten
- Harthölzer, MDF, HDF und LDF
- Furnierte und beschichtete Platten
- Massivholz
- Brettschichtholz
- BSP und LVL

ARTIKELNUMMERN UND ABMESSUNGEN


	d_1	ARTNR.	L	b	Α	Stk.
	[mm]		[mm]	[mm]	[mm]	
***************************************	3,5 TX 10	SHS3530(*)	30	20	10	500
		SHS3540(*)	40	26	14	500
		SHS3550(*)	50	34	16	500
		SHS3560(*)	60	40	20	500

^(*) Ohne CE-Kennzeichnung.

$\overline{\mathbb{W}}$	d_1	ARTNR.	L	b	Α	Stk.
	[mm]		[mm]	[mm]	[mm]	
		SHS440	40	24	16	500
	4	SHS450	50	30	20	400
	TX 25	SHS460	60	35	25	200
		SHS470	70	40	30	200
TX 2	4,5 TX 25	SHS4550	50	30	20	200
		SHS4560	60	35	25	200
		SHS4570	70	40	30	200
	5 TX 30	SHS550	50	24	26	200
		SHS560	60	30	30	200
		SHS570	70	35	35	200
		SHS580	80	40	40	200
		SHS590	90	45	45	200
		SHS5100	100	50	50	200
		SHS5120	120	60	60	200

GEOMETRIE UND MECHANISCHE EIGENSCHAFTEN

GEOMETRIE

Nenndurchmesser	d_1	[mm]	3,5	4	4,5	5
Kopfdurchmesser	d_K	[mm]	5,75	8,00	9,00	10,00
Kerndurchmesser	d_2	[mm]	2,30	2,55	2,80	3,40
Schaftdurchmesser	d _S	[mm]	2,65	2,75	3,15	3,65
Vorbohrdurchmesser ⁽¹⁾	$d_{V,S}$	[mm]	2,0	2,5	2,5	3,0
Vorbohrdurchmesser ⁽²⁾	$d_{V,H}$	[mm]	-	-	-	3,5

MECHANISCHE KENNGRÖSSEN

Nenndurchmesser	d_1	[mm]	4	4,5	5
Zugfestigkeit	$f_{\text{tens,k}}$	[kN]	5,0	6,4	7,9
Fließmoment	$M_{y,k}$	[Nm]	3,0	4,1	5,4

			Nadelholz (Softwood)	LVL aus Nadelholz (LVL Softwood)	LVL aus Buche, vorgebohrt (Beech LVL predrilled)
Charakteristischer Wert der Ausziehfestigkeit	f _{ax,k}	[N/mm ²]	11,7	15,0	29,0
Charakteristischer Durchziehparameter	$f_{\text{head},k}$	[N/mm ²]	10,5	20,0	-
Assoziierte Dichte	ρ_{a}	[kg/m ³]	350	500	730
Rohdichte	ρ_k	[kg/m ³]	≤ 440	410 ÷ 550	590 ÷ 750

Für Anwendungen mit anderen Materialien siehe ETA-11/0030.

⁽¹⁾ Vorbohrung gültig für Nadelholz (Softwood).
(2) Vorbohrung gültig für Harthölzer (Hardwood) und für LVL aus Buchenholz.

MINDESTABSTÄNDE DER SCHRAUBEN BEI ABSCHERBEANSPRUCHUNG

 d_1

 a_1

 a_2

 $a_{3,t}$

a_{3.c}

 $a_{4,t}$

 $a_{4,c}$

[mm] [mm]

[mm] [mm]

[mm]

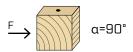
[mm]

[mm]

Schraubenabstände OHNE Vorbohrung

 $\rho_k \le 420 \text{ kg/m}^3$

4	4,5		5
40	45	10·d	50
20	23	5·d	25
60	68	15·d	75
40	45	10·d	50


5·d

5·d

25 25

23

23

d_1	[mm]		4	4,5		5
a ₁	[mm]	5·d	20	23	5·d	25
a ₂	[mm]	5·d	20	23	5·d	25
a _{3,t}	[mm]	10 ⋅d	40	45	10·d	50
a _{3,c}	[mm]	10 ⋅d	40	45	10 ⋅d	50
a _{4,t}	[mm]	7·d	28	32	10·d	50
a _{4,c}	[mm]	5·d	20	23	5·d	25

10·d

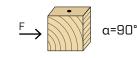
5-d

15·d

10·d

5·d

 $d = d_1 = Nenndurchmesser Schraube$


Schraubenabstände VORGEBOHRT

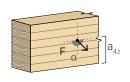
20

20

d_1	[mm]		4	4,5		5
a ₁	[mm]	5·d	20	23	5·d	25
a ₂	[mm]	3·d	12	14	3·d	15
a _{3,t}	[mm]	12·d	48	54	12·d	60
a _{3,c}	[mm]	7·d	28	32	7·d	35
a _{4,t}	[mm]	3·d	12	14	3·d	15
a _{4,c}	[mm]	3·d	12	14	3·d	15

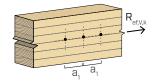
d_1	[mm]		4	4,5		5
a ₁	[mm]	4·d	16	18	4·d	20
a ₂	[mm]	4·d	16	18	4·d	20
a _{3,t}	[mm]	7·d	28	32	7·d	35
a _{3,c}	[mm]	7·d	28	32	7·d	35
a _{4,t}	[mm]	5·d	20	23	7·d	35
a _{4,c}	[mm]	3·d	12	14	3·d	15

 $d = d_1 = Nenndurchmesser Schraube$



unbeanspruchtes . Hirnholzende 90° < α < 270°

beanspruchter Rand 0° < α < 180°


unbeanspruchter Rand . 180° < α < 360°

ANMERKUNGEN auf Seite 19.

WIRKSAME SCHRAUBENANZAHL BEI ABSCHERBEANSPRUCHUNG

Die Tragfähigkeit einer Verbindung mit mehreren Schrauben vom gleichen Typ und mit gleicher Größe kann kleiner sein als die Summe der Tragfähigkeiten des einzelnen Verbindungsmittels. Für eine Reihe von n parallel zur Faserrichtung des Holzes in einem Abstand a₁ angeordnete Schrauben entspricht die effektive charakteristische Tragfähigkeit:

$$R_{ef,V,k} = n_{ef} \cdot R_{V,k}$$

Der Wert von n_{ef} ist in der folgenden Tabelle abhängig von n und a₁ aufgeführt.

							a ₁ (*)					
		4·d	5·d	6·d	7·d	8·d	9·d	10 ⋅d	11·d	12·d	13·d	≥ 14·d
	2	1,41	1,48	1,55	1,62	1,68	1,74	1,80	1,85	1,90	1,95	2,00
n	3	1,73	1,86	2,01	2,16	2,28	2,41	2,54	2,65	2,76	2,88	3,00
	4	2,00	2,19	2,41	2,64	2,83	3,03	3,25	3,42	3,61	3,80	4,00
	5	2,24	2,49	2,77	3,09	3,34	3,62	3,93	4,17	4,43	4,71	5,00

^(*)Für Zwischenwerte a_1 ist eine lineare Interpolation möglich.

^{5·}d α = Winkel zwischen Kraft- und Faserrichtung

α = Winkel zwischen Kraft- und Faserrichtung

					SCHERWERT				ZUGKRÄFTE	
	Geometrie			Holz-Holz ε=90°			Gewindeauszug ε=90°	Gewindeauszug ε=0°	Kopfdurchzug	
	A L				——————————————————————————————————————	Span	→			
d_1	L	b	Α	R _{V,90,k}	R _{V,0,k}	S _{PAN}	$R_{V,k}$	R _{ax,90,k}	R _{ax,0,k}	R _{head,k}
[mm]	[mm]	[mm]	[mm]	[kN]	[kN]	[mm]	[kN]	[kN]	[kN]	[kN]
	40	24	16	0,83	0,51		0,84	1,21	0,36	0,73
4	50	30	20	0,91	0,62	12	0,84	1,52	0,45	0,73
4	60	35	25	0,99	0,69	12	0,84	1,77	0,53	0,73
	70	40	30	0,99	0,77		0,84	2,02	0,61	0,73
	50	30	20	1,06	0,69		1,06	1,70	0,51	0,92
4,5	60	35	25	1,18	0,79	15	1,06	1,99	0,60	0,92
	70	40	30	1,22	0,86		1,06	2,27	0,68	0,92
	50	24	26	1,29	0,73		1,20	1,52	0,45	1,13
	60	30	30	1,46	0,81		1,20	1,89	0,57	1,13
	70	35	35	1,46	0,88		1,20	2,21	0,66	1,13
5	80	40	40	1,46	0,96	15	1,20	2,53	0,76	1,13
	90	45	45	1,46	1,05		1,20	2,84	0,85	1,13
	100	50	50	1,46	1,13		1,20	3,16	0,95	1,13
	120	60	60	1,46	1,17		1,20	3,79	1,14	1,13

ε =Winkel zwischen Schraube und Faserrichtung

ALLGEMEINE GRUNDLAGEN

- Die charakteristischen Werte werden gemäß der Norm EN 1995:2014 und in Übereinstimmung mit ETA-11/0030 berechnet.
- Die Bemessungswerte werden aus den charakteristischen Werten wie folgt berechnet:

$$R_d = \frac{R_k \cdot k_{mod}}{\gamma_M}$$

Die Beiwerte γ_M und $k_{\mbox{mod}}$ sind aus der entsprechenden geltenden Norm zu übernehmen, die für die Berechnung verwendet wird.

- Bei den Werten für die mechanische Festigkeit und die Geometrie der Schrauben wurde auf die Angaben in der ETA-11/0030 Bezug genommen.
- Die Bemessung und Überprüfung der Holzelemente und der Paneele müssen separat durchgeführt werden.
- Für die Positionierung der Schrauben sind die Mindestabstände zu berücksichtigen.
- Die charakteristischen Scherfestigkeitswerte wurden bei eingeschraubten Schrauben ohne Vorbohrung bewertet. Mit vorgebohrten Schrauben können höhere Festigkeitswerte erreicht werden.
- Die Scherfestigkeitswerte wurden unter Berücksichtigung des vollständig in das zweite Element eingedrehten Gewindeteils berechnet
- Die charakteristischen Holzwerkstoffplatte-Holz-Scherfestigkeitswerte wurden für eine OSB3- oder OSB4-Platte gemäß EN 300 oder für eine Spanplatte gemäß EN 312 mit einer Stärke S_{PAN} und Dichte $\rho_k = 500 \text{ kg/m}^3$ berechnet.
- Die charakteristischen Gewindeauszugswerte wurden unter Berücksichtigung einer Einschraubtiefe b berechnet
- Die charakteristische Kopfdurchzugsfestigkeit wurden für ein Element aus Holz oder auf Holzbasis berechnet.

ANMERKUNGEN

- Die charakteristischen Holz-Holz-Scherfestigkeitswerte wurden unter Berücksichtigung eines Winkels ϵ sowohl von 90° (R_{V,O,k}) als auch 0° (R_{V,O,k}) zwischen den Fasern des zweiten Elements und dem Verbinder berechnet.
- Die charakteristischen Holzwerkstoffplatte-Holz-Scherfestigkeitswerte wurden unter Berücksichtigung eines Winkels ε von 90° zwischen Fasern des Holzelements und dem Verbinder berechnet.
- Die charakteristischen Gewindeauszugswerte wurden unter Berücksichtigung eines Winkels ϵ sowohl von 90° ($R_{ax,90,k}$) als auch 0° ($R_{ax,0,k}$) zwischen den Fasern des Holzelements und dem Verbinder berechnet.
- Bei der Berechnung wurde eine Rohdichte der Holzelemente von $\rho_k = 385$

kg/m³ berücksichtigt. Für andere p_k-Werte können die aufgelisteten Festigkeitswerte (Holz-Holz-Scher- und Zugfestigkeit) mithilfe des k_{dens}-Beiwerts umgerechnet wer-

$$\begin{aligned} R'_{V,k} &= k_{dens,v} \cdot R_{V,k} \\ R'_{ax,k} &= k_{dens,ax} \cdot R_{ax,k} \\ R'_{head,k} &= k_{dens,ax} \cdot R_{head,k} \end{aligned}$$

ρ _k [kg/m³]	350	380	385	405	425	430	440
C-GL	C24	C30	GL24h	GL26h	GL28h	GL30h	GL32h
k _{dens,v}	0,90	0,98	1,00	1,02	1,05	1,05	1,07
k _{dens.ax}	0,92	0,98	1,00	1,04	1,08	1,09	1,11

Die so ermittelten Festigkeitswerte können zugunsten der Sicherheit von denen abweichen, die sich aus einer genauen Berechnung ergeben.

MINDESTABSTÄNDE

ANMERKUNGEN

- Die Mindestabstände werden gemäß der Normen EN 1995:2014 und in Übereinstimmung mit ETA-11/0030 berechnet.
- Bei Holzwerkstoffplatten-Verbindungen können die Mindestabstände (a₁, a₂) mit einem Koeffizienten von 0,85 multipliziert werden.
- Bei Verbindungen von Elementen aus Douglasienholz (Pseudotsuga menziesii) müssen die Mindestabstände und die minimalen, parallelen Abstände zur Faser mit dem Koeffizienten 1,5 multipliziert werden.
- Der Abstand a₁, aufgelistet für Schrauben mit Spitze 3 THORNS und d₁≥5 mm, eingeschraubt ohne Vorbohrung in Holzelemente mit Dichte $\rho_k \leq \frac{420}{20}$ kg/m 3 und Winkel zwischen Kraft- und Faserrichtung α = 0°, wurde auf der Grundlage experimenteller Untersuchungen mit 10-d angenommen; wahlweise können 12-d gemäß EN 1995:2014 übernommen werden.

SHS AISI410

SENKKOPFSCHRAUBE 60°

KLEINER KOPF UND 3 THORNS-SPITZE

Der verdeckte Kopfabschluss mit 60°-Winkel und die Spitze 3 THORNS ermöglichen ein leichtes Einschrauben der Schraube in kleine Anbauteile ohne ein Spalten des Holzes.


OUTDOOR AUF SÄUREHALTIGEN HÖLZERN

Martensitischer Edelstahl. Unter den rostfreien Stählen ist er derjenige mit der höchsten mechanischen Leistung.

Geeignet für den Außenbereich und säurehaltigen Hölzern, jedoch nicht für korrosive Stoffen (Chloride, Sulfide usw.).

BEFESTIGUNG VON KLEINEN ELEMENTEN

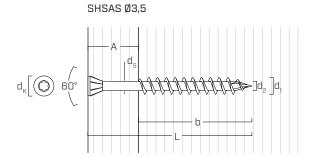
Die Ausführungen mit geringem Durchmesser sind ideal zur Befestigung von Spundbrettern oder kleinen Elementen; die Ausführung mit einem Durchmesser von 3,5 mm eignet sich perfekt zur Befestigung von Dielen mit Nut und Feder.

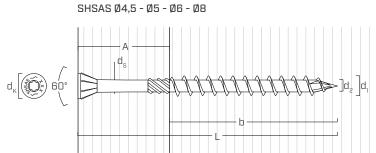
ANWENDUNGSGEBIETE

- Holzwerkstoffplatten
- Massivholz
- Brettschichtholz
- BSP, LVL
- Hölzer mit hoher Dichte und säurehaltige Hölzer

FENSTER UND TÜREN IM AUSSENBEREICH

SHS AISI140 ist die richtige Wahl für die Befestigung von kleinen Elementen wie Spundbrettern, Fassaden sowie Fenster- und Türrahmen.





Mit Schrauben SHS AlSI410 Durchmesser 6 und 8 mm befestigte Holzlatten an der Gebäudehülle.

Befestigung von Elementen aus harten und säurehaltigen Hölzern in weit von der Küste entfernten Umgebungen, mit SHS AISI410 Durchmesser 8 mm.

■ GEOMETRIE UND MECHANISCHE EIGENSCHAFTEN

GEOMETRIE

Nenndurchmesser	d_1	[mm]	3,5	4,5	5	6	8
Kopfdurchmesser	d_K	[mm]	5,75	7,50	8,50	11,00	13,00
Kerndurchmesser	d_2	[mm]	2,15	2,80	3,40	3,95	5,40
Schaftdurchmesser	d_S	[mm]	2,50	3,15	3,65	4,30	5,80
Vorbohrdurchmesser ⁽¹⁾	$d_{V,S}$	[mm]	2,0	2,5	3,0	4,0	5,0
Vorbohrdurchmesser ⁽²⁾	$d_{V,H}$	[mm]	-	-	3,5	4,0	6,0

MECHANISCHE KENNGRÖSSEN

Nenndurchmesser	d_1	[mm]	4,5	5	6	8
Zugfestigkeit	$f_{\text{tens},k}$	[kN]	6,4	7,9	11,3	20,1
Fließmoment	$M_{y,k}$	[Nm]	4,1	5,4	9,5	20,1

			Nadelholz (Softwood)	LVL aus Nadelholz (LVL Softwood)	LVL aus Buche, vorgebohrt (Beech LVL predrilled)
Charakteristischer Wert der Ausziehfestigkeit	$f_{ax,k}$	[N/mm ²]	11,7	15,0	29,0
Charakteristischer Durchziehparameter	$f_{head,k}$	[N/mm ²]	10,5	20,0	-
Assoziierte Dichte	ρ_{a}	[kg/m ³]	350	500	730
Rohdichte	ρ_k	[kg/m³]	≤ 440	410 ÷ 550	590 ÷ 750

Für Anwendungen mit anderen Materialien siehe ETA-11/0030.

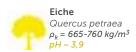
⁽¹⁾ Vorbohrung gültig für Nadelholz (Softwood).
(2) Vorbohrung gültig für Harthölzer (Hardwood) und für LVL aus Buchenholz.

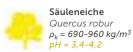
ARTIKELNUMMERN UND ABMESSUNGEN

SHS XS AISI410

	d₁ [mm]	ARTNR.	L [mm]	b [mm]	A [mm]	Stk.
		SHS3540AS(*)	40	26	14	500
₩	3,5 TX 10	SHS3550AS(*)	50	34	16	500
	17.20	SHS3560AS(*)	60	40	20	500
Y		SHS4550AS	50	30	20	500
	4,5 TX 20	SHS4560AS	60	35	25	500
##		SHS4570AS	70	40	30	200
		SHS550AS	50	24	26	200
¥	_	SHS560AS	60	30	30	200
	5 TX 25	SHS570AS	70	35	35	100
	20	SHS580AS	80	40	40	100
		SHS5100AS	100	50	50	100

(*)Ohne CE-Kennzeichnung.


SHS N AISI410 - schwarze Ausführung


Y	d ₁ [mm]	ARTNR.	L [mm]	b [mm]	A [mm]	Stk.
22:	[iiiiii]		[111111]	[iiiiii]	[iiiiii]	
#	4,5	SHS4550ASN	50	30	20	100
	TX 20	SHS4560ASN	60	35	25	100
#	5	SHS550ASN	50	24	26	100
•	TX 25	SHS560ASN	60	30	30	200


SHS AISI410

W	d₁ [mm]	ARTNR.	L [mm]	b [mm]	A [mm]	Stk.
		SHS680AS	80	40	40	100
		SHS6100AS	100	50	50	100
		SHS6120AS	120	60	60	100
	6 TX 30	SHS6140AS	140	75	65	100
		SHS6160AS	160	75	85	100
V		SHS6180AS	180	75	105	100
		SHS6200AS	200	75	125	100
		SHS8120AS	120	60	60	100
		SHS8140AS	140	60	80	100
		SHS8160AS	160	80	80	100
		SHS8180AS	180	80	100	100
	8 TX 40	SHS8200AS	200	80	120	100
		SHS8220AS	220	80	140	100
		SHS8240AS	240	80	160	100
		SHS8260AS	260	80	180	100
		SHS8280AS	280	80	200	100

ANWENDUNG

Montagemöglichkeit auf säurehaltigen Hölzern, jedoch fern von korrosiven Stoffen (Chloride, Sulfide usw.).

Für den pH-Wert und die Dichte der verschiedenen Holzarten siehe S. 314.

FAÇADES IN DARK TIMBER

Die schwarze Variante SHS N wurde speziell für Fassaden aus Brettern aus verkohltem Holz (charred wood) entwickelt; sie bietet eine perfekte Kompatibilität und ein hervorragendes ästhetisches Ergebnis. Dank der Korrosionsbeständigkeit kann sie im Freien verwendet werden, um beeindruckende und langlebige schwarze Fassaden zu schaffen.

MINDESTABSTÄNDE DER SCHRAUBEN BEI ABSCHERBEANSPRUCHUNG

Schraubenabstände OHNE Vorbohrung

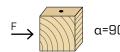
 $\rho_k \leq 420 \; kg/m^3$

d_1	[mm]		4,5		5	6	8
a ₁	[mm]	10 ⋅d	45	10·d	50	60	80
a ₂	[mm]	5·d	23	5·d	25	30	40
a _{3,t}	[mm]	15 ⋅d	68	15·d	75	90	120
a _{3,c}	[mm]	10 ⋅d	45	10·d	50	60	80
a _{4,t}	[mm]	5·d	23	5·d	25	30	40
a _{4,c}	[mm]	5·d	23	5·d	25	30	40

d_1	[mm]		4,5		5	6	8
a ₁	[mm]	5·d	23	5·d	25	30	40
a ₂	[mm]	5·d	23	5·d	25	30	40
a _{3,t}	[mm]	10·d	45	10·d	50	60	80
a _{3,c}	[mm]	10·d	45	10·d	50	60	80
a _{4,t}	[mm]	7⋅d	32	10·d	50	60	80
a _{4,c}	[mm]	5·d	23	5·d	25	30	40

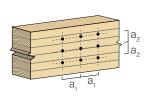
Schraubenabstände OHNE Vorbohrung

 $420~kg/m^3 \leq \rho_k \leq 500~kg/m^3$


d_1	[mm]		4,5		5	6	8
a ₁	[mm]	15·d	68	15·d	75	90	120
a ₂	[mm]	7·d	32	7∙d	35	42	56
a _{3,t}	[mm]	20·d	90	20·d	100	120	160
a _{3,c}	[mm]	15·d	68	15·d	75	90	120
a _{4,t}	[mm]	7·d	32	7⋅d	35	42	56
a _{4,c}	[mm]	7·d	32	7∙d	35	42	56

d_1	[mm]		4,5		5	6	8
a ₁	[mm]	7·d	32	7∙d	35	42	56
a ₂	[mm]	7·d	32	7∙d	35	42	56
a _{3,t}	[mm]	15·d	68	15·d	75	90	120
a _{3,c}	[mm]	15·d	68	15·d	75	90	120
a _{4,t}	[mm]	9·d	41	12·d	60	72	96
a _{4,c}	[mm]	7·d	32	7·d	35	42	56

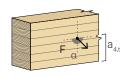
Schraubenabstände VORGEBOHRT

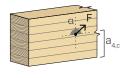


d_1	[mm]		4,5		5	6	8
a ₁	[mm]	5·d	23	5·d	25	30	40
a ₂	[mm]	3·d	14	3·d	15	18	24
a _{3,t}	[mm]	12·d	54	12·d	60	72	96
a _{3,c}	[mm]	7·d	32	7∙d	35	42	56
a _{4,t}	[mm]	3·d	14	3·d	15	18	24
a _{4,c}	[mm]	3·d	14	3·d	15	18	24

d_1	[mm]		4,5		5	6	8
a ₁	[mm]	4·d	18	4·d	20	24	32
a ₂	[mm]	4·d	18	4·d	20	24	32
a _{3,t}	[mm]	7·d	32	7⋅d	35	42	56
a _{3,c}	[mm]	7·d	32	7·d	35	42	56
a _{4,t}	[mm]	5·d	23	7⋅d	35	42	56
a _{4,c}	[mm]	3·d	14	3·d	15	18	24

 $d = d_1 = Nenndurchmesser Schraube$


beanspruchtes . Hirnholzende


unbeanspruchtes . Hirnholzende

beanspruchter Rand 0° < α < 180°

unbeanspruchter Rand

ANMERKUNGEN

- Die Mindestabstände werden gemäß der Normen EN 1995:2014 und in Übereinstimmung mit ETA-11/0030 berechnet.
- Bei Holzwerkstoffplatten-Verbindungen können die Mindestabstände (a₁, a₂) mit einem Koeffizienten von 0,85 multipliziert werden.
- Bei Verbindungen von Elementen aus Douglasienholz (Pseudotsuga menziesii) müssen die Mindestabstände und die minimalen, parallelen Abstände zur Faser mit dem Koeffizienten 1,5 multipliziert werden.
- Der Abstand a_1 , aufgelistet für Schrauben mit Spitze 3 THORNS und $d_1 \ge 5$ mm, eingeschraubt ohne Vorbohrung in Holzelemente mit Dichte $\rho_k \le 420$ kg/m³ und Winkel zwischen Kraft- und Faserrichtung α = 0°, wurde auf der Grundlage experimenteller Untersuchungen mit 10·d angenommen; wahlweise können 12 d gemäß EN 1995:2014 übernommen werden.

 $[\]alpha$ = Winkel zwischen Kraft- und Faserrichtung

				SCHEF	RWERT			ZUGKI	RÄFTE
	Geom	netrie		Holz-Holz	Holzwe	erkstoffplatte-Holz	Gewindeau	szug	Kopfdurchzug
				The state of the s		→ (↑ 	
d_1	L	b	Α	R _{V,90,k}	S _{PAN}	$R_{V,k}$	R _{ax,90,}	k	R _{head,k}
[mm]	[mm]	[mm]	[mm]	[kN]	[mm]	[kN]	[kN]		[kN]
	50	30	20	0,99		1,01	1,70		0,64
4,5	60	35	25	1,11	15	1,01	1,99		0,64
	70	40	30	1,15		1,01	2,27		0,64
	50	24	26	1,21		1,14	1,52		0,82
	60	30	30	1,38		1,14	1,89		0,82
5	70	35	35	1,38	15	1,14	2,21		0,82
	80	40	40	1,38		1,14	2,53		0,82
	100	50	50	1,38		1,14	3,16		0,82
	80	40	40	2,01		1,60	3,03		1,37
	100	50	50	2,01		1,60	3,79		1,37
_	120	60	60	2,01		1,60	4,55		1,37
6	140	75	65	2,01	18	1,60	5,68		1,37
	160	75	85	2,01		1,60	5,68		1,37
	180	75	105	2,01		1,60	5,68		1,37
	200	75	125	2,01		1,60	5,68		1,37
	120 140	60 60	60	3,16		2,48	6,06		1,92
			80	3,16		2,48	6,06		1,92
	160	80	80	3,16		2,48	8,08		1,92
8	180 200	80	100	3,16	22	2,48	8,08 8,08		1,92
o	220	80	120 140	3,16 3,16	22	2,48 2,48	8,08		1,92 1,92
	240	80	160	3,16		2,48	8,08		1,92
	260	80	180	3,16 3,16		2,48	8,08		1,92
	280	80	200	3,16		2,48	8,08		1,92
	280	80	200	3,10		2,48	8,08		1,92

ALLGEMEINE GRUNDLAGEN

- Die charakteristischen Werte werden gemäß der Norm EN 1995:2014 und in Übereinstimmung mit ETA-11/0030 berechnet.
- Die Bemessungswerte werden aus den charakteristischen Werten wie folgt berechnet:

$$R_d = \frac{R_k \cdot k_{mod}}{\gamma_M}$$

Die Beiwerte γ_M und $k_{\mbox{mod}}$ sind aus der entsprechenden geltenden Norm zu übernehmen, die für die Berechnung verwendet wird.

- Bei den Werten für die mechanische Festigkeit und die Geometrie der Schrauben wurde auf die Angaben in der ETA-11/0030 Bezug genommen.
- Die Bemessung und Überprüfung der Holzelemente und der Paneele müssen separat durchgeführt werden.
- Die charakteristischen Scherfestigkeitswerte wurden bei eingeschraubten Schrauben ohne Vorbohrung bewertet. Mit vorgebohrten Schrauben können höhere Festigkeitswerte erreicht werden.
- Für die Positionierung der Schrauben sind die Mindestabstände zu berück-
- Die charakteristischen Scherfestigkeitswerte wurden bei eingeschraubten Schrauben ohne Vorbohrung bewertet. Mit vorgebohrten Schrauben können höhere Festigkeitswerte erreicht werden.
- Die charakteristischen Scherfestigkeitswerte wurden unter Berücksichtigung des vollständig in das zweite Element eingedrehten Gewindeteils berechnet.

- Die charakteristischen Holzwerkstoffplatte-Holz-Scherfestigkeitswerte wurden für eine OSB3- oder OSB4-Platte gemäß EN 300 oder für eine Spanplatte gemäß EN 312 mit einer Stärke S_{PAN} und Dichte $\rho_k = 500 \text{ kg/m}^3$ berechnet.
- Die charakteristischen Gewindeauszugswerte wurden unter Berücksichtigung einer Einschraubtiefe b berechnet
- Die charakteristische Kopfdurchzugsfestigkeit wurden für ein Element aus Holz oder auf Holzbasis berechnet.

ANMERKUNGEN

- Die charakteristischen Holzwerkstoffplatte-Holz-Scher- und Zugfestigkeitswerte wurden unter Berücksichtigung eines Winkels ϵ von 90° ($R_{ax,90,k}$) zwischen Fasern des Holzelements und dem Verbinder berechnet.
- Bei der Berechnung wurde eine Rohdichte der Holzelemente von ρ_k = 385 kg/m³ berücksichtigt. Für abweichende pk-Werte können die aufgelisteten Festigkeitswerte mittels des k_{dens.V}-Beiwerts umgerechnet werden (siehe S. 19).
- Für eine Reihe von n parallel zur Faserrichtung des Holzes in einem Abstand a₁ angeordnete Schrauben kann die effektive charakteristische Tragfähigkeit R_{ef.V.k} mittels der wirksamen Anzahl n_{ef} berechnet werden (siehe S. 18).

HTS

SENKKOPFSCHRAUBE MIT VOLLGEWINDE

SPITZE 3 THORNS

Dank der Spitze 3 THORNS wird die Schraube ohne Vorbohrung an Tischlerelementen und auch sehr dünnen Möbelhölzern wie z. B. Funierplatten, beschichteten oder MDF-Platten montiert.

FEINGEWINDE

Feingewinde eignen sich für höchste Präzision beim Einschrauben, auch bei MDF-Platten. Die Fläche für die Aufnahme des Torx-Einsatzes gewährleistet Stabilität und Sicherheit.

LANGES GEWINDE

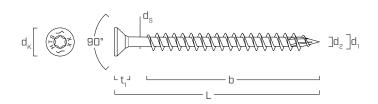
Die Schraube hat über 80% der Länge ein Gewinde, sowie einen glatten Unterkopf für höchst effiziente Verbindungen in Spanplatten.

KORROSIVITÄT DES HOLZES

MATERIAL

Elektroverzinkter Kohlenstoffstahl

ANWENDUNGSGEBIETE


- Holzwerkstoffplatten
- Harthölzer, MDF, HDF und LDF
- Furnierte und beschichtete Platten
- Massivholz
- Brettschichtholz
- BSP und LVL

ARTIKELNUMMERN UND ABMESSUNGEN

d_1	ARTNR.	L	b	Stk.
[mm]		[mm]	[mm]	
	HTS312(*)	12	6	500
7	HTS316(*)	16	10	500
3 TX 10	HTS320	20	14	1000
1 / 10	HTS325	25	19	1000
	HTS330	30	24	1000
	HTS3516(*)	16	10	1000
	HTS3520(*)	20	14	1000
7.5	HTS3525	25	19	1000
3,5 TX 15	HTS3530	30	24	500
17.13	HTS3535	35	27	500
	HTS3540	40	32	500
	HTS3550	50	42	400
	HTS420(*)	20	14	1000
4	HTS425	25	19	1000
TX 20	HTS430	30	24	500
	HTS435	35	27	500

d_1	ARTNR.	L	b	Stk.
[mm]		[mm]	[mm]	
	HTS440	40	32	500
4 TX 20	HTS445	45	37	400
1 / 20	HTS450	50	42	400
	HTS4530	30	24	500
4.5	HTS4535	35	27	500
4,5 TX 20	HTS4540	40	32	400
1 / 20	HTS4545	45	37	400
	HTS4550	50	42	200
	HTS530	30	24	500
	HTS535	35	27	400
	HTS540	40	32	200
5	HTS545	45	37	200
TX 25	HTS550	50	42	200
	HTS560	60	50	200
	HTS570	70	60	100
	HTS580	80	70	100

■ GEOMETRIE UND MECHANISCHE EIGENSCHAFTEN

Nenndurchmesser	d_1	[mm]	3	3,5	4	4,5	5
Kopfdurchmesser	d_K	[mm]	6,00	7,00	8,00	8,80	9,70
Kerndurchmesser	d_2	[mm]	2,00	2,20	2,50	2,80	3,20
Schaftdurchmesser	d_S	[mm]	2,20	2,45	2,75	3,20	3,65
Kopfstärke	t_1	[mm]	2,20	2,40	2,70	2,80	2,80
Vorbohrdurchmesser ⁽¹⁾	d_V	[mm]	2,0	2,0	2,5	2,5	3,0
Charakteristischer Zugwiderstand	$f_{\text{tens},k}$	[kN]	4,2	4,5	5,5	7,8	11,0
Charakteristisches Fließmoment	$M_{y,k}$	[Nm]	2,2	2,7	3,7	5,8	8,8
Charakteristischer Wert der Auzugsfestigkeit	$f_{ax,k}$	$[N/mm^2]$	18,5	17,9	17,1	17,0	15,5
Assoziierte Dichte	ρ_{a}	$[kg/m^3]$	350	350	350	350	350
Charakteristischer Durchziehparameter	$f_{head,k}$	[N/mm ²]	26,0	25,1	24,1	23,1	22,5
Assoziierte Dichte	ρ_{a}	[kg/m ³]	350	350	350	350	350

 $^{^{(1)}}$ Bei Materialien mit hoher Dichte ist je nach Holzart ein Vorbohren empfehlenswert.

SCHARNIERE UND MÖBEL

Das Vollgewinde und der glatte Senkkopf eignen sich besonders zum Befestigen von Metallscharnieren bei der Möbelherstellung. Ideal für die Verwendung mit Einzelbit (in der Verpackung inbegriffen) und leicht im Einsatzhalter auszutauschen. Durch die neue Bohrspitze wird das Anbeißvermögen der Schraube erhöht.

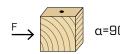
^(*) Ohne CE-Kennzeichnung.

MINDESTABSTÄNDE DER SCHRAUBEN BEI ABSCHERBEANSPRUCHUNG

Schraubenabstände OHNE Vorbohrung

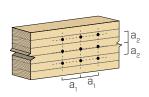
 $\rho_k \leq 420 \; kg/m^3$

d_1	[mm]		3	3,5	4	4,5		5
a ₁	[mm]	10 ⋅d	30	35	40	45	12·d	60
a ₂	[mm]	5·d	15	18	20	23	5·d	25
a _{3,t}	[mm]	15 ⋅d	45	53	60	68	15·d	75
a _{3,c}	[mm]	10 ⋅d	30	35	40	45	10·d	50
a _{4,t}	[mm]	5·d	15	18	20	23	5·d	25
a _{4,c}	[mm]	5·d	15	18	20	23	5·d	25


d_1	[mm]		3	3,5	4	4,5		5
a ₁	[mm]	5·d	15	18	20	23	5·d	25
a ₂	[mm]	5·d	15	18	20	23	5·d	25
a _{3,t}	[mm]	10 ⋅d	30	35	40	45	10·d	50
a _{3,c}	[mm]	10 ⋅d	30	35	40	45	10·d	50
a _{4,t}	[mm]	7·d	21	25	28	32	10·d	50
a _{4,c}	[mm]	5·d	15	18	20	23	5·d	25

 $d = d_1 = Nenndurchmesser Schraube$

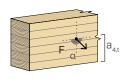
Schraubenabstände VORGEBOHRT

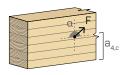


d_1	[mm]		3	3,5	4	4,5		5
a ₁	[mm]	5·d	15	18	20	23	5·d	25
a ₂	[mm]	3·d	9	11	12	14	3·d	15
a _{3,t}	[mm]	12·d	36	42	48	54	12·d	60
a _{3,c}	[mm]	7·d	21	25	28	32	7∙d	35
a _{4,t}	[mm]	3·d	9	11	12	14	3·d	15
a _{4,c}	[mm]	3·d	9	11	12	14	3·d	15

d_1	[mm]		3	3,5	4	4,5		5
a ₁	[mm]	4·d	12	14	16	18	4·d	20
a ₂	[mm]	4·d	12	14	16	18	4·d	20
a _{3,t}	[mm]	7·d	21	25	28	32	7·d	35
a _{3,c}	[mm]	7·d	21	25	28	32	7∙d	35
a _{4,t}	[mm]	5·d	15	18	20	23	7·d	35
a _{4,c}	[mm]	3∙d	9	11	12	14	3·d	15

 $d = d_1 = Nenndurchmesser Schraube$


beanspruchtes Hirnholzende -90° < α < 90°


unbeanspruchtes Hirnholzende 90° < α < 270°

beanspruchter Rand $0^{\circ} < \alpha < 180^{\circ}$

unbeanspruchter Rand 180° < α < 360°

MINDESTABSTÄNDE

ANMERKUNGEN

- Die Mindestabstände werden gemäß der Norm DIN 1995:2014 berechnet.
- Bei Stahl-Holz-Verbindungen können die Mindestabstände (a $_1$, a $_2$) mit einem Koeffizienten von 0,7 multipliziert werden.
- Bei Holzwerkstoffplatten-Verbindungen können die Mindestabstände (a₁, a₂) mit einem Koeffizienten von 0,85 multipliziert werden.

STATISCHE WERTE

ANMERKUNGEN

- Die charakteristischen Holz-Holz-Scherfestigkeitswerte wurden unter Berücksichtigung eines Winkels ε von 90° zwischen Fasern des zweiten Elements und dem Verbinder berechnet.
- Die charakteristischen Holzwerkstoffplatte-Holz- und Stahl-Holz-Scherfestigkeitswerte wurden unter Berücksichtigung eines Winkels ϵ von 90° zwischen Fasern des Holzelements und dem Verbinder berechnet.
- Die charakteristischen Scherfestigkeitswerte auf Platte wurden für eine
- dûnne Platte berechnet (Sp $_{LATE} \le 0.5$ d $_{1}$). Der charakteristische Gewindeauszugswert wurde mit einem Winkel ϵ von 90° zwischen Fasern des Holzelements und dem Verbinder berechnet.
- Bei der Berechnung wurde eine Rohdichte der Holzelemente von $\rho_k = 385 \text{ kg/m}^3$ berücksichtiat.
 - Für andere ρ_k-Werte können die aufgelisteten Festigkeitswerte (Holz-Holz-Scherfestigkeit, Stahl-Holz Scherfestigkeit und Zugkraft) mithilfe des k_{dens}-Beiwerts umgerechnet werden (siehe S. 42).
- Die tabellarischen Werte sind unabhängig vom Kraft-Faser-Winkel.
- Für eine Reihe von n parallel zur Faserrichtung des Holzes in einem Abstand a₁ angeordnete Schrauben kann die effektive charakteristische Tragfähigkeit R_{ef,V,k} mittels der wirksamen Anzahl n_{ef} berechnet werden (siehe S. 34).

α = Winkel zwischen Kraft- und Faserrichtung

α = Winkel zwischen Kraft- und Faserrichtung

				SCHERWERT							ZUGKF	RÄFTE
	Geom	etrie		Holz-Holz		sstoffplatte- lolz		stoffplatte- lolz		l-Holz, es Blech	Gewindeauszug	Kopfdurchzug
					Span		Span		opposed to the second s			
d ₁	L	b	Α	$R_{V,k}$	S _{PAN}	$R_{V,k}$	S _{PAN}	$R_{V,k}$	S _{PLATE}	$R_{V,k}$	R _{ax,k}	$R_{head,k}$
[mm]	[mm]	[mm]	[mm]	[kN]	[mm]	[kN]	[mm]	[kN]	[mm]	[kN]	[kN]	[kN]
	12	6	-	-		-		-		0,23	0,36	1,01
	16	10	-	-		-		-		0,32	0,60	1,01
3	20	14	-	-	9	-	12	-	1,5	0,41	0,84	1,01
	25	19	7	0,38		-		-		0,52	1,14	1,01
	30	24	12	0,60		0,76		0,72		0,62	1,44	1,01
	16	10	-	-		-		-		0,33	0,68	1,33
	20	14	-	-		-		-		0,43	0,95	1,33
	25	19	-	-		-		-		0,55	1,28	1,33
3,5	30	24	9	0,53	9	0,83	12	-	1,75	0,66	1,62	1,33
	35	27	14	0,77		0,92		0,94		0,78	1,83	1,33
	40	32	19	0,82		0,92		0,99		0,90	2,16	1,33
	50	42	29	0,91		0,92		0,99		1,13	2,84	1,33
	20 25	14 19	-	-		-		-		0,46	1,03	1,66
	30	24	- 6	0,38		-		-		0,59 0,72	1,40 1,77	1,66 1,66
4	35	27	11	0,38	9	0,99	12	-	2	0,72	1,77	1,66
7	40	32	16	0,71	9	0,99	12	1,17		0,83	2,36	1,66
	45	37	21	1,02		0,99		1,17		1,10	2,73	1,66
	50	42	26	1,08		0,99		1,17		1,23	3,10	1,66
	30	24	3	0,21		-		-		0,77	1,98	1,93
	35	27	8	0,56		-		-		0,91	2,23	1,93
4,5	40	32	13	0,90	12	1,31	15	-	2,25	1,05	2,64	1,93
.,0	45	37	18	1,15		1,40		1,42	2,20	1,19	3,05	1,93
	50	42	23	1,21		1,40		1,46		1,33	3,47	1,93
	30	24	-	-		-		-		0,84	2,01	2,28
	35	27	5	0,38		-		-		0,99	2,26	2,28
	40	32	10	0,76		-		-		1,14	2,68	2,28
-	45	37	15	1,14	12	1,46	1.5	1,51	2.5	1,30	3,09	2,28
5	50	42	20	1,39	12	1,46	15	1,70	2,5	1,45	3,51	2,28
	60	50	30	1,52		1,46		1,74		1,75	4,18	2,28
	70	60	40	1,71		1,46		1,74		2,06	5,02	2,28
	80	70	50	1,71		1,46		1,74		2,36	5,85	2,28

ALLGEMEINE GRUNDLAGEN

- Die charakteristischen Werte entsprechen der Norm EN 1995:2014.
- Die Bemessungswerte werden aus den charakteristischen Werten wie folgt berechnet:

$$R_d = \frac{R_k \cdot k_{mod}}{\gamma_M}$$

Die Beiwerte γ_M und $k_{\mbox{mod}}$ sind aus der entsprechenden geltenden Norm zu übernehmen, die für die Berechnung verwendet wird.

- Werte für mechanische Festigkeit und Geometrie der Schrauben gemäß CE-Kennzeichnung nach EN 14592.
- Die Bemessung und Überprüfung der Holzelemente, der Platten und Metallplatten müssen separat durchgeführt werden.
- Die charakteristischen Scherfestigkeitswerte wurden bei eingeschraubten Schrauben ohne Vorbohrung bewertet. Mit vorgebohrten Schrauben können höhere Festigkeitswerte erreicht werden.
- Für die Positionierung der Schrauben sind die Mindestabstände zu berücksichtigen.

- Die charakteristischen Holzwerkstoffplatte-Holz-Scherfestigkeitswerte wurden für eine OSB3- oder OSB4-Platte gemäß EN 300 oder für eine Spanplatte gemäß EN 312 mit einer Stärke S_{PAN} berechnet.
- Die charakteristischen Gewindeauszugswerte wurden unter Berücksichtigung einer Einschraubtiefe b berechnet.
- Die charakteristische Kopfdurchzugsfestigkeit wurden für ein Element aus Holz oder auf Holzbasis berechnet.
 Bei Stahl-Holz-Verbindungen ist in Bezug auf den Abreiß- oder Durch-

Bei Stahl-Holz-Verbindungen ist in Bezug auf den Abreiß- oder Durchzugswiderstand des Schraubenkopfes für gewöhnlich die Zugfestigkeit des Stahls ausschlaggebend.

HBS

UK CA UKTA-0836

SENKKOPFSCHRAUBE

SPITZE 3 THORNS

Dank der Spitze 3 THORNS werden die Mindestabstände reduziert. Mehr Schrauben können auf geringerem Raum und größere Schrauben in kleineren Elementen verwendet werden.

Die Kosten und der Zeitaufwand für die Umsetzung des Projekts verringern sich.

SCHNELL

Mit der Spitze 3 THORNS wird das Anbeißverhalten bei den gewohnten mechanischen Leistungen zuverlässiger, schneller und einfacher.

VERBINDUNGEN MIT SCHALLDÄMMPROFILEN

Die Schraube wurde in Anwendungen mit schalldämmenden Schichten (XYLOFON) in der Scherfläche geprüft.

Der Einfluss der Schalldämmprofile auf die mechanischen Leistungen der HBS-Schraube wird beschrieben auf S. 74.

HÖLZER DER NEUEN GENERATION

Geprüft und zertifiziert für den Einsatz auf einer Vielzahl von Holzwerkstoffen wie BSP, GL, LVL, OSB und Beech LVL.

Die äußerst vielseitige HBS-Schraube ermöglicht die Verwendung von Hölzern der neuesten Generation, um immer innovativere und nachhaltigere Konstruktionen zu schaffen.

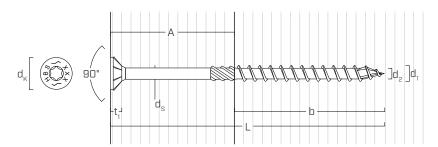
PROJECT		BIT INCLUDED
DURCHMESSER [mm]	3 (3,5	12 12
LÄNGE [mm]	12 (30	1000 1000
NUTZUNGSKLASSE	SC1 SC2	
ATMOSPHÄRISCHE KORROSIVITÄT	C1 C2	
KORROSIVITÄT DES HOLZES		
MATERIAL	Zn Elektroverzinkter Kohlenstoffstahl	

ANWENDUNGSGEBIETE

- Holzwerkstoffplatten
- Harthölzer, MDF, HDF und LDF
- Furnierte und beschichtete Platten
- Massivholz
- Brettschichtholz
- BSP und LVL
- Harthölzer

BSP, LVL UND HARTHÖLZER

Werte auch für BSP und Harthölzer sowie Buchen-Furnierschichtholz (Beech LVL) geprüft, zertifiziert und berechnet.



Befestigung von BSP-Wänden mit 6 mm HBS.

■ GEOMETRIE UND MECHANISCHE EIGENSCHAFTEN

GEOMETRIE

Nenndurchmesser	d_1	[mm]	3,5	4	4,5	5	6	8	10	12
Kopfdurchmesser	d_K	[mm]	7,00	8,00	9,00	10,00	12,00	14,50	18,25	20,75
Kerndurchmesser	d_2	[mm]	2,25	2,55	2,80	3,40	3,95	5,40	6,40	6,80
Schaftdurchmesser	d _S	[mm]	2,45	2,75	3,15	3,65	4,30	5,80	7,00	8,00
Kopfstärke	t_1	[mm]	2,20	2,80	2,80	3,10	4,50	4,50	5,80	7,20
Vorbohrdurchmesser ⁽¹⁾	$d_{V,S}$	[mm]	2,0	2,5	2,5	3,0	4,0	5,0	6,0	7,0
Vorbohrdurchmesser ⁽²⁾	$d_{V,H}$	[mm]	-	-	-	3,5	4,0	6,0	7,0	8,0

MECHANISCHE KENNGRÖSSEN

Nenndurchmesser	d_1	[mm]	3,5	4	4,5	5	6	8	10	12
Zugfestigkeit	f _{tens,k}	[kN]	3,8	5,0	6,4	7,9	11,3	20,1	31,4	33,9
Fließmoment	$M_{y,k}$	[Nm]	2,1	3,0	4,1	5,4	9,5	20,1	35,8	48,0

			Nadelholz (Softwood)	LVL aus Nadelholz (LVL Softwood)	LVL aus Buche, vorgebohrt (Beech LVL predrilled)
Charakteristischer Wert der Ausziehfestigkeit	$f_{ax,k}$	[N/mm ²]	11,7	15,0	29,0
Charakteristischer Durchziehparameter	$f_{\text{head},k}$	[N/mm ²]	10,5	20,0	-
Assoziierte Dichte	ρ_{a}	[kg/m³]	350	500	730
Rohdichte	$ ho_k$	[kg/m ³]	≤ 440	410 ÷ 550	590 ÷ 750

Für Anwendungen mit anderen Materialien siehe ETA-11/0030.

⁽¹⁾ Vorbohrung gültig für Nadelholz (Softwood).
(2) Vorbohrung gültig für Harthölzer (Hardwood) und für LVL aus Buchenholz.

ARTIKELNUMMERN UND ABMESSUNGEN

d_1	ARTNR.	L	b	Α	Stk.
_		[mm]	[mm]	[mm]	
[mm]					
3,5	HBS3540	40	18	22	500
TX 15	HBS3545	45	24	21	400
	HBS3550	50	24	26	400
	HBS430	30	18	12	500
4	HBS435	35	18	17	500
	HBS440	40	24	16	500
4	HBS445	45	30	15	400
TX 20	HBS450	50	30	20	400
	HBS460	60	35	25	200
	HBS470	70	40	30	200
	HBS480	80	40	40	200
	HBS4540	40	24	16	400
	HBS4545	45	30	15	400
4,5 TX 20	HBS4550	50	30	20	200
	HBS4560	60	35	25	200
	HBS4570	70	40	30	200
	HBS4580	80	40	40	200
	HBS540	40	24	16	200
	HBS545	45	24	21	200
	HBS550	50	24	26	200
5	HBS560	60	30	30	200
TX 25	HBS570	70	35	35	100
17,23	HBS580	80	40	40	100
	HBS590	90	45	45	100
	HBS5100	100	50	50	100
	HBS5120	120	60	60	100
	HBS640	40	35	8	100
	HBS650	50	35	15	100
	HBS660	60	30	30	100
	HBS670	70	40	30	100
	HBS680	80	40	40	100
	HBS690	90	50	40	100
	HBS6100	100	50	50	100
	HBS6110	110	60	50	100
	HBS6120	120	60	60	100
	HBS6130	130	60	70	100
	HBS6140	140	75	65	100
_	HBS6150	150	75	75	100
6 TX 30	HBS6160	160	75	85	100
1 \ 30	HBS6180	180	75	105	100
	HBS6200	200	75	125	100
	HBS6220	220	75	145	100
	HBS6240	240	75	165	100
	HBS6260	260	75	185	100
	HBS6280	280	75	205	100
	HBS6300	300	75	225	100
	HBS6320	320	75	245	100
	HBS6340	340	75	265	100
	HBS6360	360	75	285	100
	HBS6380	380	75	305	100
	HBS6400	400	75	325	100

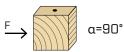
d_1	ARTNR.	L	b	Α	Stk.
[mm]		[mm]	[mm]	[mm]	
	HBS880	80	52	28	100
	HBS8100	100	52	48	100
	HBS8120	120	60	60	100
	HBS8140	140	60	80	100
	HBS8160	160	80	80	100
	HBS8180	180	80	100	100
	HBS8200	200	80	120	100
	HBS8220	220	80	140	100
	HBS8240	240	80	160	100
	HBS8260	260	80	180	100
8	HBS8280 HBS8300	280 300	80 100	200	100
TX 40	HBS8320	320	100	220	100
	HBS8340	340	100	240	100
	HBS8360	360	100	260	100
	HBS8380	380	100	280	100
	HBS8400	400	100	300	100
	HBS8440	440	100	340	100
	HBS8480	480	100	380	100
	HBS8520	520	100	420	100
	HBS8560	560	100	460	100
	HBS8580	580	100	480	100
	HBS8600	600	100	500	100
	HBS1080	80	52	28	50
	HBS10100	100	52	48	50
	HBS10120	120	60	60	50
	HBS10140	140	60	80	50
	HBS10160	160	80	80	50
	HBS10180 HBS10200	180 200	80	100 120	50 50
	HBS10220	220	80	140	50
	HBS10240	240	80	160	50
	HBS10260	260	80	180	50
10	HBS10280	280	80	200	50
TX 40	HBS10300	300	100	200	50
	HBS10320	320	100	220	50
	HBS10340	340	100	240	50
	HBS10360	360	100	260	50
	HBS10380	380	100	280	50
	HBS10400	400	100	300	50
	HBS10440	440	100	340	50
	HBS10480	480	100	380	50
	HBS10520 HBS10560	520 560	100	420 460	50 50
	HBS10600	600	100	500	50
	HBS12120	120	80	40	25
	HBS12160	160	80	80	25
	HBS12200	200	80	120	25
	HBS12240	240	80	160	25
	HBS12280	280	80	200	25
	HBS12320	320	120	200	25
	HBS12360	360	120	240	25
12	HBS12400	400	120	280	25
TX 50	HBS12440	440	120	320	25
	HBS12480	480	120	360	25
	HBS12520	520	120	400	25
	HBS12560 HBS12600	560 600	120 120	440 480	25 25
	HBS12700	700	120	580	25
	HBS12800	800	120	680	25
	HBS12900	900	120	780	25
	HBS121000	1000	120	880	25

■ ZUGEHÖRIGE PRODUKTE

HUS

Seite 68

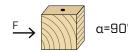
XYLOFON WASHER
Seite 73



■ MINDESTABSTÄNDE DER SCHRAUBEN BEI ABSCHERBEANSPRUCHUNG | HOLZ

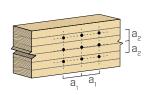
Schraubenabstände OHNE Vorbohrung

 $\rho_k \leq 420 \; kg/m^3$


d_1	[mm]		3,5	4	4,5		5	6	8	10	12
a ₁	[mm]	10 ⋅d	35	40	45	10·d	50	60	80	100	120
a ₂	[mm]	5·d	18	20	23	5·d	25	30	40	50	60
a _{3,t}	[mm]	15 ⋅d	53	60	68	15·d	75	90	120	150	180
a _{3,c}	[mm]	10·d	35	40	45	10·d	50	60	80	100	120
a _{4,t}	[mm]	5·d	18	20	23	5·d	25	30	40	50	60
a _{4,c}	[mm]	5·d	18	20	23	5·d	25	30	40	50	60

d_1	[mm]		3,5	4	4,5		5	6	8	10	12
a ₁	[mm]	5·d	18	20	23	5·d	25	30	40	50	60
a ₂	[mm]	5·d	18	20	23	5·d	25	30	40	50	60
a _{3,t}	[mm]	10·d	35	40	45	10·d	50	60	80	100	120
a _{3,c}	[mm]	10·d	35	40	45	10·d	50	60	80	100	120
a _{4,t}	[mm]	7∙d	25	28	32	10·d	50	60	80	100	120
a _{4,c}	[mm]	5·d	18	20	23	5·d	25	30	40	50	60

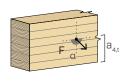
Schraubenabstände VORGEBOHRT



d_1	[mm]		3,5	4	4,5		5	6	8	10	12
a ₁	[mm]	5·d	18	20	23	5·d	25	30	40	50	60
a ₂	[mm]	3·d	11	12	14	3·d	15	18	24	30	36
a _{3,t}	[mm]	12·d	42	48	54	12·d	60	72	96	120	144
a _{3,c}	[mm]	7∙d	25	28	32	7∙d	35	42	56	70	84
a _{4,t}	[mm]	3·d	11	12	14	3·d	15	18	24	30	36
a _{4,c}	[mm]	3·d	11	12	14	3·d	15	18	24	30	36

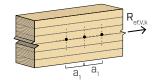
d_1	[mm]		3,5	4	4,5		5	6	8	10	12
a ₁	[mm]	4·d	14	16	18	4·d	20	24	32	40	48
a ₂	[mm]	4·d	14	16	18	4·d	20	24	32	40	48
a _{3,t}	[mm]	7∙d	25	28	32	7∙d	35	42	56	70	84
a _{3,c}	[mm]	7∙d	25	28	32	7∙d	35	42	56	70	84
a _{4,t}	[mm]	5·d	18	20	23	7∙d	35	42	56	70	84
a _{4,c}	[mm]	3·d	11	12	14	3·d	15	18	24	30	36

 $d = d_1$ = Nenndurchmesser Schraube



unbeanspruchtes Hirnholzende $90^{\circ} < \alpha < 270^{\circ}$

beanspruchter Rand $0^{\circ} < \alpha < 180^{\circ}$


unbeanspruchter Rand $180^{\circ} < \alpha < 360^{\circ}$

ANMERKUNGEN auf Seite 42.

WIRKSAME SCHRAUBENANZAHL BEI ABSCHERBEANSPRUCHUNG

Die Tragfähigkeit einer Verbindung mit mehreren Schrauben vom gleichen Typ und mit gleicher Größe kann kleiner sein als die Summe der Tragfähigkeiten des einzelnen Verbindungsmittels. Für eine Reihe von n parallel zur Faserrichtung des Holzes in einem Abstand a_1 angeordnete Schrauben entspricht die effektive charakteristische Tragfähigkeit:

$$R_{ef,V,k} = n_{ef} \cdot R_{V,k}$$

Der Wert von n_{ef} ist in der folgenden Tabelle abhängig von n und a₁ aufgeführt.

							a ₁ (*)					
		4·d	5·d	6·d	7·d	8·d	9·d	10 ⋅d	11-d	12·d	13·d	≥ 14·d
	2	1,41	1,48	1,55	1,62	1,68	1,74	1,80	1,85	1,90	1,95	2,00
n	3	1,73	1,86	2,01	2,16	2,28	2,41	2,54	2,65	2,76	2,88	3,00
"	4	2,00	2,19	2,41	2,64	2,83	3,03	3,25	3,42	3,61	3,80	4,00
	5	2.24	2.49	2.77	3.09	3.34	3.62	3.93	4,17	4.43	4.71	5,00

 $[\]overline{\text{(*)}}$ Für Zwischenwerte \mathbf{a}_1 ist eine lineare Interpolation möglich.

 $[\]alpha$ = Winkel zwischen Kraft- und Faserrichtung

					SCH	IERWERT					ZUGKRÄFTE				
	Geon	netrie		Holz-Holz ε=90°	Holz-Holz ε=0°	Holzwerk te-H	stoffplat- Iolz	Stahl- dünnes	Holz, s Blech	Gewindeauszug ε=90°	Gewindeauszug ε=0°	Kopfdurchzug			
						Jwd S		Spore			A numumum				
d ₁	L	b	Α	R _{V,90,k}	$R_{V,0,k}$	S _{PAN}	$R_{V,k}$	S _{PLATE}	$R_{V,k}$	R _{ax,90,k}	R _{ax,0,k}	$R_{head,k}$			
[mm]	[mm]	[mm]	[mm]	[kN]	[kN]	[mm]	[kN]	[mm]	[kN]	[kN]	[kN]	[kN]			
	40	18	22	0,73	0,40		0,72		0,85	0,80	0,24	0,56			
3,5	45	24	21	0,79	0,47	12	0,72	1,75	0,91	1,06	0,32	0,56			
	50	24	26	0,79	0,47		0,72		0,91	1,06	0,32	0,56			
	30	18	12	0,72	0,38		0,76		0,93	0,91	0,27	0,73			
	35	18	17	0,79	0,47		0,84	2	1,04	0,91	0,27	0,73			
	40	24	16	0,83	0,51	12	0,84		1,12	1,21	0,36	0,73			
4	45	30	15	0,81	0,56		0,84		1,19	1,52	0,45	0,73			
-	50	30	20	0,91	0,62		0,84	_	1,19	1,52	0,45	0,73			
	60	35	25	0,99	0,69		0,84		1,26	1,77	0,53	0,73			
	70	40	30	0,99	0,77		0,84		1,32	2,02	0,61	0,73			
	80	40	40	0,99	0,77		0,84		1,32	2,02	0,61	0,73			
	40	24	16	0,98	0,55		1,06		1,33	1,36	0,41	0,92			
	45	30	15	0,96	0,61		1,06		1,42	1,70	0,51	0,92			
4,5	50	30	20	1,06	0,69	15	1,06	2,25	1,42	1,70	0,51	0,92			
4,5	60	35	25	1,18	0,79	15	1,06	2,25	1,49	1,99	0,60	0,92			
	70	40	30	1,22	0,86		1,06		1,56	2,27	0,68	0,92			
	80	40	40	1,22	0,86		1,06		1,56	2,27	0,68	0,92			
	40	24	16	1,12	0,60		1,16		1,46	1,52	0,45	1,13			
	45	24	21	1,19	0,70		1,20		1,56	1,52	0,45	1,13			
	50	24	26	1,29	0,73		1,20		1,56	1,52	0,45	1,13			
	60	30	30	1,46	0,81		1,20		1,65	1,89	0,57	1,13			
5	70	35	35	1,46	0,88	15	1,20	2,5	1,73	2,21	0,66	1,13			
	80	40	40	1,46	0,96		1,20		1,81	2,53	0,76	1,13			
	90	45	45	1,46	1,05		1,20		1,89	2,84	0,85	1,13			
	100	50	50	1,46	1,13		1,20		1,97	3,16	0,95	1,13			
	120		60	1,46	1,17		1,20		2,13	3,79	1,14	1,13			

 ϵ = Winkel zwischen Schraube und Faserrichtung

ANM. und ALLGEMEINE GRUNDLAGEN auf Seite 42.

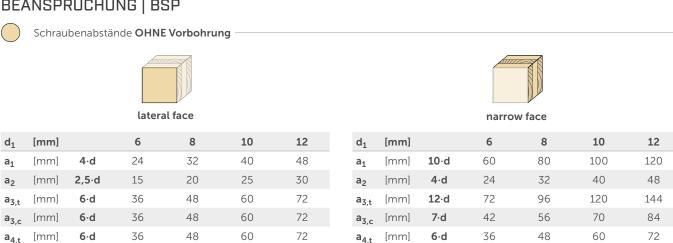
■ STATISCHE WERTE | HOLZ

					SCH	IERWERT				ZUGKRÄFTE		
	Geon	netrie		Holz-Holz ε=90°	Holz-Holz ε=0°	Stahl- dünnes		Stahl dickes	-Holz Blech	Gewindeauszug ε=90°	Gewindeauszug ε=0°	Kopfdurchzug
					Splate	Splate		—	TY			
d ₁	L	b	Α	R _{V,90,k}	R _{V,0,k}	S _{PLATE}	R _{V,k}	S _{PLATE}	R _{V,k}	R _{ax,90,k}	R _{ax,0,k}	R _{head,k}
[mm]	[mm] 40	[mm] 35	[mm]	[kN] 0,89	[kN] 0,72	[mm]	[kN] 1,64	[mm]	[kN] 2,58	[kN] 2,65	[kN] 0,80	[kN] 1,63
	50	35	15	1,53	0,72		2,08		2,98	2,65	0,80	1,63
	60	30	30	1,78	1,04		2,24		2,93	2,27	0,68	1,63
	70	40	30	1,88	1,20		2,43		3,12	3,03	0,91	1,63
	80	40	40	2,08	1,20		2,43		3,12	3,03	0,91	1,63
	90	50	40	2,08	1,38		2,61		3,31	3,79	1,14	1,63
	100	50	50	2,08	1,38		2,61		3,31	3,79	1,14	1,63
	110	60	50	2,08	1,58		2,80		3,49	4,55	1,36	1,63
	120 130	60 60	60 70	2,08	1,58		2,80		3,49	4,55	1,36	1,63
	140	75	65	2,08 2,08	1,58 1,67		2,80		3,49 3,78	4,55 5,68	1,36 1,70	1,63 1,63
	150	75	75	2,08	1,67		3,09	6	3,78	5,68	1,70	1,63
6	160	75	85	2,08	1,67	3	3,09		3,78	5,68	1,70	1,63
	180	75	105	2,08	1,67		3,09		3,78	5,68	1,70	1,63
	200	75	125	2,08	1,67		3,09		3,78	5,68	1,70	1,63
	220	75	145	2,08	1,67		3,09		3,78	5,68	1,70	1,63
	240	75	165	2,08	1,67		3,09		3,78	5,68	1,70	1,63
	260	75	185	2,08	1,67		3,09		3,78	5,68	1,70	1,63
	280 300	75 75	205 225	2,08 2,08	1,67 1,67		3,09 3,09		3,78 3,78	5,68 5,68	1,70 1,70	1,63 1,63
	320	75 75	245	2,08	1,67		3,09		3,78	5,68	1,70	1,63
	340	75	265	2,08	1,67		3,09		3,78	5,68	1,70	1,63
	360	75	285	2,08	1,67		3,09		3,78	5,68	1,70	1,63
	380	75	305	2,08	1,67		3,09		3,78	5,68	1,70	1,63
	400	75	325	2,08	1,67		3,09		3,78	5,68	1,70	1,63
	80	52	28	2,59	1,70		4,00		5,11	5,25	1,58	2,38
	100	52	48	3,28	1,95		4,00		5,11	5,25	1,58	2,38
	120	60	60	3,28	2,13		4,20		5,31	6,06	1,82	2,38
	140 160	60 80	80	3,28 3,28	2,13 2,60		4,20 4,70		5,31 5,81	6,06 8,08	1,82 2,42	2,38 2,38
	180	80	100	3,28	2,60		4,70		5,81	8,08	2,42	2,38
	200	80	120	3,28	2,60		4,70		5,81	8,08	2,42	2,38
	220	80	140	3,28	2,60		4,70		5,81	8,08	2,42	2,38
	240	80	160	3,28	2,60		4,70		5,81	8,08	2,42	2,38
	260	80	180	3,28	2,60		4,70		5,81	8,08	2,42	2,38
-	280	80	200	3,28	2,60		4,70		5,81	8,08	2,42	2,38
8	300	100	200	3,28	2,62	4	5,21	8	6,32	10,10	3,03	2,38
	320 340	100	220 240	3,28 3,28	2,62 2,62		5,21 5,21		6,32 6,32	10,10 10,10	3,03 3,03	2,38 2,38
	360	100	260	3,28	2,62		5,21		6,32	10,10	3,03	2,38
	380	100	280	3,28	2,62		5,21		6,32	10,10	3,03	2,38
	400	100	300	3,28	2,62		5,21		6,32	10,10	3,03	2,38
	440	100	340	3,28	2,62		5,21		6,32	10,10	3,03	2,38
	480	100	380	3,28	2,62		5,21		6,32	10,10	3,03	2,38
	520	100	420	3,28	2,62		5,21		6,32	10,10	3,03	2,38
	560	100	460	3,28	2,62		5,21		6,32	10,10	3,03	2,38
	580	100	480	3,28	2,62		5,21		6,32	10,10	3,03	2,38
	600	100	500	3,28	2,62		5,21		6,32	10,10	3,03	2,38

■ STATISCHE WERTE | HOLZ

					SCH	ERWERT			ZUGKRÄFTE			
	Geom	ietrie		Holz-Holz ε=90°	Holz-Holz ε=0°	Stahl- dünnes	-Holz s Blech	Stahl- dickes	-Holz Blech	Gewindeauszug ε=90°	Gewindeauszug ε=0°	Kopfdurchzug
	A d					Splate		Splate		1 1 1 1 1 1 1 1 1 1	A unununun	
d_1	L	b	Α	R _{V,90,k}	R _{V,0,k}	S _{PLATE}	$R_{V,k}$	S _{PLATE}	$R_{V,k}$	R _{ax,90,k}	R _{ax,0,k}	$R_{head,k}$
[mm]	[mm]	[mm]	[mm]	[kN]	[kN]	[mm]	[kN]	[mm]	[kN]	[kN]	[kN]	[kN]
	80	52	28	3,63	2,02		4,75		6,94	6,57	1,97	3,77
	100	52	48	4,22	2,56		5,51		7,12	6,57	1,97	3,77
	120	60	60	4,81	2,75		5,76		7,37	7,58	2,27	3,77
	140	60	80	4,81	2,75		5,76		7,37	7,58	2,27	3,77
	160	80	80	4,81	3,28		6,40		8,00	10,10	3,03	3,77
	180	80	100	4,81	3,28		6,40		8,00	10,10	3,03	3,77
	200	80	120	4,81	3,28		6,40		8,00	10,10	3,03	3,77
	220	80	140	4,81	3,28		6,40		8,00	10,10	3,03	3,77
	240	80	160	4,81	3,28		6,40		8,00	10,10	3,03	3,77
	260	80	180	4,81	3,28	5	6,40		8,00	10,10	3,03	3,77
10	280	80	200	4,81	3,28		6,40	10	8,00	10,10	3,03	3,77
10	300	100	200	4,81	3,86		7,03	10	8,63	12,63	3,79	3,77
	320	100	220	4,81	3,86		7,03		8,63	12,63	3,79	3,77
	340	100	240	4,81	3,86		7,03		8,63	12,63	3,79	3,77
	360	100	260	4,81	3,86		7,03		8,63	12,63	3,79	3,77
	380	100	280	4,81	3,86		7,03		8,63	12,63	3,79	3,77
	400	100	300	4,81	3,86		7,03		8,63	12,63	3,79	3,77
	440	100	340	4,81	3,86		7,03		8,63	12,63	3,79	3,77
	480	100	380	4,81	3,86		7,03		8,63	12,63	3,79	3,77
	520	100	420	4,81	3,86		7,03		8,63	12,63	3,79	3,77
	560	100	460	4,81	3,86		7,03		8,63	12,63	3,79	3,77
	600	100	500	4,81	3,86		7,03		8,63	12,63	3,79	3,77
	120	80	40	4,87	3,49		7,81		9,79	12,12	3,64	4,88
	160	80	80	6,00	3,88		7,81		9,79	12,12	3,64	4,88
	200	80	120	6,00	3,88		7,81		9,79	12,12	3,64	4,88
	240	80	160	6,00	3,88		7,81		9,79	12,12	3,64	4,88
	280	80	200	6,00	3,88		7,81		9,79	12,12	3,64	4,88
	320	120	200	6,00	4,83		9,32		11,30	18,18	5,45	4,88
	360	120	240	6,00	4,83		9,32		11,30	18,18	5,45	4,88
	400	120	280	6,00	4,83		9,32		11,30	18,18	5,45	4,88
12	440	120	320	6,00	4,83	6	9,32	12	11,30	18,18	5,45	4,88
	480	120	360	6,00	4,83		9,32		11,30	18,18	5,45	4,88
	520	120	400	6,00	4,83		9,32		11,30	18,18	5,45	4,88
	560	120	440	6,00	4,83		9,32		11,30	18,18	5,45	4,88
	600	120	480	6,00	4,83		9,32		11,30	18,18	5,45	4,88
	700	120	580	6,00	4,83		9,32		11,30	18,18	5,45	4,88
	800	120	680	6,00	4,83		9,32		11,30	18,18	5,45	4,88
	900	120	780	6,00	4,83		9,32		11,30	18,18	5,45	4,88
	1000	120	880	6,00	4,83		9,32		11,30	18,18	5,45	4,88

 $[\]epsilon$ = Winkel zwischen Schraube und Faserrichtung


					SCHERW	ERT				
Geometrie				BSP - BSP BSP - BSP Platte - BSP lateral face lateral face lateral face		BSP - Platte - BSP lateral face				
L	A A A A A A A A A A A A A A A A A A A				← → →	S _{PAN} [t S _{PAN}		
d ₁	L	b	Α	$R_{V,k}$	$R_{V,k}$	S _{PAN}	$R_{V,k}$	S _{PAN}	t	$R_{V,k}$
[mm]	[mm]	[mm]	[mm]	[kN]	[kN]	[mm]	[kN]	[mm]	[mm]	[kN]
	60	30	≥ 30	1,63	-		1,62		20	2,67
	70÷80	40	≥ 30	1,74	-		1,62		≥ 25	2,67
6	90÷100	50	≥ 40	1,97	-	18	1,62	18	≥ 35	2,67
	110÷130	60	≥ 50	1,97	-		1,62		≥ 45	2,67
	140÷400	75	≥ 65	1,97	-		1,62		≥ 60	2,67
	80÷100	52	≥ 28	2,42	1,84		2,55		≥ 25	3,64
8	120÷140	60	≥ 60	3,11	2,26	22	2,55	22	≥ 45	3,64
O	160÷280	80	≥ 80	3,11	2,58	22	2,55		≥ 65	3,64
	300÷600	100	≥ 200	3,11	2,58		2,55		≥ 135	3,64
	80÷100	52	≥ 28	3,40	2,34		3,62		≥ 25	4,47
10	120÷140	60	≥ 60	4,45	3,03	25	3,62	25	≥ 45	4,47
10	160÷280	80	≥ 80	4,56	3,37	3,62		25	≥ 65	4,47
	300÷600	100	≥ 200	4,56	3,76		3,62		≥ 135	4,47
	120	80	≥ 40	4,54	3,56		4,37		≥ 45	4,72
12	160÷280	80	≥ 80	5,69	4,00	25	4,37	25 ≥ 65		4,72
	320÷1000	120	≥ 200	5,69	4,65		4,37		≥ 145	4,72

					SCHERWERT		
	Geometrie			BSP - Holz lateral face	Holz - BSP narrow face	BSP - BSP narrow face	
L					$t_{c_{LT}}$ $t_{c_{LT}}$ $t_{c_{LT}}$ $R_{V,k}$ t_{CLT} $R_{V,k}$		
d ₁	L	b	Α	R _{V,k}	R _{V,k}	t _{CLT}	$R_{V,k}$
[mm]	[mm]	[mm]	[mm]	[kN]	[kN]	[mm]	[kN]
	60	30	30	1,69	-	-	-
	70÷80	40	≥ 30	1,77	-	-	-
6	90÷100	50	≥ 40	2,01	-	≥ 65	1,54
	110÷130	60	≥ 50	2,01	-	≥ 80	1,66
	140÷400	75	≥ 65	2,01	-	≥ 100	1,66
	80÷100	52	≥ 28	2,46	1,89	≥ 80	1,84
8	120÷140	60	≥ 60	3,17	2,27	≥ 85	2,26
	160÷280	80	≥ 80	3,17	2,61	≥ 115	2,58
	300÷600	100	≥ 200	3,17	2,61	≥ 215	2,58
	80÷100	52	≥ 28	3,45	2,40	≥ 100	2,34
10	120÷140	60	≥ 60	4,55	3,05	≥ 100	3,03
	160÷280 80 ≥ 80 4,65		3,39	≥ 115	3,37		
	300÷600	100	≥ 200	4,65	3,79	≥ 215	3,76
12	120÷280	80	40	4,60	3,65	≥ 120	3,56
	320÷1000	120	≥ 200	5,79	4,69	≥ 230	4,65

ANM. und ALLGEMEINE GRUNDLAGEN auf Seite 42.

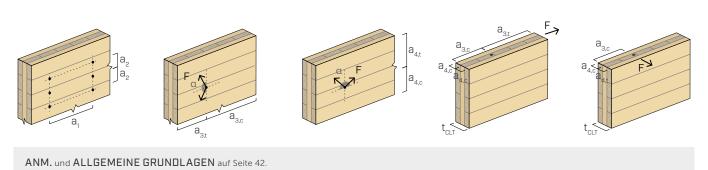
				ZUGKI	RÄFTE	
	Geometrie		Gewindeauszug lateral face	Gewindeauszug narrow face	Kopfdurchzug	Kopfdurchzug mit Unterlegscheibe HUS
d_1	L	b	$R_{ax,k}$	$R_{ax,k}$	R _{head,k}	R _{head,k}
[mm]	[mm]	[mm]	[kN]	[kN]	[kN]	[kN]
	60	30	2,11	-	1,51	4,20
	70÷80	40	2,81	-	1,51	4,20
6	90÷100	50	3,51	-	1,51	4,20
	110÷130	60	4,21	-	1,51	4,20
	140÷400	75	5,27	-	1,51	4,20
	80÷100	52	4,87	3,70	2,21	6,56
8	120÷140	60	5,62	4,21	2,21	6,56
0	160÷280	80	7,49	5,45	2,21	6,56
	300÷600	100	9,36	6,66	2,21	6,56
	80÷100	52	6,08	4,42	3,50	9,45
10	120÷140	60	7,02	5,03	3,50	9,45
10	160÷280	80	9,36	6,51	3,50	9,45
	300÷600	100	11,70	7,96	3,50	9,45
12	120÷280	80	11,23	7,54	4,52	14,37
	320÷1000	120	16,85	10,86	4,52	14,37

■ MINDESTABSTÄNDE DER SCHRAUBEN BEI SCHERBEANSPRUCHUNG UND AXIALER BEANSPRUCHUNG | BSP

 $d = d_1 = Nenndurchmesser Schraube$

2,5·d

[mm]


 $a_{4,c}$

15

20

25

30

[mm]

3·d

18

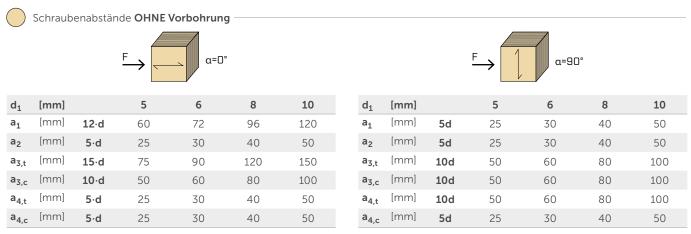
24

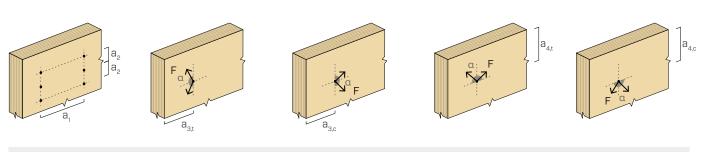
30

36

■ STATISCHE WERTE | LVL

				ZUGKRÄFTE							
	Geometrie		Gewindeauszug flat	Gewindeauszug edge	Kopfdurchzug flat	Kopfdurchzug mit Unterlegscheibe HUS flat					
	d,										
d ₁ [mm]	L [mm]	b [mm]	R _{ax,k} [kN]	R _{ax,k} [kN]	R _{head,k} [kN]	R _{head,k} [kN]					
	40÷50	24	1,74	1,16	1,94	-					
	60	30	2,18	1,45	1,94	-					
	70	35	2,54	1,69	1,94	-					
5	80	40	2,90	1,94	1,94	-					
	90	45	3,27	2,18	1,94	-					
	100	50	3,63	2,42	1,94	-					
	120	60	4,36	2,90	1,94	-					
	40÷50	35	3,05	2,03	2,79	7,74					
	60	30	2,61	1,74	2,79	7,74					
	70÷80	40	3,48	2,32	2,79	7,74					
6	90÷100	50	4,36	2,90	2,79	7,74					
	110÷130	60	5,23	3,48	2,79	7,74					
	140÷150	75	6,53	4,36	2,79	7,74					
	160÷400	75	6,53	4,36	2,79	7,74					
	80÷100	52	6,04	4,03	4,07	12,10					
	120÷140	60	6,97	4,65	4,07	12,10					
8	160÷180	80	9,29	6,19	4,07	12,10					
	200÷280	80	9,29	6,19	4,07	12,10					
	300÷600	100	11,61	7,74	4,07	12,10					
	80÷100	52	7,55	5,03	6,45	17,42					
	120÷140	60	8,71	5,81	6,45	17,42					
10	160÷200	80	11,61	7,74	6,45	17,42					
	220÷280	80	11,61	7,74	6,45	17,42					
	300÷600	100	14,52	9,68	6,45	17,42					


ANM. und ALLGEMEINE GRUNDLAGEN auf Seite 42.


				SCHERWERT								
	Geometrie			LVL-LVL		LVL-LVL-LVL		LVL-Holz		Holz	Holz-LVL	
		A A		<u>↓ t₂</u>	↑ ↑ ↑ A		A		A			
d_1	L	b	Α	$R_{V,k}$	Α	t ₂	$R_{V,k}$	Α	$R_{V,k}$	Α	$R_{V,k}$	
[mm]	[mm]	[mm]	[mm]	[kN]	[mm]	[mm]	[kN]	[mm]	[kN]	[mm]	[kN]	
	60	30	-	-	-	-	-	-	-	27	1,45	
	70	35	33	1,80	-	-	-	33	1,73	35	1,53	
5	80	40	40	1,80	-	-	-	40	1,73	40	1,53	
5	90	45	45	1,80	-	-	-	45	1,73	45	1,53	
	100	50	50	1,80	-	-	-	50	1,73	50	1,53	
	120	60	60	1,80	-	-	-	60	1,73	60	1,53	
	90÷100	50	≥ 45	2,56	_	-	-	≥ 45	2,45	≥ 40	2,16	
6	110÷130	60	≥ 55	2,56	-	-	-	≥ 55	2,45	≥ 50	2,16	
· ·	140÷150	75	≥ 70	2,56	-	-	-	≥ 70	2,45	≥ 65	2,16	
	160÷400	75	≥ 80	2,56	≥ 45	≥ 70	5,12	≥ 80	2,45	≥ 85	2,16	
	120÷140	60	≥ 60	4,01	-	-	-	≥ 60	3,84	≥ 60	3,42	
8	160÷180	80	≥ 80	4,01	-	-	-	≥ 80	3,84	≥ 80	3,42	
o	200÷280	80	≥ 120	4,01	≥ 65	≥ 75	8,03	≥ 120	3,84	≥ 120	3,42	
	300÷600	100	≥ 200	4,01	≥ 100	≥ 105	8,03	≥ 200	3,84	≥ 200	3,42	
	120÷140	60	-	-	-	-	-	-	-	≥ 45	4,34	
10	160÷200	80	≥ 75	5,93	-	-	-	≥ 75	5,69	≥ 80	5,02	
10	220÷280	80	≥ 140	5,93	≥ 75	≥ 75	11,87	≥ 140	5,69	≥ 140	5,02	
	300÷600	100	≥ 200	5,93	≥ 100	≥ 105	11,87	≥ 200	5,69	≥ 200	5,02	

MINDESTABSTÄNDE DER SCHRAUBEN BEI ABSCHERBEANSPRUCHUNG | LVL

 $[\]alpha$ = Winkel zwischen Kraft- und Faserrichtung

 $d = d_1 = Nenndurchmesser Schraube$

ANM. und ALLGEMEINE GRUNDLAGEN auf Seite 42.

STATISCHE WERTE

ALL GEMEINE GRUNDLAGEN

- Die charakteristischen Werte werden gemäß der Norm EN 1995:2014 und in Übereinstimmung mit ETA-11/0030 berechnet.
- Die Bemessungswerte werden aus den charakteristischen Werten wie folgt berechnet:

$$R_d = \frac{R_k \cdot k_{mod}}{\gamma_M}$$

Die Beiwerte γ_M und $k_{\mbox{\scriptsize mod}}$ sind aus der entsprechenden geltenden Norm zu übernehmen, die für die Berechnung verwendet wird.

- Bei den Werten für die mechanische Festigkeit und die Geometrie der Schrauben wurde auf die Angaben in der ETA-11/0030 Bezug genommen.
- Die Bemessung und Überprüfung der Holzelemente, der Platten und Metallplatten müssen separat durchgeführt werden.
- Für die Positionierung der Schrauben sind die Mindestabstände zu berücksichtigen.
- Die charakteristischen Scherfestigkeitswerte wurden bei eingeschraubten Schrauben ohne Vorbohrung bewertet. Mit vorgebohrten Schrauben können höhere Festigkeitswerte erreicht werden.
- Die Scherfestigkeitswerte wurden unter Berücksichtigung des vollständig in das zweite Element eingedrehten Gewindeteils berechnet.
- Die charakteristischen Holzwerkstoffplatte-Holz-Scherfestigkeitswerte wurden für eine OSB3- oder OSB4-Platte gemäß EN 300 oder für eine Spanplatte gemäß EN 312 mit einer Stärke $S_{\mbox{\footnotesize{PAN}}}$ und Dichte $\rho_k=500\mbox{\;kg/m}^3$ berechnet.
- Die charakteristischen Gewindeauszugswerte wurden unter Berücksichtigung einer Einschraubtiefe b berechnet.
- Die charakteristische Kopfdurchzugsfestigkeit mit und ohne Unterlegscheibe wurde für ein Element aus Holz oder auf Holzbasis berechnet.
 Bei Stahl-Holz-Verbindungen ist in Bezug auf den Abreiß- oder Durchzugswiderstand des Schraubenkopfes für gewöhnlich die Zugfestigkeit des Stahls ausschlagebend.
- Bei kombinierten Scher- und Zugbeanspruchungen muss folgender Nachweis erbracht sein:

$$\left(\frac{F_{v,d}}{R_{v,d}}\right)^2 + \left(\frac{F_{ax,d}}{R_{ax,d}}\right)^2 \le 1$$

- Bei Stahl-Holz-Verbindungen mit dickem Blech müssen die Auswirkungen der Verformung des Holzes berechnet und die Verbinder gemäß den Montageanleitungen eingebaut werden.
- Für weitere Berechnungen steht die kostenlose Software MyProject zur Verfügung (www.rothoblaas.de).

ANMERKUNGEN | BSP

- Die charakteristischen Werte entsprechen den nationalen Spezifikationen ÖNORM FN 1995 - Annex K.
- Bei der Berechnung wurde eine Rohdichte für die BSP-Elemente von ρ_k = 350 kg/m³ und für Holzelemente mit ρ_k = 385 kg/m³ bedacht.
- $\hbox{ \ \, Die charakteristischen Scherfestigkeitswerte berechnen sich unter Berücksichtigung der minimalen Eindringtiefe der Schraube von <math>4\cdot d_1.$
- Der charakteristische Scherfestigkeitswert ist unabhängig von der Faserrichtung der äußeren Holzschicht der BSP-Platte.
- Die axiale Auszugsfestigkeit des "narrow-face"-Gewindes gilt unter Einhaltung der BSP-Mindeststärke von t_{CLT,min} = 10·d₁ und einer Mindestdurchzugstiefe der Schraube von t_{pen} = 10·d₁.

ANMERKUNGEN | HOLZ

- Die charakteristischen Holz-Holz-Scherfestigkeitswerte wurden unter Berücksichtigung eines Winkels ε sowohl von 90° (R_{V,90,k}) als auch 0° (R_{V,0,k}) zwischen den Fasern des zweiten Elements und dem Verbinder berechnet.
- Die charakteristischen Holzwerkstoffplatte-Holz- und Stahl-Holz-Scherfestigkeitswerte wurden unter Berücksichtigung eines Winkels ϵ von 90° zwischen Fasern des Holzelements und dem Verbinder berechnet.
- Die charakteristischen Scherfestigkeitswerte auf Platte wurden für eine dünne Platte (S_{PLATE} = 0,5 d₁) und für eine dicke Platte (S_{PLATE} = d₁) berechnet.
- Die charakteristischen Gewindeauszugswerte wurden unter Berücksichtigung eines Winkels ε sowohl von 90° (R_{ax,90,k}) als auch 0° (R_{ax,0,k}) zwischen den Fasern des Holzelements und dem Verbinder berechnet.
- * Bei der Berechnung wurde eine Rohdichte der Holzelemente von ρ_k = 385 kg/m³ berücksichtigt.

Für andere ρ_k -Werte können die aufgelisteten Festigkeitswerte (Holz-Holz-Scherfestigkeit, Stahl-Holz Scherfestigkeit und Zugkraft) mithilfe des k_{dens} -Beiwerts umgerechnet werden.

$$\begin{aligned} R'_{V,k} &= k_{dens,v} \cdot R_{V,k} \\ R'_{ax,k} &= k_{dens,ax} \cdot R_{ax,k} \\ R'_{head,k} &= k_{dens,ax} \cdot R_{head,k} \end{aligned}$$

ρ _k [kg/m³]	350	380	385	405	425	430	440
C-GL	C24	C30	GL24h	GL26h	GL28h	GL30h	GL32h
k _{dens,v}	0,90	0,98	1,00	1,02	1,05	1,05	1,07
k _{dens,ax}	0,92	0,98	1,00	1,04	1,08	1,09	1,11

Die so ermittelten Festigkeitswerte können zugunsten der Sicherheit von denen abweichen, die sich aus einer genauen Berechnung ergeben.

ANMERKUNGEN | LVL

- Bei der Berechnung wurde eine Rohdichte der LVL-Elemente aus Nadelholz (Softwood) von ρ_k = 480 kg/m³ und für Holzelemente mit ρ_k = 385 kg/m³ berücksichtigt.
- Die charakteristischen Scherfestigkeitswerte werden für Verbinder berechnet, die auf der Seitenfläche (wide face) eingesetzt werden, wobei für die einzelnen Holzelemente ein Winkel von 90° zwischen dem Verbinder und der Faser, ein Winkel von 90° zwischen Verbinder und Seitenfläche des LVL-Elements und ein Winkel von 0° zwischen der Kraft- und Faserrichtung berücksichtigt wird.
- Der Gewindeauszugswert wurde mit einem Winkel von 90° zwischen Fasern und Verbinder berechnet.
- Schrauben, die kürzer sind als der aufgelistete Mindestwert, sind nicht mit den Berechnungsansätzen kompatibel und deshalb nicht aufgeführt.

MINDESTABSTÄNDE

ANMERKUNGEN | HOLZ

- Die Mindestabstände werden gemäß der Normen EN 1995:2014 und in Übereinstimmung mit ETA-11/0030 berechnet.
- Bei Stahl-Holz-Verbindungen können die Mindestabstände (a $_1$, a $_2$) mit einem Koeffizienten von 0,7 multipliziert werden.
- Bei Holzwerkstoffplatten-Verbindungen können die Mindestabstände (a₁, a₂) mit einem Koeffizienten von 0,85 multipliziert werden.
- Bei Verbindungen von Elementen aus Douglasienholz (Pseudotsuga menziesii) müssen die Mindestabstände und die minimalen, parallelen Abstände zur Faser mit dem Koeffizienten 1,5 multipliziert werden.
- Der Abstand a₁, aufgelistet für Schrauben mit Spitze 3 THORNS und d₁≥5 mm, eingeschraubt ohne Vorbohrung in Holzelemente mit Dichte p_k ≤ 420 kg/m³ und Winkel zwischen Kraft- und Faserrichtung a= 0°, wurde auf der Grundlage experimenteller Untersuchungen mit 10-d angenommen; wahlweise können 12-d gemäß EN 1995:2014 übernommen werden.

ANMERKUNGEN | BSP

- Die Mindestabstände sind gemäß ETA-11/0030 und sind gültig, falls keine anderen Angaben in den technischen Unterlagen der BSP-Bretter angegeben sind
- Die Mindestabstände gelten für die Mindestdicke BSP $t_{CLT,min}$ = $10 \cdot d_1$.
- Die auf "narrow face" bezogenen Mindestabstände gelten für die minimale Durchzugtiefe der Schraube t_{pen} = 10·d₁.

ANMERKUNGEN | LVL

- Die Mindestabstände sind gemäß ETA-11/0030 und sind gültig, falls keine anderen Angaben in den technischen Unterlagen der LVL-Bretter angegeben sind.
- Die Mindestabstände gelten bei Verwendung von Furnierschichthölzern aus Nadelholz (Softwood) mit parallelen und überkreuzten Furnierblättern.
- Die Mindestabstände ohne Vorbohren gelten für Mindeststärken der LVL-Elemente t_{min}:

$$t_{1} \ge 8.4 \cdot d - 9$$

$$t_{2} \ge \begin{cases} 11.4 \cdot d \\ 75 \end{cases}$$

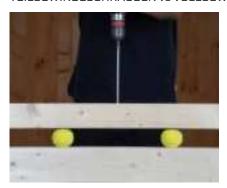
Wobei:

- t_1 ist die Stärke des LVL-Elements in mm bei einer Verbindung mit 2 Holzelementen. Im Falle von Verbindungen mit 3 oder mehr Elementen ist t_1 die Stärke des am weitesten außen angeordneten LVL-Elements;
- t₂ ist die Stärke des mittleren Elements in mm bei einer Verbindung mit 3 oder mehr Elementen.

MONTAGEANLEITUNGEN

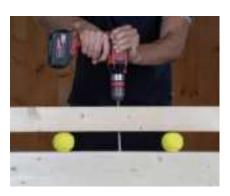
EINSCHRAUBEN MIT CATCH

Den Einsatz in das Einschraubwerkzeug CATCH setzen und in der richtigen Tiefe befestigen, die vom gewählten Verbinder abhängt.



CATCH eignet sich für lange Verbinder, bei denen der Einsatz ansonsten leicht aus dem Schraubenkopfraum austreten könnte.

Besonders hilfreich bei Verschraubung in einem Winkel, in dem keine große Kraft zum Einschrauben aufgebracht werden kann.


TEILGEWINDESCHRAUBEN vs VOLLGEWINDESCHRAUBEN

Zwischen zwei Holzbalken werden komprimierbare Elemente gesetzt und eine Schraube mittig angeschraubt, um die Wirkung auf die Verbindung zu bewerten.

Die Schraube mit Teilgewinde (z. B. HBS) ermöglicht das Schließen der Verbindung. Der vollständig in das zweite Element eingefügte Gewindeabschnitt ermöglicht, dass das ersten Element auf dem glatten Schaft gleiten kann.

Die Schraube mit Vollgewinde (z. B. VGZ) überträgt die Kraft unter Ausnutzung ihres axialen Widerstands und dringt in die Holzelemente ein, ohne dass diese sich zu bewegen.

ANWENDUNG AUF HARTHOLZ

Eine Vorbohrung mit dem geforderten Durchmesser (d_{V,H}) und einer Länge, die den Maßen des gewählten Verbinders entspricht, mithilfe des Bohrers SNAIL vornehmen.

Die Schraube montieren (z. B. HBS).

Wahlweise ist die Verwendung spezieller Schrauben für Hartholzanwendungen (z. B. HBSH) möglich, die ohne Vorbohrung eingesetzt werden können.

ZUGEHÖRIGE PRODUKTE

CATCH Seite 408

LEWIS Seite 414

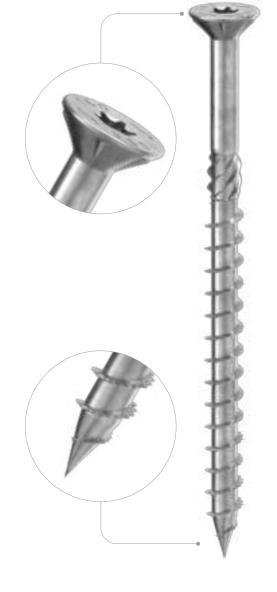
SNAIL Seite 415

Seite 402

I HBS SOFTWOOD

SENKKOPFSCHRAUBE

SAW-SPITZE


Spezialbohrspitze mit gezacktem Gewinde (SAW-Spitze), die beim Schneiden von Holzfasern das Anbeißen und den nachfolgenden Durchzug erleichtert.

LÄNGERES GEWINDE

Längeres Gewinde (60%) für den optimalen Verschluss der Verbindung und vielseitige Verwendung.

SOFTWOOD

Optimierte Geometrie für maximale Leistung bei den gängigsten Bauhölzern.

DURCHMESSER [mm]	3 (5 8) 12
LÄNGE [mm]	12 (50 400) 1000
NUTZUNGSKLASSE	SC1 SC2
ATMOSPHÄRISCHE KORROSIVITÄT	C1 C2
KORROSIVITÄT DES HOLZES	T1 T2
MATERIAL	Zn Elektroverzinkter Kohlenstoffstahl

ANWENDUNGSGEBIETE

- Holzwerkstoffplatten
- Span- und MDF-Platten
- Massivholz
- Brettschichtholz
- BSP und LVL

TIMBER ROOF

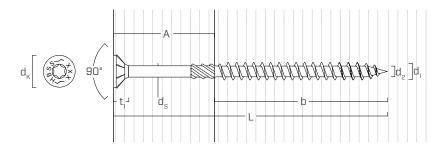
Durch ein schnelles Anbeißen der Schraube können bei jeder Art von Verlegung sichere konstruktive Verbindungen realisiert werden.

SIP PANELS

Der Maßbereich ist speziell für die Anbringung von Befestigungen an mittelgroßen und großen Konstruktionselementen wie leichten Brettern und Rahmen bis hin zu SIP- und Sandwichplatten konzipiert.

ARTIKELNUMMERN UND ABMESSUNGEN

d_1	ARTNR.	L	b	Α	Stk.
[mm]		[mm]	[mm]	[mm]	
	HBSS550	50	30	20	200
	HBSS560	60	35	25	200
5	HBSS570	70	40	30	200
TX 25	HBSS580	80	50	30	100
	HBSS5100	100	60	40	100
	HBSS5120	120	60	60	100
	HBSS660	60	35	25	100
	HBSS670	70	40	30	100
	HBSS680	80	50	30	100
	HBSS690	90	55	35	100
	HBSS6100	100	60	40	100
	HBSS6120	120	75	45	100
	HBSS6140	140	80	60	100
6 TX 30	HBSS6160	160	90	70	100
	HBSS6180	180	100	80	100
	HBSS6200	200	100	100	100
	HBSS6220	220	100	120	100
	HBSS6240	240	100	140	100
	HBSS6260	260	100	160	100
	HBSS6280	280	100	180	100
	HBSS6300	300	100	200	100


d_1	ARTNR.	L	b	Α	Stk.
[mm]		[mm]	[mm]	[mm]	
	HBSS880	80	52	28	100
	HBSS8100	100	60	40	100
	HBSS8120	120	80	40	100
	HBSS8140	140	80	60	100
	HBSS8160	160	90	70	100
	HBSS8180	180	90	90	100
	HBSS8200	200	100	100	100
	HBSS8220	220	100	120	100
8 TX 40	HBSS8240	240	100	140	100
17.10	HBSS8260	260	100	160	100
	HBSS8280	280	100	180	100
	HBSS8300	300	100	200	100
	HBSS8320	320	100	220	100
	HBSS8340	340	100	240	100
	HBSS8360	360	100	260	100
	HBSS8380	380	100	280	100
	HBSS8400	400	100	300	100

■ ZUGEHÖRIGE PRODUKTE

HUS
GEDREHTE BEILAGSCHEIBE
siehe S. 68

■ GEOMETRIE UND MECHANISCHE EIGENSCHAFTEN

GEOMETRIE

Nenndurchmesser	d_1	[mm]	5	6	8
Kopfdurchmesser	d_K	[mm]	10,00	12,00	14,50
Kerndurchmesser	d_2	[mm]	3,40	3,95	5,40
Schaftdurchmesser	d_S	[mm]	3,65	4,30	5,80
Kopfstärke	t_1	[mm]	3,10	4,50	4,50
Vorbohrdurchmesser ⁽¹⁾	d _V	[mm]	3,0	4,0	5,0

 $^{^{(1)}}$ Bei Materialien mit hoher Dichte ist je nach Holzart ein Vorbohren empfehlenswert.

MECHANISCHE KENNGRÖSSEN

Nenndurchmesser	d_1	[mm]	5	6	8
Zugfestigkeit	$f_{\text{tens,k}}$	[kN]	8,0	12,0	19,0
Fließmoment	$M_{y,k}$	[Nm]	6,0	10,0	20,5
Parameter der Auszugsfestigkeit	$f_{ax,k}$	[N/mm ²]	12,0	12,0	12,0
Assoziierte Dichte	ρ_{a}	[kg/m ³]	350	350	350
Durchziehparameter	$f_{head,k}$	[N/mm ²]	13,0	13,0	13,0
Assoziierte Dichte	ρ_{a}	[kg/m ³]	350	350	350

MINDESTABSTÄNDE DER SCHRAUBEN BEI ABSCHERBEANSPRUCHUNG

 d_1

 a_1 a₂

 $a_{3,c}$

 $a_{4,t}$

 $a_{4,c}$

[mm] [mm]

[mm]

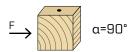
[mm]

[mm]

[mm]

[mm]

Schraubenabstände OHNE Vorbohrung


 $\rho_k \leq 420 \; kg/m^3$

5	6	8
60	72	96
25	30	40
75	90	120
50	60	80

30

30

d_1	[mm]		5	6	8
a ₁	[mm]	5·d	25	30	40
a ₂	[mm]	5·d	25	30	40
a _{3,t}	[mm]	10·d	50	60	80
a _{3,c}	[mm]	10·d	50	60	80
a _{4.t}	[mm]	10·d	50	60	80
a _{4.c}	[mm]	5·d	25	30	40

12·d

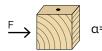
5·d

15-d

10·d

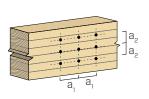
5·d

 $d = d_1 = Nenndurchmesser Schraube$


Schraubenabstände VORGEBOHRT

40

40


α=90°

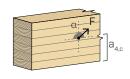
d_1	[mm]		5	6	8
a ₁	[mm]	5·d	25	30	40
a ₂	[mm]	3·d	15	18	24
a _{3,t}	[mm]	12·d	60	72	96
a _{3,c}	[mm]	7⋅d	35	42	56
	[mm]	3·d	15	18	24
a _{4,c}	[mm]	3·d	15	18	24

25

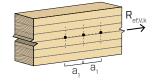
25

d_1	[mm]		5	6	8
a ₁	[mm]	4·d	20	24	32
a ₂	[mm]	4·d	20	24	32
a _{3,t}	[mm]	7⋅d	35	42	56
a _{3,c}	[mm]	7⋅d	35	42	56
	[mm]	7⋅d	35	42	56
	[mm]	3·d	15	18	24

beanspruchtes . Hirnholzende -90° < α < 90°


unbeanspruchtes . Hirnholzende 90° < α < 270°

beanspruchter Rand 0° < α < 180°


unbeanspruchter Rand

ANMERKUNGEN auf Seite 49

WIRKSAME SCHRAUBENANZAHL BEI ABSCHERBEANSPRUCHUNG

Die Tragfähigkeit einer Verbindung mit mehreren Schrauben vom gleichen Typ und mit gleicher Größe kann kleiner sein als die Summe der Tragfähigkeiten des einzelnen Verbindungsmittels. Für eine Reihe von n parallel zur Faserrichtung des Holzes in einem Abstand a₁ angeordnete Schrauben entspricht die effektive charakteristische Tragfähigkeit:

$$R_{ef,V,k} = n_{ef} \cdot R_{V,k}$$

Der Wert von n_{ef} ist in der folgenden Tabelle abhängig von n und a₁ aufgeführt.

							a ₁ (*)					
		4·d	5·d	6·d	7⋅d	8·d	9·d	10 ⋅d	11-d	12·d	13·d	≥ 14·d
	2	1,41	1,48	1,55	1,62	1,68	1,74	1,80	1,85	1,90	1,95	2,00
n	3	1,73	1,86	2,01	2,16	2,28	2,41	2,54	2,65	2,76	2,88	3,00
"	4	2,00	2,19	2,41	2,64	2,83	3,03	3,25	3,42	3,61	3,80	4,00
	5	2,24	2,49	2,77	3,09	3,34	3,62	3,93	4,17	4,43	4,71	5,00

^(*)Für Zwischenwerte a₁ ist eine lineare Interpolation möglich.

^{5·}d α = Winkel zwischen Kraft- und Faserrichtung

α = Winkel zwischen Kraft- und Faserrichtung

 $d = d_1 = Nenndurchmesser Schraube$

STATISCHE WERTE

	SCHERWERT								ZUGKI	RÄFTE		
	Geon	netrie		Holz-Holz	Holzwerks Ho	stoffplatte- olz		-Holz, s Blech	Stahl- dickes	-Holz, Blech	Gewindeauszug	Kopfdurchzug
	dd ₁		A		N PAR N	←	SPLATE		Splant			
d ₁	L	b	Α	$R_{V,90,k}$	S _{PAN}	$R_{V,k}$	S _{PLATE}	$R_{V,k}$	S _{PLATE}	$R_{V,k}$	R _{ax,90,k}	$R_{head,k}$
[mm]	[mm]	[mm]		[kN]	[mm]	[kN]	[mm]	[kN]	[mm]	[kN]	[kN]	[kN]
	50	30	20	1,18		1,44		1,48		2,06	1,94	1,40
	60	35	25	1,27		1,44		1,68		2,14	2,27	1,40
5	70	40	30	1,37	18	1,44	2,5	1,76	5	2,22	2,59	1,40
	80	50	30	1,37		1,44	, -	1,92		2,38	3,24	1,40
	100	60	40	1,46		1,44		2,08		2,55	3,89	1,40
	120	60	60	1,46		1,44		2,08		2,55	3,89	1,40
	60	35	25	1,62		1,85		2,00		2,83	2,72	2,02
	70	40	30	1,75		1,85		2,30		2,93	3,11	2,02
	80	50	30	1,75		1,85		2,49		3,12	3,89	2,02
	90	55	35	1,86		1,85 1,85		2,59		3,22	4,27	2,02
	100	60	40	1,98				2,69		3,32	4,66	2,02
	120	75	45	2,03	1,85 1,85 18 1,85		2,98		3,61	5,83	2,02	
	140	80	60	2,03			3,05		3,71	6,22	2,02	
6	160	90	70	2,03		3	3,05	6	3,90	6,99	2,02	
	180	100	80	2,03		1,85		3,05		4,10	7,77	2,02
	200	100	100	2,03		1,85		3,05		4,10	7,77	2,02
	220	100	120	2,03		1,85		3,05		4,10	7,77	2,02
	240	100	140	2,03		1,85		3,05		4,10	7,77	2,02
	260	100	160	2,03		1,85		3,05		4,10	7,77	2,02
	280	100	180	2,03		1,85		3,05		4,10	7,77	2,02
	300	100	200	2,03		1,85		3,05		4,10	7,77	2,02
	80	52	28	2,46		2,65		3,29		4,77	5,39	2,95
	100	60	40	2,75		2,65		3,97		4,98	6,22	2,95
	120	80	40	2,75		2,65		4,49		5,50	8,29	2,95
	140	80	60	3,16		2,65		4,49		5,50	8,29	2,95
	160	90	70	3,16		2,65		4,75		5,75	9,32	2,95
	180	90	90	3,16		2,65		4,75		5,75	9,32	2,95
	200	100	100	3,16		2,65		4,84		6,01	10,36	2,95
	220	100	120	3,16		2,65		4,84		6,01	10,36	2,95
8	240	100	140	3,16	18	2,65	4	4,84	8	6,01	10,36	2,95
	260	100	160	3,16		2,65		4,84		6,01	10,36	2,95
	280	100	180	3,16		2,65		4,84		6,01	10,36	2,95
	300	100	200	3,16		2,65		4,84		6,01	10,36	2,95
	320	100	220	3,16		2,65		4,84		6,01	10,36	2,95
	340	100	240	3,16		2,65		4,84		6,01	10,36	2,95
	360	100	260	3,16		2,65		4,84		6,01	10,36	2,95
	380	100	280	3,16		2,65		4,84		6,01	10,36	2,95
	400	100	300	3,16		2,65		4,84		6,01	10,36	2,95
	700	100	500	5,10		2,00		7,04		0,01	10,50	2,55

ANM. und ALLGEMEINE GRUNDLAGEN auf Seite 49.

STATISCHE WERTE

ALLGEMEINE GRUNDLAGEN

- Die charakteristischen Werte entsprechen der Norm EN 1995:2014.
- Die Bemessungswerte werden aus den charakteristischen Werten wie folgt berechnet:

$$R_d = \frac{R_k \cdot k_{mod}}{\gamma_M}$$

Die Beiwerte γ_M und $k_{\mbox{mod}}$ sind aus der entsprechenden geltenden Norm zu übernehmen, die für die Berechnung verwendet wird.

- Werte für mechanische Festigkeit und Geometrie der Schrauben gemäß CE-Kennzeichnung nach EN 14592.
- Die Bemessung und Überprüfung der Holzelemente, der Platten und Metallplatten müssen separat durchgeführt werden.
- Die charakteristischen Scherfestigkeitswerte wurden bei eingeschraubten Schrauben ohne Vorbohrung bewertet. Mit vorgebohrten Schrauben können höhere Festigkeitswerte erreicht werden.
- Für die Positionierung der Schrauben sind die Mindestabstände zu berücksichtigen.
- Die charakteristischen Holzwerkstoffplatte-Holz-Scherfestigkeitswerte wurden für eine OSB3- oder OSB4-Platte gemäß EN 300 oder für eine Spanplatte gemäß EN 312 mit einer Stärke S_{PAN} berechnet.
- Die charakteristischen Gewindeauszugswerte wurden unter Berücksichtigung einer Einschraubtiefe b berechnet.
- Die charakteristische Kopfdurchzugsfestigkeit wurden für ein Element aus Holz oder auf Holzbasis berechnet.
 - Bei Stahl-Holz-Verbindungen ist in Bezug auf den Abreiß- oder Durchzugswiderstand des Schraubenkopfes für gewöhnlich die Zugfestigkeit des Stahls ausschlaggebend.

ANMERKUNGEN

 Die charakteristischen Holz-Holz-Scherfestigkeitswerte wurden unter Berücksichtigung eines Winkels

von 90° zwischen Fasern des zweiten Elements und dem Verbinder berechnet.

- Die charakteristischen Holzwerkstoffplatte-Holz- und Stahl-Holz-Scherfestigkeitswerte wurden unter Berücksichtigung eines Winkels ε von 90° zwischen Fasern des Holzelements und dem Verbinder berechnet.
- Die tabellarischen Werte sind unabhängig vom Kraft-Faser-Winkel.
- Die charakteristischen Scherfestigkeitswerte auf Platte wurden für eine dünne Platte (S_{PLATE} = 0,5 d₁) und für eine dicke Platte (S_{PLATE} = d₁) berechnet.
- Der charakteristische Gewindeauszugswert wurde mit einem Winkel ε von 90° zwischen Fasern des Holzelements und dem Verbinder berechnet.
- Bei der Berechnung wurde eine Rohdichte der Holzelemente von ρ_k = 385 kg/m³ berücksichtigt.

Für andere ρ_k -Werte können die aufgelisteten Festigkeitswerte (Holz-Holz-Scherfestigkeit, Stahl-Holz Scherfestigkeit und Zugkraft) mithilfe des k_{dens} -Beiwerts umgerechnet werden.

$$\begin{aligned} R'_{V,k} &= k_{dens,v} \cdot R_{V,k} \\ R'_{ax,k} &= k_{dens,ax} \cdot R_{ax,k} \\ R'_{head,k} &= k_{dens,ax} \cdot R_{head,k} \end{aligned}$$

ρ _k [kg/m³]	350	380	385	405	425	430	440
C-GL	C24	C30	GL24h	GL26h	GL28h	GL30h	GL32h
k _{dens,v}	0,90	0,98	1,00	1,02	1,05	1,05	1,07
k _{dens,ax}	0,92	0,98	1,00	1,04	1,08	1,09	1,11

Die so ermittelten Festigkeitswerte können zugunsten der Sicherheit von denen abweichen, die sich aus einer genauen Berechnung ergeben.

MINDESTABSTÄNDE

ANMERKUNGEN

- Die Mindestabstände werden gemäß der Norm DIN 1995:2014 berechnet.
- Bei Stahl-Holz-Verbindungen können die Mindestabstände (a₁, a₂) mit einem Koeffizienten von 0,7 multipliziert werden.
- Bei Holzwerkstoffplatten-Verbindungen können die Mindestabstände (a₁, a₂) mit einem Koeffizienten von 0,85 multipliziert werden.

HBS COIL

GEBUNDENE HBS-SCHRAUBEN


SCHNELLE VERWENDUNG UND SERIENBEFESTIGUNG

Schnelle und genaue Befestigung. Schnelle und sichere Ausführung dank der speziellen Bindung.

HBS 6,0 mm

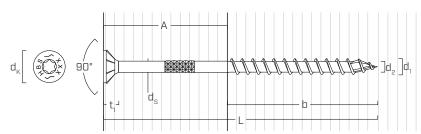
Auch im Durchmesser 6,0 mm erhältlich, ideal für schnelle Befestigungen von Wand-Wand-Verbindungen bei BSP-Konstruktionen.

Mit der Spitze 3 THORNS wird das Anbeißverhalten bei den gewohnten mechanischen Leistungen zuverlässiger, schneller und einfacher.

Elektroverzinkter Kohlenstoffstahl

ANWENDUNGSGEBIETE

- Holzwerkstoffplatten
- Harthölzer, MDF, HDF und LDF
- Furnierte und beschichtete Platten
- Massivholz
- Brettschichtholz
- BSP und LVL
- Harthölzer


ARTIKELNUMMERNUNDABMESSUNGEN

d_1	ARTNR.	L	b	Α	Stk/	Stk.
[mm]		[mm]	[mm]	[mm]		
4 TX 20	HH10600459(*)	25	18	7	-	3000
	HZB430	30	16	14	167	3000
	HZB440	40	24	16	167	2000
	HZB450	50	30	20	125	1500

(*)	Schrauhe	mit Vallaewinde

d ₁ [mm]	ARTNR.	L [mm]	b [mm]	A [mm]	Stk/	Stk.
4,5 TX 20	HZB4550	50	30	20	125	1500
-	HZB560	60	30	30	125	1250
5 TX 25	HZB570	70	35	35	125	625
17.23	HZB580	80	40	40	125	625
6	HZB670	70	40	30	135	625
TX 30	HZB680	80	40	40	135	625

■ GEOMETRIE | HZB

Nenndurchmesser	d_1	[mm]	4	4,5	5	6
Kopfdurchmesser	d_K	[mm]	8,00	9,00	10,00	12,00
Kerndurchmesser	d ₂	[mm]	2,55	2,80	3,40	3,95
Schaftdurchmesser	d_S	[mm]	2,75	3,15	3,65	4,30
Kopfstärke	t ₁	[mm]	2,80	2,80	3,10	4,50
Vorbohrdurchmesser ⁽¹⁾	$d_{V,S}$	[mm]	2,5	2,5	3,0	4,0

 $^{^{(1)}}$ Vorbohrung gültig für Nadelholz (Softwood).

Für mechanische Eigenschaften und statische Werte siehe HBS auf S. 30.

ZUSATZPRODUKTE

ARTNR.	Beschreibung	d₁ [mm]	Längen [mm]	Stk.
HH3373	Magazinaufsatz für Akkuschrauber A 18 M BL	4,0	25-50	1
HH3372	Magazinaufsatz für Akkuschrauber A 18 M BL	4,5 - 6,0	40-80	1
HH3352	Elektroschrauber	4,0	25-50	1
HH3338	Elektroschrauber	4,5 - 6,0	40-80	1
HH14411591	Verlängerung	-	-	1
HZB6PLATE	Abstimmplatte für HZB Ø6	-	-	1
HH14001469	Bit TX30 M6 für HZB Ø6	-	-	1

Weitere Informationen auf Seite 401.

ANWENDUNG HBS COIL Ø6 mm

Abstimmplatte für die Verwendung von Schrauben HBS COIL mit einem Durchmesser von 4,0, 4,5 und 5,0 werden bereits mit den entsprechenden Magazinaufsätzen für Akkuschrauber geliefert. Um Schrauben HBS COIL mit einem Durchmesser von 6,0 zu verwenden, müssen die mitgelieferten Abstimmplatten durch die Abstimmplatte HZB6PLATE ersetzt werden. Für die Schrauben HBS COIL mit dem Durchmesser 6,0 ist zusätzlich der Spezialbit TX30 zu verwenden (Cod. HH14001469).

Wir empfehlen die Verwendung der Verlängerung HH14411591 für eine leichtere Montage der Schrauben auf horizontalen Ebenen.

HBS EVO

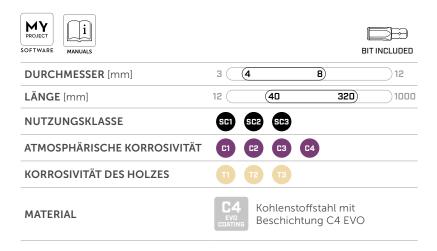
SENKKOPFSCHRAUBE

BESCHICHTUNG C4 EVO

Mehrschichtige Beschichtung mit Oberflächenbehandlung auf Epoxidharzbasis mit Aluminiumflakes. Rostfrei nach einem Test von 1440 Stunden nach Exposition in Salzsprühnebel entsprechend ISO 9227. Zur Verwendung im Außenbereich in Nutzungsklasse 3 und Korrosionskategorie C4, geprüft vom Research Institutes of Sweden - RISE.

SPITZE 3 THORNS

Dank der Spitze 3 THORNS werden die Mindestabstände reduziert. Mehr Schrauben können auf geringerem Raum und größere Schrauben in kleineren Elementen verwendet werden.

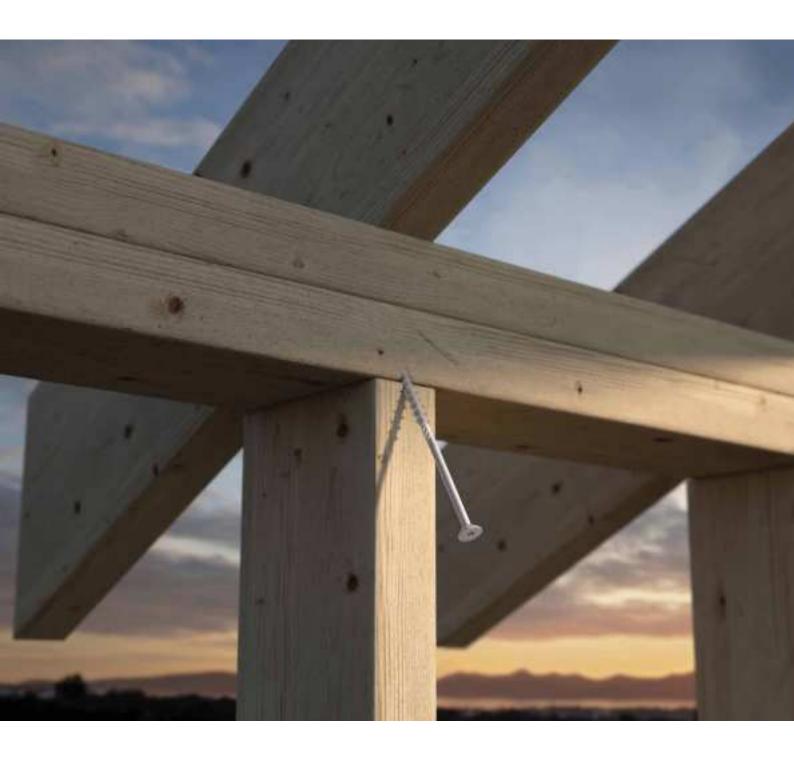

Die Kosten und der Zeitaufwand für die Umsetzung des Projekts verringern sich.

AUTOKLAVIERTES HOLZ

Die C4 EVO Beschichtung ist nach dem US-Akzeptanzkriterium AC257 für die Verwendung im Freien mit Holz zertifiziert, das einer Behandlung vom Typ ACQ unterzogen wurde.

KORROSIVITÄT DES HOLZES T3

Für Anwendungen auf Hölzern mit einem Säuregehalt (pH-Wert) von mehr als 4, wie Tanne, Lärche und Kiefer, geeignete Beschichtung (siehe S. 314).



ANWENDUNGSGEBIETE

- Holzwerkstoffplatten
- Massiv- und Brettschichtholz
- BSP und LVL
- Harthölzer
- ACQ-, CCA-behandelte Hölzer

NUTZUNGSKLASSE 3

Zertifizierung für die Verwendung im Außenbereich bei Nutzungsklasse 3 und Korrosionskategorie C4. Ideal zur Befestigung von Rahmenpaneelen und Fachwerkträgern (Rafter, Truss).

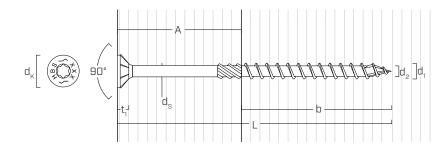
PERGOLEN UND TERRASSEN

Die kleineren Abmessungen sind ideal für die Befestigung von Dielen und Unterkonstruktionen von Terrassen in Außenbereichen.

ARTIKELNUMMERN UND ABMESSUNGEN

d_1	ARTNR.	L	b	Α	Stk.
[mm]		[mm]	[mm]	[mm]	
4	HBSEVO440	40	24	16	500
4 TX 20	HBSEVO450	50	30	20	500
17.20	HBSEVO460	60	35	25	500
	HBSEVO4545	45	30	15	400
4,5	HBSEVO4550	50	30	20	200
TX 20	HBSEVO4560	60	35	25	200
	HBSEVO4570	70	40	30	200
	HBSEVO550	50	24	26	200
	HBSEVO560	60	30	30	200
5	HBSEVO570	70	35	35	100
TX 25	HBSEVO580	80	40	40	100
	HBSEVO590	90	45	45	100
	HBSEVO5100	100	50	50	100
	HBSEVO660	60	30	30	100
	HBSEVO670	70	40	30	100
	HBSEVO680	80	40	40	100
_	HBSEVO6100	100	50	50	100
6 TX 30	HBSEVO6120	120	60	60	100
17.30	HBSEVO6140	140	75	65	100
	HBSEVO6160	160	75	85	100
	HBSEVO6180	180	75	105	100
	HBSEVO6200	200	75	125	100

d_1	ARTNR.	L	b	Α	Stk.
[mm]		[mm]	[mm]	[mm]	
	HBSEVO8100	100	52	48	100
	HBSEVO8120	120	60	60	100
	HBSEVO8140	140	60	80	100
	HBSEVO8160	160	80	80	100
	HBSEVO8180	180	80	100	100
8	HBSEVO8200	200	80	120	100
TX 40	HBSEVO8220	220	80	140	100
	HBSEVO8240	240	80	160	100
	HBSEVO8260	260	80	180	100
	HBSEVO8280	280	80	200	100
	HBSEVO8300	300	100	200	100
	HBSEVO8320	320	100	220	100


■ ZUGEHÖRIGE PRODUKTE

HUS EVO GEDREHTE BEILAGSCHEIBE

siehe S. 68

GEOMETRIE UND MECHANISCHE EIGENSCHAFTEN

GEOMETRIE

Nenndurchmesser	d_1	[mm]	4	4,5	5	6	8
Kopfdurchmesser	d_{K}	[mm]	8,00	9,00	10,00	12,00	14,50
Kerndurchmesser	d_2	[mm]	2,55	2,80	3,40	3,95	5,40
Schaftdurchmesser	d_S	[mm]	2,75	3,15	3,65	4,30	5,80
Kopfstärke	t ₁	[mm]	2,80	2,80	3,10	4,50	4,50
Vorbohrdurchmesser ⁽¹⁾	$d_{V,S}$	[mm]	2,5	2,5	3,0	4,0	5,0
Vorbohrdurchmesser ⁽²⁾	$d_{V,H}$	[mm]	-	-	3,5	4,0	6,0

MECHANISCHE KENNGRÖSSEN

Nenndurchmesser	d ₁ [mm]	4	4,5	5	6	8
Zugfestigkeit	f _{tens,k} [kN]	5,0	6,4	7,9	11,3	20,1
Fließmoment	M _{v.k} [Nm]	3,0	4,1	5,4	9,5	20,1

			Nadelholz (Softwood)	LVL aus Nadelholz (LVL Softwood)	LVL aus Buche, vorgebohrt (Beech LVL predrilled)
Charakteristischer Wert der Ausziehfestigkeit	$f_{ax,k}$	[N/mm ²]	11,7	15,0	29,0
Charakteristischer Durchziehparameter	$f_{\text{head},k}$	[N/mm ²]	10,5	20,0	-
Assoziierte Dichte	ρ_{a}	[kg/m³]	350	500	730
Rohdichte	$ ho_k$	[kg/m ³]	≤ 440	410 ÷ 550	590 ÷ 750

Für Anwendungen mit anderen Materialien siehe ETA-11/0030.

⁽¹⁾ Vorbohrung gültig für Nadelholz (Softwood). (2) Vorbohrung gültig für Harthölzer (Hardwood) und für LVL aus Buchenholz.

■ MINDESTABSTÄNDE DER SCHRAUBEN BEI ABSCHERBEANSPRUCHUNG

Schraubenabstände OHNE Vorbohrung

 $\rho_k \leq 420 \; kg/m^3$

d_1	[mm]		4	4,5		5	6	8
a ₁	[mm]	10 ⋅d	40	45	10·d	50	60	80
a ₂	[mm]	5·d	20	23	5·d	25	30	40
a _{3,t}	[mm]	15 ⋅d	60	68	15·d	75	90	120
a _{3,c}	[mm]	10 ⋅d	40	45	10·d	50	60	80
a _{4,t}	[mm]	5·d	20	23	5·d	25	30	40
a _{4,c}	[mm]	5·d	20	23	5·d	25	30	40

d_1	[mm]		4	4,5		5	6	8
a ₁	[mm]	5·d	20	23	5·d	25	30	40
a ₂	[mm]	5·d	20	23	5·d	25	30	40
a _{3,t}	[mm]	10 ⋅d	40	45	10·d	50	60	80
a _{3,c}	[mm]	10 ⋅d	40	45	10·d	50	60	80
a _{4,t}	[mm]	7·d	28	32	10·d	50	60	80
a _{4,c}	[mm]	5·d	20	23	5·d	25	30	40

Schraubenabstände OHNE Vorbohrung

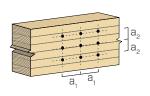
 $420 \text{ kg/m}^3 < \rho_k \le 500 \text{ kg/m}^3$

α=90°

d_1	[mm]		4	4,5		5	6	8
a ₁	[mm]	15 ⋅d	60	68	15·d	75	90	120
a ₂	[mm]	7·d	28	32	7∙d	35	42	56
a _{3,t}	[mm]	20·d	80	90	20·d	100	120	160
a _{3,c}	[mm]	15-d	60	68	15·d	75	90	120
a _{4,t}	[mm]	7·d	28	32	7∙d	35	42	56
a _{4,c}	[mm]	7·d	28	32	7∙d	35	42	56

d_1	[mm]		4	4,5		5	6	8
a ₁	[mm]	7·d	28	32	7·d	35	42	56
a ₂	[mm]	7·d	28	32	7∙d	35	42	56
a _{3,t}	[mm]	15 ⋅d	60	68	15·d	75	90	120
a _{3,c}	[mm]	15 ⋅d	60	68	15-d	75	90	120
a _{4,t}	[mm]	9∙d	36	41	12·d	60	72	96
a _{4,c}	[mm]	7·d	28	32	7·d	35	42	56

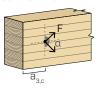
Schraubenabstände VORGEBOHRT

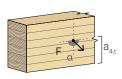

$F \rightarrow \bigcirc$	α=90°
--------------------------	-------

d_1	[mm]		4	4,5		5	6	8
a ₁	[mm]	5·d	20	23	5·d	25	30	40
a ₂	[mm]	3·d	12	14	3·d	15	18	24
a _{3,t}	[mm]	12·d	48	54	12·d	60	72	96
a _{3,c}	[mm]	7·d	28	32	7·d	35	42	56
a _{4,t}	[mm]	3·d	12	14	3·d	15	18	24
a _{4,c}	[mm]	3·d	12	14	3·d	15	18	24

d_1	[mm]		4	4,5		5	6	8
a ₁	[mm]	4·d	16	18	4·d	20	24	32
a ₂	[mm]	4·d	16	18	4·d	20	24	32
a _{3,t}	[mm]	7·d	28	32	7∙d	35	42	56
a _{3,c}	[mm]	7·d	28	32	7·d	35	42	56
a _{4,t}	[mm]	5·d	20	23	7·d	35	42	56
a _{4,c}	[mm]	3∙d	12	14	3·d	15	18	24

 α = Winkel zwischen Kraft- und Faserrichtung


 $d = d_1 = Nenndurchmesser Schraube$


beanspruchtes Hirnholzende $-90^{\circ} < \alpha < 90^{\circ}$

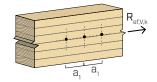
unbeanspruchtes Hirnholzende 90° < α < 270°

beanspruchter Rand 0° < α < 180°

unbeanspruchter Rand $180^{\circ} < \alpha < 360^{\circ}$

ANMERKUNGEN

- Die Mindestabstände werden gemäß der Normen EN 1995:2014 und in Übereinstimmung mit ETA-11/0030 berechnet.
- Bei Stahl-Holz-Verbindungen können die Mindestabstände (a $_1$, a $_2$) mit einem Koeffizienten von 0,7 multipliziert werden.
- Bei Holzwerkstoffplatten-Verbindungen können die Mindestabstände (a₁, a₂) mit einem Koeffizienten von 0,85 multipliziert werden.
- Bei Verbindungen von Elementen aus Douglasienholz (Pseudotsuga men-
- ziesii) müssen die Mindestabstände und die minimalen, parallelen Abstände zur Faser mit dem Koeffizienten 1,5 multipliziert werden.
- Der Abstand a_1 , aufgelistet für Schrauben mit Spitze 3 THORNS und $d_1 \ge 5$ mm, eingeschraubt ohne Vorbohrung in Holzelemente mit Dichte $\rho_k \le 420$ kg/m³ und Winkel zwischen Kraft- und Faserrichtung $\alpha = 0^\circ$, wurde auf der Grundlage experimenteller Untersuchungen mit $10 \cdot d$ angenommen; wahlweise können $12 \cdot d$ gemäß EN 1995:2014 übernommen werden.


STATISCHE WERTE

					SCHERWERT						ZUGKRÄFTE			
	Geon	netrie		Holz-Holz ε=90°	Holz-Holz ε=0°		stoffplat- lolz		-Holz s Blech	Gewindeauszug ε=90°	Gewindeauszug ε=0°	Kopfdurchzug		
	A L	WILLIAM THE PROPERTY OF THE PR				No N		Splan		**				
d ₁	L	b	Α	R _{V,90,k}	R _{V,0,k}	S _{PAN}	R _{V,k}	S _{PLATE}	R _{V,k}	R _{ax,90,k}	R _{ax,0,k}	R _{head,k}		
[mm]	[mm] 40	[mm] 24	[mm] 16	[kN] 0,83	[kN] 0,51	[mm]	[kN] 0,84	[mm]	[kN] 1,12	[kN] 1,21	[kN] 0,36	[kN] 0,73		
4	50	30	20	0,03	0,62	12	0,84	2	1,19	1,52	0,45	0,73		
•	60	35	25	0,99	0,69	12	0,84	_	1,26	1,77	0,53	0,73		
	45	30	15	0,96	0,61		0,97		1,42	1,70	0,51	0,92		
	50	30	20	1,06	0,69		0,97		1,42	1,70	0,51	0,92		
4,5	60	35	25	1,18	0,79	12	0,97	2,25	1,49	1,99	0,60	0,92		
	70	40	30	1,22	0,86		0,97		1,56	2,27	0,68	0,92		
	50	24	26	1,29	0,73		1,20		1,56	1,52	0,45	1,13		
	60	30	30	1,46	0,81		1,20		1,65	1,89	0,57	1,13		
	70	35	35	1,46	0,88		1,20		1,73	2,21	0,66	1,13		
5	80	40	40	1,46	0,96	15	1,20	2,5	1,81	2,53	0,76	1,13		
	90	45	45	1,46	1,05		1,20		1,89	2,84	0,85	1,13		
	100	50	50	1,46	1,13		1,20		1,97	3,16	0,95	1,13		
	60	30	30	1,78	1,04		1,65		2,24	2,27	0,68	1,63		
	70	40	30	1,88	1,20		1,65		2,43	3,03	0,91	1,63		
	80	40	40	2,08	1,20		1,65		2,43	3,03	0,91	1,63		
	100	50	50	2,08	1,38		1,65		2,61	3,79	1,14	1,63		
6	120	60	60	2,08	1,58	18	1,65	3	2,80	4,55	1,36	1,63		
	140	75	65	2,08	1,67		1,65		3,09	5,68	1,70	1,63		
	160	75	85	2,08	1,67		1,65		3,09	5,68	1,70	1,63		
	180	75	105	2,08	1,67		1,65		3,09	5,68	1,70	1,63		
	200	75	125	2,08	1,67		1,65		3,09	5,68	1,70	1,63		
	100	52	48	3,28	1,95		2,60		4,00	5,25	1,58	2,38		
	120	60	60	3,28	2,13		2,60		4,20	6,06	1,82	2,38		
	140	60	80	3,28	2,13		2,60		4,20	6,06	1,82	2,38		
	160	80	80	3,28	2,60		2,60		4,70	8,08	2,42	2,38		
	180	80	100	3,28	2,60		2,60		4,70	8,08	2,42	2,38		
0	200	80	120	3,28	2,60	22	2,60	_	4,70	8,08	2,42	2,38		
8	220	80	140	3,28	2,60	22	2,60	4	4,70	8,08	2,42	2,38		
	240	80	160	3,28	2,60		2,60		4,70	8,08	2,42	2,38		
	260	80	180	3,28	2,60		2,60		4,70	8,08	2,42	2,38		
	280	80	200	3,28	2,60		2,60		4,70	8,08	2,42	2,38		
	300	100	200	3,28	2,62		2,60		5,21	10,10	3,03	2,38		
	320	100	220	3,28	2,62		2,60		5,21	10,10	3,03	2,38		
				aube und Esserr										

 $[\]epsilon$ = Winkel zwischen Schraube und Faserrichtung

WIRKSAME SCHRAUBENANZAHL BEI ABSCHERBEANSPRUCHUNG

Die Tragfähigkeit einer Verbindung mit mehreren Schrauben vom gleichen Typ und mit gleicher Größe kann kleiner sein als die Summe der Tragfähigkeiten des einzelnen Verbindungsmittels. Für eine Reihe von n parallel zur Faserrichtung des Holzes in einem Abstand a_1 angeordnete Schrauben entspricht die effektive charakteristische Tragfähigkeit:

$$R_{ef,V,k} = n_{ef} \cdot R_{V,k}$$

Der Wert von n_{ef} ist in der folgenden Tabelle abhängig von n und a₁ aufgeführt.

							a ₁ (*)					
		4·d	5·d	6·d	7⋅d	8·d	9·d	10 ⋅d	11·d	12·d	13·d	≥ 14·d
	2	1,41	1,48	1,55	1,62	1,68	1,74	1,80	1,85	1,90	1,95	2,00
n	3	1,73	1,86	2,01	2,16	2,28	2,41	2,54	2,65	2,76	2,88	3,00
	4	2,00	2,19	2,41	2,64	2,83	3,03	3,25	3,42	3,61	3,80	4,00
	5	2,24	2,49	2,77	3,09	3,34	3,62	3,93	4,17	4,43	4,71	5,00

^(*) Für Zwischenwerte a₁ ist eine lineare Interpolation möglich.

ALLGEMEINE GRUNDLAGEN

- Die charakteristischen Werte werden gemäß der Norm EN 1995:2014 und in Übereinstimmung mit ETA-11/0030 berechnet.
- Die Bemessungswerte werden aus den charakteristischen Werten wie folgt berechnet:

$$R_d = \frac{R_k \cdot k_{mod}}{\gamma_M}$$

Die Beiwerte γ_M und $k_{\mbox{mod}}$ sind aus der entsprechenden geltenden Norm zu übernehmen, die für die Berechnung verwendet wird.

- Bei den Werten für die mechanische Festigkeit und die Geometrie der Schrauben wurde auf die Angaben in der ETA-11/0030 Bezug genommen.
- Die Bemessung und Überprüfung der Holzelemente, der Platten und Metallplatten müssen separat durchgeführt werden.
- Für die Positionierung der Schrauben sind die Mindestabstände zu berücksichtigen.
- Die charakteristischen Scherfestigkeitswerte wurden bei eingeschraubten Schrauben ohne Vorbohrung bewertet. Mit vorgebohrten Schrauben können höhere Festigkeitswerte erreicht werden.
- Die Scherfestigkeitswerte wurden unter Berücksichtigung des vollständig in das zweite Element eingedrehten Gewindeteils berechnet.
- Die charakteristischen Holzwerkstoffplatte-Holz-Scherfestigkeitswerte wurden für eine OSB3- oder OSB4-Platte gemäß EN 300 oder für eine Spanplatte gemäß EN 312 mit einer Stärke $\rm S_{PAN}$ und Dichte $\rm p_k=500~kg/m^3$ berechnet.
- Die charakteristischen Gewindeauszugswerte wurden unter Berücksichtigung einer Einschraubtiefe b berechnet.
- Die charakteristische Kopfdurchzugsfestigkeit wurden für ein Element aus Holz oder auf Holzbasis berechnet.
 - Bei Stahl-Holz-Verbindungen ist in Bezug auf den Abreiß- oder Durchzugswiderstand des Schraubenkopfes für gewöhnlich die Zugfestigkeit des Stahls ausschlaggebend.
- Für weitere Berechnungen steht die kostenlose Software MyProject zur Verfügung (www.rothoblaas.de).
- Für Mindestabstände und statische Werte auf BSP und LVL siehe HBS auf S. 30
- Für die charakteristischen Festigkeiten für Schrauben HBS EVO mit HUS EVO siehe Seite 52.

ANMERKUNGEN

- Die charakteristischen Holz-Holz-Scherfestigkeitswerte wurden unter Berücksichtigung eines Winkels ϵ sowohl von 90° $(R_{V,90,k})$ als auch 0° $(R_{V,0,k})$ zwischen den Fasern des zweiten Elements und dem Verbinder berechnet.
- Die charakteristischen Holzwerkstoffplatte-Holz- und Stahl-Holz-Scherfestigkeitswerte wurden unter Berücksichtigung eines Winkels a 90° zwischen Fasern des Holzelements und dem Verbinder berechnet.
- Die charakteristischen Scherfestigkeitswerte auf Platte wurden für eine dünne Platte berechnet (S_{PLATE} ≤ 0,5 d₁). Für dicke Platten siehe statische Werte der HBS-Schraube auf S. 30.
- Die charakteristischen Gewindeauszugswerte wurden unter Berücksichtigung eines Winkels ε sowohl von 90° (R_{ax,90,k}) als auch 0° (R_{ax,0,k}) zwischen den Fasern des Holzelements und dem Verbinder berechnet.
- * Bei der Berechnung wurde eine Rohdichte der Holzelemente von ρ_k = 385 kg/m³ berücksichtigt.

Für andere ρ_K -Werte können die aufgelisteten Festigkeitswerte (Holz-Holz-Scherfestigkeit, Stahl-Holz Scherfestigkeit und Zugkraft) mithilfe des $k_{\mbox{\footnotesize dens}}$ -Beiwerts umgerechnet werden.

$$\begin{aligned} R'_{V,k} &= k_{dens,v} \cdot R_{V,k} \\ R'_{ax,k} &= k_{dens,ax} \cdot R_{ax,k} \\ R'_{head,k} &= k_{dens,ax} \cdot R_{head,k} \end{aligned}$$

ρ _k [kg/m³]	350	380	385	405	425	430	440
C-GL	C24	C30	GL24h	GL26h	GL28h	GL30h	GL32h
k _{dens,v}	0,90	0,98	1,00	1,02	1,05	1,05	1,07
k _{dens,ax}	0,92	0,98	1,00	1,04	1,08	1,09	1,11

Die so ermittelten Festigkeitswerte können zugunsten der Sicherheit von denen abweichen, die sich aus einer genauen Berechnung ergeben.

HBS EVO C5

SENKKOPFSCHRAUBE

ATMOSPHÄRISCHE KORROSIVITÄT C5

Mehrschichtige Beschichtung, die Außenumgebungen mit C5-Klassifizierung nach ISO 9223 standhält. SST (Salt Spray Test) mit einer Expositionszeit von über 3000 Stunden, durchgeführt an zuvor verschraubten und gelösten Schrauben in Douglasie.

MAXIMALE FESTIGKEIT

Die geeignete Schraube, wenn hohe mechanische Leistung unter sehr ungünstigen Umweltbedingungen und bei Holzkorrosion erforderlich sind.

SPITZE 3 THORNS

Dank der Spitze 3 THORNS werden die Mindestabstände reduziert. Mehr Schrauben können auf geringerem Raum und größere Schrauben in kleineren Elementen verwendet werden, was zu einer Kosten- und Zeiteinsparung führt.

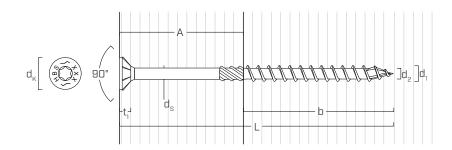
ANWENDUNGSGEBIETE

- Holzwerkstoffplatten
- Massiv- und Brettschichtholz
- BSP und LVL
- Harthölzer

ARTIKELNUMMERN UND ABMESSUNGEN

d_1	ARTNR.	L	b	Α	Stk.
[mm]		[mm]	[mm]	[mm]	
3,5	HBSEVO3530C5	30	18	12	500
TX 15	HBSEVO3540C5	40	18	22	500
4	HBSEVO440C5	40	24	16	500
TX 20	HBSEVO450C5	50	30	20	400
4,5	HBSEVO4550C5	50	30	20	200
TX 20	HBSEVO4560C5	60	35	25	200
	HBSEVO550C5	50	24	26	200
	HBSEVO560C5	60	30	30	200
5	HBSEVO570C5	70	35	35	100
TX 25	HBSEVO580C5	80	40	40	100
	HBSEVO590C5	90	45	45	100
	HBSEVO5100C5	100	50	50	100
	HBSEVO680C5	80	40	40	100
	HBSEVO6100C5	100	50	50	100
	HBSEVO6120C5	120	60	60	100
6 TX 30	HBSEVO6140C5	140	75	65	100
17.30	HBSEVO6160C5	160	75	85	100
	HBSEVO6180C5	180	75	105	100
	HBSEVO6200C5	200	75	125	100

d_1	ARTNR.	L	b	Α	Stk.
[mm]		[mm]	[mm]	[mm]	
	HBSEVO8100C5	100	52	48	100
	HBSEVO8120C5	120	60	60	100
	HBSEVO8140C5	140	60	80	100
	HBSEVO8160C5	160	80	80	100
8	HBSEVO8180C5	180	80	100	100
TX 40	HBSEVO8200C5	200	80	120	100
	HBSEVO8220C5	220	80	140	100
	HBSEVO8240C5	240	80	160	100
	HBSEVO8280C5	280	80	200	100
	HBSEVO8320C5	320	100	220	100


■ ZUGEHÖRIGE PRODUKTE

HUS EVO GEDREHTE BEILAGSCHEIBE

siehe S. 68

GEOMETRIE UND MECHANISCHE EIGENSCHAFTEN

GEOMETRIE

Nenndurchmesser	d_1	[mm]	3,5	4	4,5	5	6	8
Kopfdurchmesser	d _K	[mm]	7,00	8,00	9,00	10,00	12,00	14,50
Kerndurchmesser	d_2	[mm]	2,25	2,55	2,80	3,40	3,95	5,40
Schaftdurchmesser	d_S	[mm]	2,45	2,75	3,15	3,65	4,30	5,80
Kopfstärke	t_1	[mm]	2,20	2,80	2,80	3,10	4,50	4,50
Vorbohrdurchmesser ⁽¹⁾	$d_{V,S}$	[mm]	2,0	2,5	2,5	3,0	4,0	5,0
Vorbohrdurchmesser ⁽²⁾	$d_{V,H}$	[mm]	-	-	-	3,5	4,0	6,0

MECHANISCHE KENNGRÖSSEN

Nenndurchmesser	d_1	[mm]	3,5	4	4,5	5	6	8
Zugfestigkeit	$f_{tens,k}$	[kN]	3,8	5,0	6,4	7,9	11,3	20,1
Fließmoment	$M_{y,k}$	[Nm]	2,1	3,0	4,1	5,4	9,5	20,1

			Nadelholz (Softwood)	LVL aus Nadelholz (LVL Softwood)	LVL aus Buche, vorgebohrt (Beech LVL predrilled)
Charakteristischer Wert der Ausziehfestigkeit	f _{ax,k}	[N/mm²]	11,7	15,0	29,0
Charakteristischer Durchziehparameter	f _{head,k}	[N/mm ²]	10,5	20,0	-
Assoziierte Dichte	ρ_{a}	[kg/m ³]	350	500	730
Rohdichte	ρ_k	[kg/m ³]	≤ 440	410 ÷ 550	590 ÷ 750

Für Anwendungen mit anderen Materialien siehe ETA-11/0030.

Für Mindestabstände und statische Werte siehe HBS EVO auf S. 52.

 $[\]ensuremath{^{(1)}}$ Vorbohrung gültig für Nadelholz (Softwood). $\ensuremath{^{(2)}}$ Vorbohrung gültig für Harthölzer (Hardwood) und für LVL aus Buchenholz.

I HBS HARDWOOD

SENKKOPFSCHRAUBE FÜR HARTHÖLZER

ZERTIFIZIERUNG FÜR HARTHÖLZER

Spezialbohrspitze mit Diamantgeometrie und gezacktem Gewinde mit Kerbe. Zertifizierung ETA-11/0030 für Harthölzer, ohne Vorbohren. Für die Verwendung bei statisch tragenden Verbindungen zugelassen, bei denen die Schraube in jede Faserrichtung beansprucht wird ($\alpha = 0^{\circ} - 90^{\circ}$).

VERGRÖSSERTER DURCHMESSER

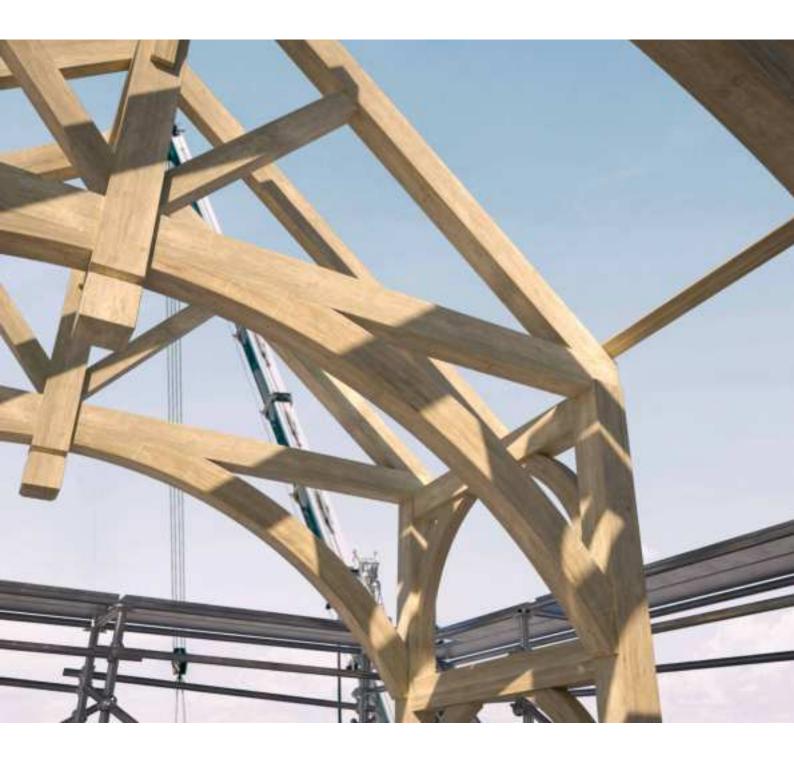
Durch den erhöhten Kerndurchmesser wird das Einschrauben in Harthölzer ermöglicht. Ausgezeichnete Werte des Torsionsmoments. HBS H Ø6 mm vergleichbar mit einem Durchmesser von Ø7 mm; HBS H 8 mm vergleichbar mit einem Durchmesser von 9 mm.


SENKKOPF 60°

Verdeckter Kopfabschluss 60° zur wirksamen und unauffälligen Befestigung, auch bei Harthölzern.

HYBRID SOFTWOOD-HARDWOOD

Zugelassen für verschiedene Arten von Anwendungen ohne Vorbohren bei gleichzeitiger Verwendung von Weichholz und Hartholz. Beispiel: Verbundbalken (Weichholz und Hartholz) und hybride veredelte Bauhölzer (Weichholz und Hartholz).


			BIT INCLUDED
DURCHMESSER [mm]	3	(6 B)	12
LÄNGE [mm]	12	(80	480) 1000
NUTZUNGSKLASSE	SEI	SC2	
ATMOSPHÄRISCHE KORROSIVITÄT	C1	C2	
KORROSIVITÄT DES HOLZES	TI		
MATERIAL	Zn ELECTRO PLATED	Elektroverzinkter Kohlenstoffstahl	

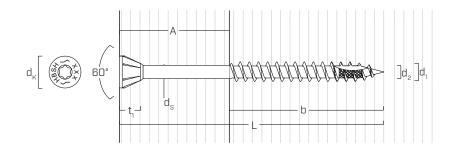
ANWENDUNGSGEBIETE

- Holzwerkstoffplatten
- Massiv- und Brettschichtholz
- BSP und LVL
- Harthölzer
- Buche, Eiche, Zypresse, Esche, Eukalyptus, Bambus

HARDWOOD PERFORMANCE

Speziell für die Anwendung ohne Vorbohren in Hölzern wie Buche, Eiche, Zypresse, Esche, Eu-kalyptus und Bambus entwickelte Geometrie.

BEECH LVL


Werte auch für Harthölzer, wie Furnierschichtholz (LVL) aus Buche geprüft, zertifiziert und berechnet, für Anwendungen ohne Vorbohren bis zu einer Dichte von 800 kg/m³.

ARTIKELNUMMERN UND ABMESSUNGEN

d_1	ARTNR.	L	b	Α	Stk.
[mm]		[mm]	[mm]	[mm]	
6 TX 30	HBSH680	80	50	30	100
	HBSH6100	100	60	40	100
	HBSH6120	120	70	50	100
	HBSH6140	140	80	60	100
	HBSH6160	160	90	70	100

d_1	ARTNR.	L	b	Α	Stk.
[mm]		[mm]	[mm]	[mm]	
	HBSH8120	120	70	50	100
	HBSH8140	140	80	60	100
	HBSH8160	160	90	70	100
	HBSH8180	180	100	80	100
	HBSH8200	200	100	100	100
	HBSH8220	220	100	120	100
8 TX 40	HBSH8240	240	100	140	100
	HBSH8280	280	100	180	100
	HBSH8320	320	100	220	100
	HBSH8360	360	100	260	100
	HBSH8400	400	100	300	100
	HBSH8440	440	100	340	100
	HBSH8480	480	100	380	100

GEOMETRIE UND MECHANISCHE EIGENSCHAFTEN

GEOMETRIE

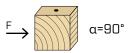
Nenndurchmesser	d_1	[mm]	6	8
Kopfdurchmesser	d_K	[mm]	12,00	14,50
Kerndurchmesser	d_2	[mm]	4,50	5,90
Schaftdurchmesser	d _S	[mm]	4,80	6,30
Kopfstärke	t_1	[mm]	7,50	8,40
Vorbohrdurchmesser ⁽¹⁾	$d_{V,S}$	[mm]	4,0	5,0
Vorbohrdurchmesser ⁽²⁾	$d_{V,H}$	[mm]	4,0	6,0

MECHANISCHE KENNGRÖSSEN

Nenndurchmesser	d_1	[mm]	6	8
Zugfestigkeit	$f_{\text{tens},k}$	[kN]	18,0	32,0
Fließmoment	$M_{y,k}$	[Nm]	15,8	33,4

			Nadelholz (Softwood)	Eiche, Buche (Hardwood)	Esche (Hardwood)	LVL Buche (Beech LVL)
Charakteristischer Wert der Ausziehfestigkeit	f _{ax,k}	[N/mm ²]	11,7	22,0	30,0	42,0
Charakteristischer Durchziehparameter	f _{head,k}	[N/mm ²]	10,5	28,0 ($d_1 = 6 \text{ mm}$) 24,0 ($d_1 = 8 \text{ mm}$)	$28.0 (d_1 = 6 \text{ mm})$ $24.0 (d_1 = 8 \text{ mm})$	50,0
Assoziierte Dichte	ρ_{a}	[kg/m ³]	350	530	530	730
Rohdichte	ρ_k	[kg/m³]	≤ 440	≤ 590	≤ 590	590 ÷ 750

Für Anwendungen mit anderen Materialien siehe ETA-11/0030.

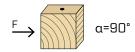

⁽¹⁾ Vorbohrung gültig für Nadelholz (Softwood). (2) Vorbohrung gültig für Harthölzer (Hardwood) und für LVL aus Buchenholz.

MINDESTABSTÄNDE DER SCHRAUBEN BEI ABSCHERBEANSPRUCHUNG | HOLZ

Schraubenabstände OHNE Vorbohrung

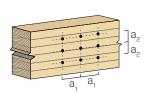
 $\rho_k > 420 \text{ kg/m}^3$

d_1	[mm]		6	8
a_1	[mm]	15·d	90	120
a ₂	[mm]	7·d	42	56
a _{3,t}	[mm]	20·d	120	120
a _{3,c}	[mm]	15·d	90	80
a _{4,t}	[mm]	7·d	42	40
a _{4,c}	[mm]	7·d	42	40


d_1	[mm]		6	8
a ₁	[mm]	7·d	42	56
a ₂	[mm]	7·d	42	56
a _{3,t}	[mm]	15 ⋅d	90	120
a _{3,c}	[mm]	15 ⋅d	90	120
a _{4,t}	[mm]	12·d	72	96
a _{4,c}	[mm]	7·d	42	56

 $d = d_1 = Nenndurchmesser Schraube$

Schraubenabstände VORGEBOHRT



d_1	[mm]		6	8
a ₁	[mm]	5·d	30	40
a ₂	[mm]	3·d	18	24
a _{3,t}	[mm]	12·d	72	96
a _{3,c}	[mm]	7·d	42	56
a _{4,t}	[mm]	3·d	18	24
	[mm]	3·d	18	24

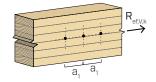
d_1	[mm]		6	8
a ₁	[mm]	4·d	24	32
a ₂	[mm]	4·d	24	32
a _{3,t}	[mm]	7⋅d	42	56
a _{3,c}	[mm]	7⋅d	42	56
a _{4,t}	[mm]	7∙d	42	56
	[mm]	3·d	18	24

 $d = d_1 = Nenndurchmesser Schraube$

beanspruchtes . Hirnholzende -90° < α < 90°

unbeanspruchtes . Hirnholzende 90° < α < 270°

beanspruchter Rand 0° < α < 180°


unbeanspruchter Rand 180° < α < 360°

ANMERKUNGEN auf Seite 66.

WIRKSAME SCHRAUBENANZAHL BEI ABSCHERBEANSPRUCHUNG

Die Tragfähigkeit einer Verbindung mit mehreren Schrauben vom gleichen Typ und mit gleicher Größe kann kleiner sein als die Summe der Tragfähigkeiten des einzelnen Verbindungsmittels. Für eine Reihe von n parallel zur Faserrichtung des Holzes in einem Abstand a₁ angeordnete Schrauben entspricht die effektive charakteristische Tragfähigkeit:

$$R_{ef,V,k} = n_{ef} \cdot R_{V,k}$$

Der Wert von n_{ef} ist in der folgenden Tabelle abhängig von n und a₁ aufgeführt.

							a ₁ (*)					
		4·d	5·d	6·d	7·d	8·d	9·d	10 ⋅d	11-d	12·d	13·d	≥ 14·d
	2	1,41	1,48	1,55	1,62	1,68	1,74	1,80	1,85	1,90	1,95	2,00
n	3	1,73	1,86	2,01	2,16	2,28	2,41	2,54	2,65	2,76	2,88	3,00
	4	2,00	2,19	2,41	2,64	2,83	3,03	3,25	3,42	3,61	3,80	4,00
	5	2,24	2,49	2,77	3,09	3,34	3,62	3,93	4,17	4,43	4,71	5,00

^(*)Für Zwischenwerte a₁ ist eine lineare Interpolation möglich.

α = Winkel zwischen Kraft- und Faserrichtung

α = Winkel zwischen Kraft- und Faserrichtung

■ STATISCHE WERTE | HOLZ (SOFTWOOD)

CHARAKTERISTISCHE WERTE EN 1995:2014

					SCH	ERWERT		ZUGKRÄFTE				
	Geom	netrie		Holz-Holz ε=90°	Holz-Holz ε=0°	Stahl- dünne:		Stahl- dickes		Gewindeauszug ε=90°	Gewindeauszug ε=0°	Kopfdurchzug
	d ₁ L b A					Solution of the state of the st		Splane		1		
d_1	L	b	Α	R _{V,90,k}	R _{V,0,k}	S _{PLATE}	$R_{V,k}$	S _{PLATE}	$R_{V,k}$	R _{ax,90,k}	R _{ax,0,k}	$R_{head,k}$
[mm]	[mm]	[mm]	[mm]	[kN]	[kN]	[mm]	[kN]	[mm]	[kN]	[kN]	[kN]	[kN]
	80	50	30	2,07	1,37		3,10		3,99	3,79	1,14	1,63
	100	60	40	2,35	1,70		3,29		4,18	4,55	1,36	1,63
6	120	70	50	2,56	1,89	3	3,48	6	4,37	5,30	1,59	1,63
	140	80	60	2,56	2,03		3,67		4,56	6,06	1,82	1,63
	160	90	70	2,56	2,03		3,86		4,75	6,82	2,05	1,63
	120	70	50	3,62	2,58		5,23		6,66	7,07	2,12	2,38
	140	80	60	4,00	2,79		5,48		6,91	8,08	2,42	2,38
	160	90	70	4,05	2,95		5,73		7,16	9,09	2,73	2,38
	180	100	80	4,05	3,13		5,98		7,42	10,10	3,03	2,38
	200	100	100	4,05	3,13		5,98		7,42	10,10	3,03	2,38
	220	100	120	4,05	3,13		5,98		7,42	10,10	3,03	2,38
8	240	100	140	4,05	3,13	4	5,98	8	7,42	10,10	3,03	2,38
	280	100	180	4,05	3,13		5,98		7,42	10,10	3,03	2,38
	320	100	220	4,05	3,13		5,98		7,42	10,10	3,03	2,38
	360	100	260	4,05	3,13		5,98		7,42	10,10	3,03	2,38
	400	100	300	4,05	3,13		5,98		7,42	10,10	3,03	2,38
	440	100	340	4,05	3,13		5,98		7,42	10,10	3,03	2,38
	480	100	380	4,05	3,13		5,98		7,42	10,10	3,03	2,38

 $[\]epsilon$ = Winkel zwischen Schraube und Faserrichtung

■ STATISCHE WERTE | HARDWOOD

					SCH		ZUGKRÄFTE					
	Geon	netrie		$\begin{array}{c} \text{Hardwood-Hard-} \\ \text{wood} \\ \epsilon = 90^{\circ} \end{array} \qquad \begin{array}{c} \text{Hardwood-Hard-} \\ \text{wood} \\ \epsilon = 0^{\circ} \end{array}$		Stahl-Hardwood dünnes Blech			ardwood Blech	Gewindeauszug ε=90°	Gewindeauszug ε=0°	Kopfdurchzug
						Sp. de Constitution de Constit		Splate				
d_1	L	b	Α	R _{V,90,k}	R _{V,0,k}	S _{PLATE}	$R_{V,k}$	S _{PLATE}	$R_{V,k}$	R _{ax,90,k}	R _{ax,0,k}	$R_{head,k}$
[mm]	[mm]	[mm]	[mm]	[kN]	[kN]	[mm]	[kN]	[mm]	[kN]	[kN]	[kN]	[kN]
	80	50	30	3,21	2,06		4,27		5,33	6,80	2,04	4,15
	100	60	40	3,61	2,42		4,61		5,67	8,16	2,45	4,15
6	120	70	50	3,61	2,66	3	4,95	6	6,01	9,52	2,86	4,15
	140	80	60	3,61	2,76		5,14		6,35	10,88	3,26	4,15
	160	90	70	3,61	2,86		5,14		6,69	12,24	3,67	4,15
	120	70	50	5,35	3,65		7,31		9,02	12,69	3,81	5,20
	140	80	60	5,43	4,02		7,76		9,47	14,50	4,35	5,20
	160	90	70	5,43	4,35		8,21		9,92	16,32	4,89	5,20
8	180	100	80	5,43	4,42	4	8,27	8	10,38	18,13	5,44	5,20
	200	100	100	5,43	4,42		8,27		10,38	18,13	5,44	5,20
	220	100	120	5,43	4,42		8,27		10,38	18,13	5,44	5,20
	240	100	140	5,43	4,42		8,27		10,38	18,13	5,44	5,20

 $[\]epsilon$ = Winkel zwischen Schraube und Faserrichtung

ANM. und ALLGEMEINE GRUNDLAGEN auf Seite 66.

■ STATISCHE WERTE | BEECH LVL

CHARAKTERISTISCHE WERTE EN 1995:2014

				SC	HERWER	T			ZUGKRÄFTE			
Geometrie				Beech LVL-Beech LVL	Stahl-Be dünnes			eech LVL Blech	Gewindeauszug	Zugtragfähigkeit Stahl	Kopfdurchzug	
				→ Name of the state of the sta		Spure		↑ ₩↑				
d_1	d ₁ L b A		Α	R _{V,90,k}	S _{PLATE}	$R_{V,k}$	S _{PLATE}	$R_{V,k}$	R _{ax,90,k}	R _{tens,k}	$R_{head,k}$	
[mm]	[mm]	[mm]	[mm]	[kN]	[mm]	[kN]	[mm]	[kN]	[kN]	[kN]	[kN]	
	80	50	30	5,19		6,54		7,94	12,60		7,20	
	100	60	40	5,19		6,77		8,57	15,12		7,20	
6	120	70	50	5,19	3	6,77	6	9,20	17,64	18,00	7,20	
	140	80	60	5,19		6,77		9,29	20,16		7,20	
	160	90	70	5,19		6,77		9,29	22,68		7,20	
	120	70	50	8,19		11,13		13,75	23,52		10,51	
	140	80	60	8,19		11,13		14,59	26,88		10,51	
	160	90	70	8,19		11,13		15,43	30,24		10,51	
8	180	100	80	8,19	4	11,13	8	15,74	33,60	32,00	10,51	
	200	100	100	8,19	11,13		15,74	33,60		10,51		
	220	100	120	8,19		11,13		15,74	33,60		10,51	
	240	100	140	8,19		11,13		15,74	33,60		10,51	

■ STATISCHE WERTE | HYBRIDE VERBINDUNGEN

	Geometri	e	Holz-Beech LVL		Holz	Holz-Hardwood		LVL-Hardwood	Har	rdwood-Holz
				\rightarrow	A	\longrightarrow	A	→ →	A C	\rightarrow
d ₁		b	Α	$R_{V,k}$	Α	$R_{V,k}$	Α	$R_{V,k}$	Α	$R_{V,k}$
[mm]	[mm]	[mm]	[mm]	[kN]	[mm]	[kN]	[mm]	[kN]	[mm]	[kN]
	80	50	30	2,31	30	2,18	30	3,50	30	2,97
	100	60	40	2,61	40	2,61	40	3,70	40	3,37
6	120	70	50	2,96	50	2,74	50	3,89	50	3,37
	140	80	60	2,98	60	2,74	60	4,08	60	3,37
	160	90	70	2,98	70	2,74	70	4,27	70	3,37
	120	70	50	4,06	50	4,06	50	5,92	50	5,05
	140	80	60	4,47	60	4,35	60	6,17	60	5,05
	160	90	70	4,75	70	4,35	70	6,43	70	5,05
	180	100	80	4,75	80	4,35	80	6,68	80	5,05
	200	100	100	4,75	100	4,35	100	6,68	100	5,05
	220	100	120	4,75	120	4,35	120	6,68	120	5,05
8	240	100	140	4,75	140	4,35	120	6,68	120	5,05
	280	100	180	4,75	180	4,35	120	6,68	120	5,05
	320	100	220	4,75	220	4,35	120	6,68	120	5,05
	360	100	260	4,75	260	4,35	120	6,68	120	5,05
	400	100	300	4,75	300	4,35	120	6,68	120	5,05
	440	100	340	4,75	340	4,35	120	6,68	120	5,05
	480	100	380	4,75	380	4,35	120	6,68	120	5,05

ANM. und ALLGEMEINE GRUNDLAGEN auf Seite 66.

STATISCHE WERTE

ALL GEMEINE GRUNDI AGEN

- Die charakteristischen Werte werden gemäß der Norm EN 1995:2014 und in Übereinstimmung mit ETA-11/0030 berechnet.
- Die Bemessungswerte werden aus den charakteristischen Werten wie folgt berechnet:

$$R_d = \frac{R_k \cdot k_{mod}}{\gamma_M}$$

Die Beiwerte γ_M und $k_{\mbox{\scriptsize mod}}$ sind aus der entsprechenden geltenden Norm zu übernehmen, die für die Berechnung verwendet wird.

 Die bei der Planung berücksichtigte Zugfestigkeit des Verbinders entspricht dem kleineren Wert zwischen dem berücksichtigten Widerstand auf Holzseite (R_{ax,d}) und dem berücksichtigten Widerstand auf Stahlseite (R_{tens,d}).

$$R_{ax,d} = min \begin{cases} \frac{R_{ax,k} \cdot k_{moo}}{\gamma_{M}} \\ \frac{R_{tens,k}}{\gamma_{M2}} \end{cases}$$

- Bei den Werten für die mechanische Festigkeit und die Geometrie der Schrauben wurde auf die Angaben in der ETA-11/0030 Bezug genommen.
- Die Bemessung und Überprüfung der Holzelemente und Metallplatten müssen separat durchgeführt werden.
- Für die Positionierung der Schrauben sind die Mindestabstände zu berücksichtigen.
- Die Scherfestigkeitswerte wurden unter Berücksichtigung des vollständig in das zweite Element eingedrehten Gewindeteils berechnet.
- Die charakteristischen Scherfestigkeitswerte auf Platte wurden für eine dünne Platte (S_{PLATE} = 0,5 d₁) und für eine dicke Platte (S_{PLATE} = d₁) berechnet
- Die charakteristischen Gewindeauszugswerte wurden unter Berücksichtigung einer Einschraubtiefe b berechnet.
- Die charakteristische Kopfdurchzugsfestigkeit wurden für ein Element aus Holz oder auf Holzbasis berechnet.
 Bei Stahl-Holz-Verbindungen ist in Bezug auf den Abreiß- oder Durchzugswiderstand des Schraubenkopfes für gewöhnlich die Zugfestigkeit des Stahls ausschlaggebend.
- Zum Einsetzen einiger Verbinder könnte eine Pilotbohrung erforderlich sein. Für weitere Details siehe ETA-11/0030.

ANMERKUNGEN | HOLZ (SOFTWOOD)

- Die charakteristischen Holz-Holz-Scherfestigkeitswerte wurden unter Berücksichtigung eines Winkels ϵ sowohl von 90° (R_{V,90,k}) als auch 0° (R_{V,0,k}) zwischen den Fasern des zweiten Elements und dem Verbinder berechnet.
- Die charakteristischen Stahl-Holz-Scherfestigkeitswerte wurden unter Berücksichtigung eines Winkels ε von 90° zwischen Fasern des Holzelements und dem Verbinder berechnet.
- Die charakteristischen Scherfestigkeitswerte wurden bei eingeschraubten Schrauben ohne Vorbohrung bewertet. Mit vorgebohrten Schrauben können höhere Festigkeitswerte erreicht werden.
- Die charakteristischen Gewindeauszugswerte wurden unter Berücksichtigung eines Winkels ε sowohl von 90° (R_{ax,90,k}) als auch 0° (R_{ax,0,k}) zwischen den Fasern des Holzelements und dem Verbinder berechnet.
- * Bei der Berechnung wurde eine Rohdichte der Holzelemente von ρ_k = 385 $\mbox{kg/m}^3$ berücksichtigt.

Für andere ρ_k -Werte können die aufgelisteten Festigkeitswerte (Holz-Holz-Scherfestigkeit, Stahl-Holz Scherfestigkeit und Zugkraft) mithilfe des $k_{\mbox{\scriptsize dens}}$ -Beiwerts umgerechnet werden.

$$\begin{aligned} R'_{V,k} &= k_{dens,v} \cdot R_{V,k} \\ R'_{ax,k} &= k_{dens,ax} \cdot R_{ax,k} \\ R'_{head,k} &= k_{dens,ax} \cdot R_{head,k} \end{aligned}$$

ρ_k [kg/m³]	350	380	385	405	425	430	440
C-GL	C24	C30	GL24h	GL26h	GL28h	GL30h	GL32h
k _{dens,v}	0,90	0,98	1,00	1,02	1,05	1,05	1,07
k _{dens,ax}	0,92	0,98	1,00	1,04	1,08	1,09	1,11

Die so ermittelten Festigkeitswerte können zugunsten der Sicherheit von denen abweichen, die sich aus einer genauen Berechnung ergeben.

ANMERKUNGEN | HARDWOOD

- Bei der Berechnung wurde eine Rohdichte der Holzelemente aus Hardwood (Eiche) von ρ_k = 550 kg/m³ berücksichtigt.
- Die charakteristischen Holz-Holz-Scherfestigkeitswerte wurden unter Berücksichtigung eines Winkels ε sowohl von 90° (R_{V,90,k}) als auch 0° (R_{V,0,k}) zwischen den Fasern des zweiten Elements und dem Verbinder berechnet.
- Die charakteristischen Stahl-Holz-Scherfestigkeitswerte wurden unter Berücksichtigung eines Winkels ε von 90° zwischen Fasern des Holzelements und dem Verbinder berechnet.
- Die charakteristischen Gewindeauszugswerte wurden unter Berücksichtigung eines Winkels ε sowohl von 90° (R_{ax,9,0,k}) als auch 0° (R_{ax,0,k}) zwischen den Fasern des Holzelements und dem Verbinder berechnet.
- Die charakteristischen Festigkeitswerte wurden bei eingeschraubten Schrauben ohne Vorbohrung berechnet.

ANMERKUNGEN | BEECH LVL

- * Bei der Berechnung wurde eine Rohdichte der LVL-Elemente aus Buchenholz von $\rho_K=730\ kg/m^3$ berücksichtigt.
- Bei der Berechnung wurde für die einzelnen Holzelemente ein Winkel von 90° zwischen dem Verbinder und der Faser, ein Winkel von 90° zwischen Verbinder und Seitenfläche des LVL-Elements und ein Winkel von 0° zwischen der Kraft- und Faserrichtung berücksichtigt.
- Die charakteristischen Festigkeitswerte wurden bei eingeschraubten Schrauben ohne Vorbohrung berechnet.

ANMERKUNGEN | HYBRIDE VERBINDUNGEN

- Bei der Berechnung wurde für die Holzelemente aus Softwood eine Rohdichte $\rho_k=385~kg/m^3$, für die Holzelemente aus Hardwood (Eiche) eine Rohdichte $\rho_k=550~kg/m^3$ und für die Elemente aus LVL aus Buchenholz eine Rohdichte $\rho_k=730~kg/m^3$ berücksichtigt.
- Bei der Berechnung wurde für die Holzelemente in Softwood und Hardwood ein Winkel ϵ = 90°zwischen Verbinder und Faser berücksichtigt.
- Bei der Berechnung wurde für die Elemente aus LVL aus Buchenholz ein Winkel von 90° zwischen dem Verbinder und der Faser, ein Winkel von 90° zwischen Verbinder und Seitenfläche des LVL-Elements und ein Winkel von 0° zwischen der Kraft- und Faserrichtung berücksichtigt.
- Die charakteristischen Festigkeitswerte wurden bei eingeschraubten Schrauben ohne Vorbohrung berechnet.

MINDESTABSTÄNDE

ANMERKUNGEN | HOLZ

- Die Mindestabstände wurden nach EN 1995:2014 und in Übereinstimmung mit der ETA-11/0030 berechnet und beziehen sich auf eine Rohdichte der Holzelemente von 420 kg/m³ < $\rho_{K} \leq 500$ kg/m³.
- Bei Stahl-Holz-Verbindungen können die Mindestabstände (${\bf a_1},\,{\bf a_2}$) mit einem Koeffizienten von 0,7 multipliziert werden.
- Bei Verbindungen von Elementen aus Douglasienholz (Pseudotsuga menziesii) müssen die Mindestabstände und die minimalen, parallelen Abstände zur Faser mit dem Koeffizienten 1,5 multipliziert werden.

Konstruktive Verbindungselemente in digitaler Form

Komplett mit dreidimensionalen geometrischen Merkmalen und zusätzlichen parametrischen Informationen sind sie im IFC-, REVIT-, ALLPLAN-, ARCHICAD- und TEKLA-Format verfügbar und können in Ihr nächstes erfolgrei-ches Projekt integriert werden. Jetzt herunterladen!

HUS

GEDREHTE BEILAGSCHEIBE

KOMPATIBILITÄT

Sie eignet sich hervorragend für Senkkopfschrauben (HBS, VGS, SBS-SPP, SCI usw.), wenn die axiale Festigkeit der Verbindung erhöht werden soll.

HOLZ-METALL

Die optimale Wahl für Verbindungen auf Metallplatten mit zylindrischen Bohrungen.

HUS EVO

Dank einer speziellen Oberflächenbehandlung erhöht die Ausführung HUS EVO die Korrosionsbeständigkeit der Unterlegscheibe. So kann sie bei Nutzungsklasse 3 und Korrosionskategorie C4 verwendet werden.

HUS 15°

Die Unterlegscheibe mit einem 15°-Winkel wurde speziell für schwierige Holz-Metall-Verbindungen entwickelt, bei denen nur eine kleine Neigung für das Einsetzen der Schraube erforderlich ist. Mit dem doppelseitigen Klebeband HUS BAND kann die Unterlegscheibe bei Überkopf-Anbringung in Position gehalten werden.

MATERIAL

HUS 15°

Aluminiumlegierung EN AW 6082-T6

HUS

Elektroverzinkter Kohlenstoffstahl

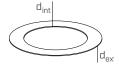
HUS EVO

Kohlenstoffstahl mit Beschichtung C4 EVO

HUS A4

Austenitischer Edelstahl A4 | AISI316

- dünne und dicke Metallplatten mit zylindrischen Bohrungen
- Holzwerkstoffplatten
- Massiv- und Brettschichtholz
- BSP und LVL
- Harthölzer


ARTIKELNUMMERNUNDABMESSUNGEN

HUS 15° - Unterlegscheibe mit 15°-Winkel

alu
Stk.

ARTNR.	d_{HBS}	d_{VGS}	Stk.
	[mm]	[mm]	
HUS815DE	8	9	50

HUS BAND - Doppelklebeband für Unterlegscheibe HUS

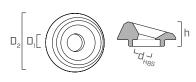
ARTNR.	d _{int}	d _{ext}	Stk.
	[mm]	[mm]	
HUSBAND	22	30	50

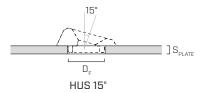
Kompatibel mit HUS815DE, HUS10, HUS12, HUS10A4.

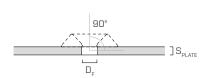
HUS - gedrehte Unterlegscheibe

ARTNR.	d _{HBS} [mm]	d _{VGS} [mm]	Stk.
HUS6	6	-	100
HUS8	8	9	50
HUS10	10	11	50
HUS12	12	13	25

HUS EVO - gedrehte Unterlegscheibe


ARTNR.	d _{HBS EVO} [mm]	d _{VGS EVO} [mm]	Stk.
HUSEVO6	6	-	100
HUSEVO8	8	9	50


HUS A4 - gedrehte Unterlegscheibe


_	=		
ARTNR.	d _{SCI} [mm]	d_{VGS A4} [mm]	Stk.
HUS6A4	6	-	100
HUS8A4	8	9	100
HUS10A4	-	11	50

■ GEOMETRIE UND MECHANISCHE EIGENSCHAFTEN

HUS - HUS EVO - HUS A4

GEOMETRIE

Unterlegscheibe			HUS815DE	HUS6 HUSEVO6 HUS6A4	HUS8 HUSEVO8 HUS8A4	HUS10 HUS10A4	HUS12
Innendurchmesser	D_1	[mm]	9,50	7,50	8,50	10,80	14,00
Außendurchmesser	D_2	[mm]	31,40	20,00	25,00	30,00	37,00
Höhe	h	[mm]	13,60	4,50	5,50	6,50	8,50
Bohrdurchmesser Platte ⁽¹⁾	D_F	[mm]	20÷22	6,5÷8,0	8,5÷10,0	10,5÷12,0	12,5÷14,0
Stärke der Stahlplatte	S _{PLATE}	[mm]	4÷18	-	-	-	-

 $^{^{(1)}}$ Die Wahl des Durchmessers ist auch vom Durchmesser der verwendeten Schraube abhängig.

MECHANISCHE KENNGRÖSSEN

		Nadelholz (Softwood)
Charakteristischer Durchziehparameter	f _{head,k} [N/mm²]	10,5
Assoziierte Dichte	ρ_a [kg/m ³]	350
Rohdichte	ρ_k [kg/m ³]	≤ 440

Für Anwendungen mit anderen Materialien oder mit Materialien mit hoher Dichte siehe ETA-11/0030.

■ STATISCHE WERTE | HOLZ

HUS 15	ō°			SCHERWERT							
Geometrie			Stahl-Holz ünnes Blech		Stahl-Holz dickes Blech		Stahl-Holz dünnes Blech		Stahl-Holz, dickes Blech		
		d,	Splate	→ → →	⊒AAC S		Selvare	Splate		Sp. Mr. E.	
	d _{1,HBS}	L	b	S _{PLATE}	R _{V,k}	S _{PLATE}	R _{V,k}	S _{PLATE}	R _{V,k}	S _{PLATE}	R _{V,k}
	[mm]	[mm]	[mm]	[mm]	[kN]	[mm]	[kN]	[mm]	[kN]	[mm]	[kN]
		80	52		3,61		4,93		3,74		5,11
HUS	8	100	52		3,86		4,93		4,00		5,11
15°		120÷140	60	4	4,05	8	5,13	4	4,20	8	5,31
_0		160÷280	80		4,54		5,62		4,70		5,81
		≥ 300	100		5,03	6,10		5,21		6,32	

■ STATISCHE WERTE | BSP

HUS 15	i°			SCHERWERT							
Geometrie			Stahl-BSP Stahl-BSP dünnes Blech dickes Blech			c	Stahl-BSP Jünnes Blech	Stahl-BSP dickes Blech			
			Mud S Mud S		Spurice		Sp. Market				
	d _{1,HBS}	L [mm]	b [mm]	S _{PLATE} [mm]	R _{V,k} [kN]	S _{PLATE} [mm]	R_{V,k} [kN]	S _{PLATE} [mm]	R_{V,k} [kN]	S _{PLATE} [mm]	R _{V,k} [kN]
	[11/11/1]	80	52	[11111]	3,28	[111111]	4,67	[iiiiii]	3,40	[111111]	4,83
		100	52		3,65		4,67		3,77		4,83
HUS 15°	8	120÷140	60	4	3,83	8	4,85	4	3,96	8	5,02
13		160÷280	80		4,28		5,30		4,43		5,49
		≥ 300	100		4,73		5,75		4,90		5,96

HUS/HUS EVO **SCHERWERT** ZUGKRÄFTE Holz-Holz Holz-Holz Stahl-Holz Stahl-Holz Kopfdurchzug mit Geometrie ε=90° ε=0° dünnes Blech dickes Blech Unterlegscheibe $\Delta \Delta$ L b Α Α $R_{V,k}$ $R_{V,k}$ R_{head,k} $d_{1,HBS}$ $R_{V,90,k}$ $R_{V,0,k}$ SPLATE SPLATE [mm] [mm] [mm] [kN] [mm] [mm] [mm] [kN] [mm] [kN] [kN] [kN] 80 40 35 2,38 35 1,20 2,43 3,12 4,53 HUS 1,38 2,61 3,31 4,53 90 50 35 2,57 35 6 100 50 45 2.61 45 1.38 3 2.61 6 3.31 4.53 HUS-110÷130 60 45÷65 2,80 45÷65 1,58 2,80 3,49 4,53 **EVO** > 140 75 > 60 280 ≥ 60 1 69 3 09 3 78 4 53 80 52 22 2,98 22 1,58 3,79 5,11 7,08 HUS 100 52 42 3 78 42 1 95 4 00 708 5 11 120÷140 60 54÷74 4,20 54÷74 2,13 4,20 8 5,31 7,08 HUS-160÷280 4.70 80 74÷194 4 45 74÷194 2 61 5.81 7.08 **EVO** > 300 100 > 194 4,45 > 194 2,79 5,21 6,32 7,08 80 52 21 3,32 21 1,86 4,30 6,55 10,20 100 52 41 4.73 41 2.41 5,51 7.12 10,20 120 60 53 5,50 53 2,75 5,76 7,37 10,20 HUS 10 10 140 73 60 73 5.76 2,75 5,76 10,20 7,37 160÷280 80 73÷193 6,40 73÷193 6,40 8,00 10,20 3.28 ≥ 300 ≥ 193 7,03 8,63 100 ≥ 193 6.42 3,87 10,20 120 80 31 5.57 31 3,27 7,55 9.79 15,51 HUS 160÷280 80 71÷191 7,81 71÷191 3,88 7,81 9,79 15,51 12 6 12

4,98

 ε = Winkel zwischen Schraube und Faserrichtung

> 320

120

ALLGEMEINE GRUNDLAGEN

 Die charakteristischen Werte werden gemäß der Norm EN 1995:2014 und in Übereinstimmung mit ETA-11/0030 berechnet.

> 191

8,66

> 191

 Die Bemessungswerte werden aus den charakteristischen Werten wie folgt berechnet:

$$R_d = \frac{R_k \cdot k_{mod}}{\gamma_M}$$

Stahls ausschlaggebend.

Die Beiwerte γ_M und $k_{\mbox{mod}}$ sind aus der entsprechenden geltenden Norm zu übernehmen, die für die Berechnung verwendet wird.

- Bei den Werten für die mechanische Festigkeit und die Geometrie der Schrauben und Unterlegscheiben wurde auf die Angaben in der ETA-11/0030 Bezug genommen.
- Die Bemessung und Überprüfung der Holzelemente und Metallplatten müssen separat durchgeführt werden.
- Die tabellarischen Werte sind unabhängig vom Kraft-Faser-Winkel.
- Für die Positionierung der Schrauben sind die Mindestabstände zu berücksichtigen.
- Die charakteristischen Scherfestigkeitswerte wurden bei eingeschraubten Schrauben ohne Vorbohrung bewertet. Mit vorgebohrten Schrauben können höhere Festigkeitswerte erreicht werden.
- Die Scherfestigkeitswerte wurden unter Berücksichtigung des vollständig in das zweite Element eingedrehten Gewindeteils berechnet.
- Die charakteristischen Kopfdurchzugswerte mit Unterlegscheibe wurden für ein Holzelement berechnet.
 Bei Stahl-Holz-Verbindungen ist in Bezug auf den Abreiß- oder Durchzugswiderstand des Schraubenkopfes für gewöhnlich die Zugfestigkeit des
- Für weitere Berechnungen steht die kostenlose Software MyProject zur Verfügung (www.rothoblaas.de).

ANMERKUNGEN

9,32

 Die charakteristischen Stahl-Holz-Scherfestigkeitswerte wurden unter Berücksichtigung der Auflagefläche der Unterlegscheibe parallel zur Faserrichtung berechnet.

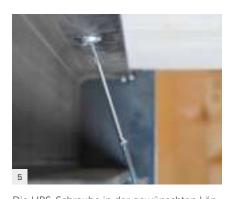
11,30


15,51

- Die charakteristischen Scherfestigkeitswerte auf Platte wurden für eine dünne Platte (S_{PLATE} = 0,5 d₁) und für eine dicke Platte (S_{PLATE} = d₁) berechnet.
- Bei der Berechnung wurde eine Rohdichte für die Holzelemente von $\rho_k=385~kg/m^3$ und für die BSP-Elemente von $\rho_k=350~kg/m^3$ berücksichtigt. Für andere ρ_k -Werte können die aufgelisteten Festigkeiten mithilfe des k_{dens} -Beiwerts umgerechnet werden (siehe S. 34).
- Die charakteristischen Werte für BSP entsprechen den nationalen Spezifikationen ÖNORM EN 1995 - Annex K.
- Der charakteristische Scherfestigkeitswert ist unabhängig von der Faserrichtung der äußeren Holzschicht der BSP-Platte.
- Die charakteristischen Scher- und Kopfdurchzugswerte mit HUS für BSP sind verfügbar auf Seite 39.
- Für die erhältlichen Größen der Schrauben HBS und HBS EVO und die statischen Werte siehe Seiten 30 und 52.
- Die charakteristischen Festigkeitswerte HUS A4 sind verfügbar auf Seite 323.

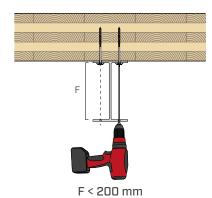
MONTAGE HUS 15°

Eine Bohrung mit Durchmesser $D_F = 20$ mm in der Metallplatte an der Einsteckstelle der Unterlegscheibe HUS815DE anbringen.

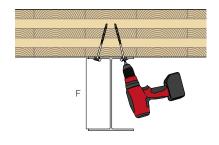

Für eine leichtere Befestigung sollte der Klebestreifen HUSBAND unter der Unterlegscheibe HUS815DE angebracht werden.

Das Trennpapier entfernen und die Unterlegscheibe an der Bohrung befestigen; dabei die Einschraubrichtung beachten.

Zur Gewährleistung der korrekten Montagerichtung eine Lochführung mit einem Durchmesser von 5 mm und einer Mindestlänge von 20 mm fertigen, vorzugsweise mithilfe der Montagelehre JIGVGU945.

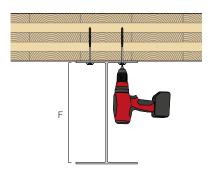


Die HBS-Schraube in der gewünschten Länge montieren. Keine Impulsschrauber verwenden. Auf die Anzugsphase der Verbindung achten.



Montage abgeschlossen. Die Neigung der Schraube um 15° ermöglicht die Einhaltung des Abstands zum Kopf der Platte (oder des Balkens).

STAHL-HOLZ-MONTAGE VON UNTEN



Bei begrenztem Freiraum (F) erfolgt die Montage der Schrauben mit einem langen Einsatz. Beide Flansche müssen gebohrt werden.

F = 200 ÷ 300 mm

In diesem Bereich von F gibt es keine ausreichend langen Einsätze und nicht genügend Freiraum für den Bediener. Die leichte Neigung der HUS 15° ermöglicht eine einfache Befestigung.

F > 300 mm

Wenn genügend Freiraum für die Montage vorhanden ist, kann unter Berücksichtigung der Mindestabstände auch eine HUS-Unterlegscheibe verwendet werden.

ZUGEHÖRIGE PRODUKTE

Seite 30

VGS Seite 164

CATCH Seite 408

TORQUE LIMITER
Seite 408

JIG VGU Seite 409

XYLOFON WASHER

ENTKOPPLUNGSSCHEIBE FÜR SCHRAUBEN

AKUSTISCHE LEISTUNG

Verbessert die Schalldämmung durch mechanische Entkopplung von Holz-Holz-Verbindungen mit Schrauben.

STATIK

Die Scheibe erhöht den Einhängeeffekt in der Verbindung und verbessert somit die statische Leistung des Teils.

QUELLVERFORMUNG DES HOLZES

Verleiht der Verbindung eine gewisse Anpassungsfähigkeit, um die Belastung durch das Schrumpfen/Quellen des Holzes zu verringern.

ARTIKELNUMMERN UND ABMESSUNGEN

ENTKOPPLUNGSSCHEIBE FÜR SCHRAUBEN

ARTNR.	$d_{Schraube}$	d_{ext}	d _{int}	s	Stk.
		[mm]	[mm]	[mm]	
XYLW803811	Ø8 - Ø10	38	11	6,0	50

ULS 440 - UNTERLEGSCHEIBE

ARTNR.	$d_{Schraube}$	d _{ext} [mm]	d _{int} [mm]	s [mm]	Stk.
ULS11343	Ø8 - Ø10	34	11	3,0	200

Für weitere Informationen zu dem Produkt siehe Website www.rothoblaas.de.

GEOMETRIE

MATERIAL

GEPRÜFT

Die statische Leistung wurde an der Universität Innsbruck geprüft, um in den statisch tragenden Verbindungen sicher verwendet werden zu können.

SICHER

Dank der modifizierten Polyurethanmischung ist das Produkt chemisch ausgesprochen stabil und dauerhaft verformungsfrei.

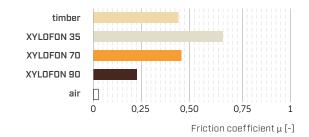
I FORSCHUNG & ENTWICKLUNG

STATIK UND AKUSTIK

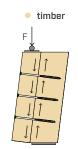
Das mechanische Verhalten von Holz-Holz-Scherverbindungen mit dazwischenliegendem Entkopplungsprofil für die Schalldämmung wurde sowohl in Bezug auf die Festigkeit als auch auf die Steifigkeit in Form umfassender Versuchsreihen eingehend untersucht.

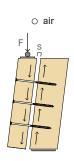
VERSUCHSREIHE

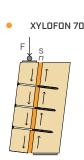
1 ANALYTISCHE CHARAKTERISIERUNG EINER VERBINDUNG MIT LÜCKE ANHAND PRÄDIKTIVER MODELLE


Für die analytische Bewertung der mechanischen Verbindungsparameter (Festigkeit und Steifigkeit) wurden in der Literatur verfügbare Modelle angewendet, welche die grundlegende Johansen-Theorie modifizieren.

ANWENDUNG DES MODELLS AUF VERBINDUNGEN MIT DAZWISCHENLIEGENDEM ENTKOPPLUNGSPROFIL Mehr als 50 berücksichtigte Konfigurationen mit Variation zahlreicher Parameter.

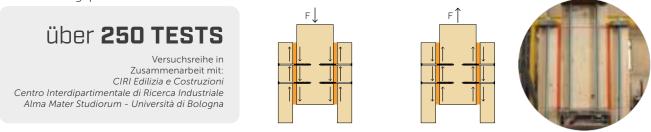

BEWERTUNG DES REIBUNGSKOEFFIZIENTEN µ FÜR SCHALLDÄMMPROFILE XYLOFON

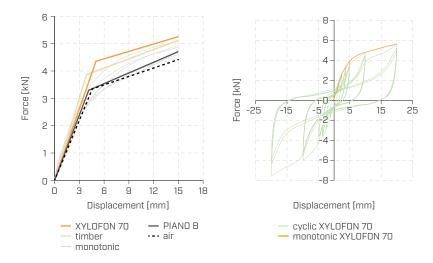

Die durchgeführten Tests ergaben reibungsbezogene Schnittstelleneigenschaften, welche das Verhalten der Holzverbindungen besonders zu beeinflussen scheinen, insbesondere In Bezug auf die Festigkeit.



4 DURCHFÜHRUNG MONOTONER VERSUCHE

Für die Validierung des untersuchten prädiktiven Modells wurden Muster mit einer oder zwei Scherflächen geprüft.

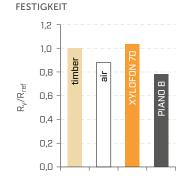


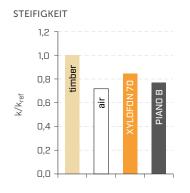

5 DURCHFÜHRUNG ZYKLISCHER VERSUCHE

Für den Vergleich zwischen dem Verhalten unter monotonen und zyklischen Belastungen wurden Muster mit zwei Scherflächen geprüft.

6 ERGEBNISSE DER VERSUCHSREIHE

Zur Analyse der Ergebnisse wurden die experimentellen Kurven bi-linearisiert. Dabei fällt auf, dass das zyklische Verhalten mit dem monotonen übereinstimmt.


Grafische Darstellung der Versuchsdaten der monotonen (links) und der zyklischen (rechts) Versuche.


BEWERTUNG DER ERGEBNISSE

Die vergleichende Analyse konzentrierte sich hauptsächlich auf die Festigkeits- und Steifigkeitsparameter. Die in den verschiedenen Konfigurationen erhaltenen Werte wurden im Vergleich zum Fall TIMBER dimensionslos angepasst.

Die monolithischen und verformbaren Polyurethan- und EPDM-Profile (in den Grafiken dargestellt durch XYLOFON 70) verändern bei unterschiedlichen Elastizitätsmodulen des Materials die Festigkeit der Verbindung im Vergleich zu Holz-Holz nicht signifikant.

Mit den geschäumten und komprimierbaren Profilen (dargestellt durch die EBENE B in den Grafiken) ist die Abweichung von der Referenzkonfiguration hingegen relevanter.

Parameter		Einfluss auf die Festigkeit	Einfluss auf die Steifigkeit
Struktur des Profils	mittel-hoch	R_y \blacksquare mit zunehmender Komprimierbarkeit $^{(*)}$	mittel
s [Stärke des Profils	signifikant	Ry mit zunehmender Stärke (für s > 6 mm)	signifikant
d [dill Durchmesser Verbinder	mittel	ΔR_y mit zunehmendem Durchmesser	mittel
Schnittstelleneigenschaften	signifikant	Ry mit abnehmender Profilhärte (Shore)	niedrig

(*) Direkt proportional zum prozentualen Anteil der im Material enthaltenen Luft.

In Übereinstimmung mit dem analytischen Modell führt die Verwendung von hohen Stärken (s > 6 mm) zu einer fortschreitenden Verschlechterung der Festigkeit und Steifigkeit, unabhängig von der Art des dazwischenliegenden Profils.

Die mechanische Steifigkeit weist hingegen einen mehr oder weniger ausgeprägten Verschlechterungstrend auf, der von den verschiedenen untersuchten Parametern und ihrer Verknüpfung abhängt.

Zusammenfassend lässt sich sagen, dass das mechanische Verhalten der untersuchten Verbindungen unter monotonen und zyklischen Lastbedingungen durch Vorhandensein der monolithischen Schalldämmprofile XY-LOFON und PIANO nicht wesentlich beeinflusst wird.

Die Festigkeitswerte können in erster Näherung bei Profilen mit einer Stärke von nicht mehr als 6 mm immer auf den Fall der direkten Holz-Holz-Verbindung zurückgeführt werden, wobei das Vorhandensein des Schalldämmprofils vernachlässigt wird.

TBS

UK CA UKTA-0836

TELLERKOPFSCHRAUBE

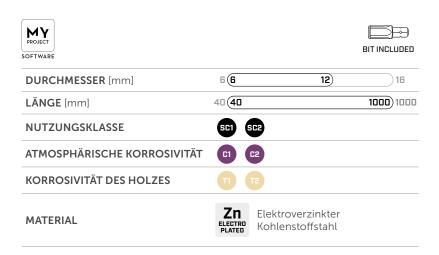
INTEGRIERTE BEILAGSCHEIBE

Der große Tellerkopf hat die Aufgabe einer Unterlegscheibe und garantiert eine hohe Kopfdurchzugsfestigkeit. Ideal als Windsogsicherung des Holzes.

SPITZE 3 THORNS

Dank der Spitze 3 THORNS werden die Mindestabstände reduziert. Mehr Schrauben können auf geringerem Raum und größere Schrauben in kleineren Elementen verwendet werden.

Die Kosten und der Zeitaufwand für die Umsetzung des Projekts verringern sich.

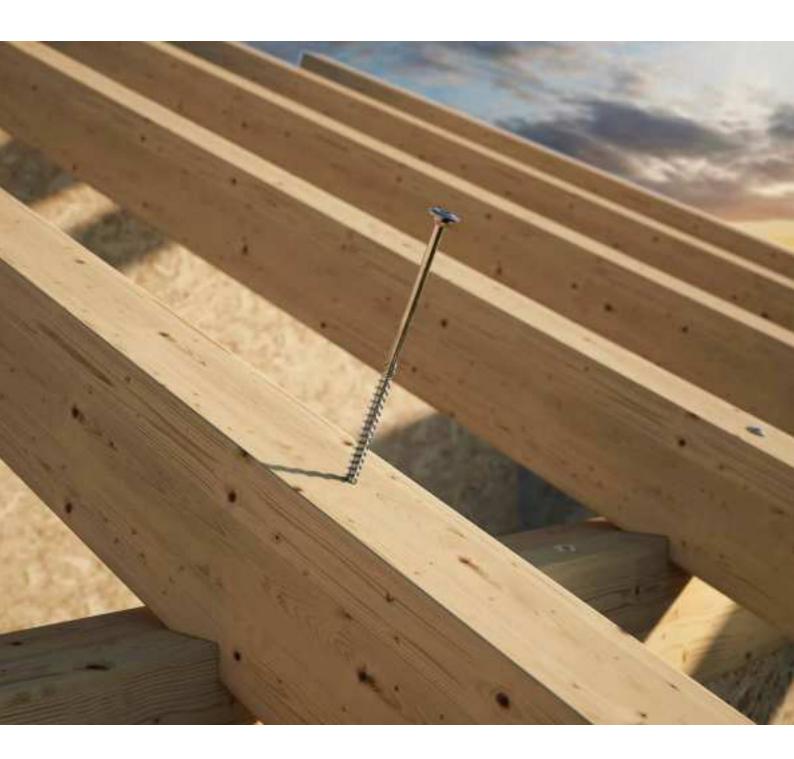

HÖLZER DER NEUEN GENERATION

Geprüft und zertifiziert für den Einsatz auf einer Vielzahl von Holzwerkstoffen wie BSP, GL, LVL, OSB und Beech LVL.

Die äußerst vielseitige TBS-Schraube ermöglicht die Verwendung von Hölzern der neuesten Generation, um immer innovativere und nachhaltigere Konstruktionen zu schaffen.

SCHNELL

Mit der Spitze 3 THORNS wird das Anbeißverhalten bei den gewohnten mechanischen Leistungen zuverlässiger, schneller und einfacher.



ANWENDUNGSGEBIETE

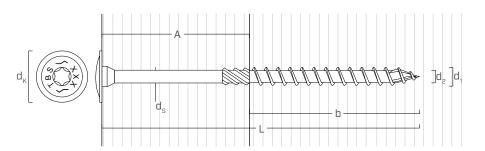
- Holzwerkstoffplatten
- Span- und MDF-Platten
- Massiv- und Brettschichtholz
- BSP und LVL
- Harthölzer

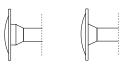
NEBENTRÄGER

Durch die hohen Auszugswerte ist sie ideal für die Windsogverankerung von Sparren auf der Pfette. Der breite Kopf garantiert eine hohe Kopfdurchzugsfestigkeit, wodurch die Verwendung von zusätzlichen seitlichen Sparrenpfettenankern vermieden werden kann.

I-JOIST

Werte auch für BSP und Harthölzer, sowie Furnierschichtholz (LVL) geprüft, zertifiziert und berechnet.





Befestigung von SIP-Platten mit 8 mm TBS-Schrauben.

Befestigung von BSP-Wänden mit TBS.

■ GEOMETRIE UND MECHANISCHE EIGENSCHAFTEN

Ø6 - Ø8 Ø10 - Ø12

GEOMETRIE

Nenndurchmesser	d_1	[mm]	6	8	10	12
Kopfdurchmesser	d_K	[mm]	15,50	19,00	25,00	29,00
Kerndurchmesser	d_2	[mm]	3,95	5,40	6,40	6,80
Schaftdurchmesser	d_S	[mm]	4,30	5,80	7,00	8,00
Vorbohrdurchmesser ⁽¹⁾	$d_{V,S}$	[mm]	4,0	5,0	6,0	7,0
Vorbohrdurchmesser ⁽²⁾	$d_{V,H}$	[mm]	4,0	6,0	7,0	8,0

MECHANISCHE KENNGRÖSSEN

Nenndurchmesser	d_1	[mm]	6	8	10	12
Zugfestigkeit	f _{tens,k}	[kN]	11,3	20,1	31,4	33,9
Fließmoment	$M_{y,k}$	[Nm]	9,5	20,1	35,8	48,0

			Nadelholz (Softwood)	LVL aus Nadelholz (LVL Softwood)	LVL aus Buche, vorgebohrt (Beech LVL predrilled)
Charakteristischer Wert der Ausziehfestigkeit	$f_{ax,k}$	[N/mm ²]	11,7	15,0	29,0
Charakteristischer Durchziehparameter	$f_{\text{head},k}$	[N/mm ²]	10,5	20,0	-
Assoziierte Dichte	ρ_{a}	[kg/m ³]	350	500	730
Rohdichte	ρ_k	[kg/m ³]	≤ 440	410 ÷ 550	590 ÷ 750

Für Anwendungen mit anderen Materialien siehe ETA-11/0030.

 ⁽¹⁾ Vorbohrung gültig für Nadelholz (Softwood).
 (2) Vorbohrung gültig für Harthölzer (Hardwood) und für LVL aus Buchenholz.

■ ARTIKELNUMMERN UND ABMESSUNGEN

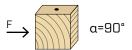
d_1	d_K	ARTNR.	L	b	Α	Stk.
[mm]	[mm]		[mm]	[mm]	[mm]	
		TBS660	60	40	20	100
		TBS670	70	40	30	100
		TBS680	80	50	30	100
		TBS690	90	50	40	100
		TBS6100	100	60	40	100
		TBS6120	120	75	45	100
		TBS6140	140	75	65	100
		TBS6160	160	75	85	100
6	45.5	TBS6180	180	75	105	100
TX 30	15,5	TBS6200	200	75	125	100
		TBS6220	220	100	120	100
		TBS6240	240	100	140	100
		TBS6260	260	100	160	100
		TBS6280	280	100	180	100
		TBS6300	300	100	200	100
		TBS6320	320	100	220	100
		TBS6360	360	100	260	100
		TBS6400	400	100	300	100
		TBS840	40	32	8	100
		TBS860	60	52	8	100
		TBS880	80	52	28	50
		TBS8100	100	52	48	50
		TBS8120	120	80	40	50
		TBS8140	140	80	60	50
		TBS8160	160	100	60	50
		TBS8180	180	100	80	50
		TBS8200	200	100	100	50
		TBS8220	220	100	120	50
		TBS8240	240	100	140	50
0		TBS8260	260	100	160	50
8 TX 40	19,0	TBS8280	280	100	180	50
		TBS8300	300	100	200	50
		TBS8320	320	100	220	50
		TBS8340	340	100	240	50
		TBS8360	360	100	260	50
		TBS8380	380	100	280	50
		TBS8400	400	100	300	50
		TBS8440	440	100	340	50
		TBS8480	480	100	380	50
		TBS8520	520	100	420	50
		TBS8560	560	100	460	50
		TBS8580	580	100	480	50
		TBS8600	600	100	500	50

d_1	d_K	ARTNR.	L	b	Α	Stk.
[mm]	[mm]		[mm]	[mm]	[mm]	
		TBS10100	100	52	48	50
		TBS10120	120	60	60	50
		TBS10140	140	60	80	50
		TBS10160	160	80	80	50
		TBS10180	180	80	100	50
		TBS10200	200	100	100	50
		TBS10220	220	100	120	50
		TBS10240	240	100	140	50
		TBS10260	260	100	160	50
4.0		TBS10280	280	100	180	50
10 TX 50	25,0	TBS10300	300	100	200	50
17.30		TBS10320	320	120	200	50
		TBS10340	340	120	220	50
		TBS10360	360	120	240	50
		TBS10380	380	120	260	50
		TBS10400	400	120	280	50
		TBS10440	440	120	320	50
		TBS10480	480	120	360	50
		TBS10520	520	120	400	50
		TBS10560	560	120	440	50
		TBS10600	600	120	480	50
		TBS12200	200	120	80	25
		TBS12240	240	120	120	25
		TBS12280	280	120	160	25
		TBS12320	320	120	200	25
		TBS12360	360	120	240	25
12		TBS12400	400	140	260	25
TX 50	29,0	TBS12440	440	140	300	25
		TBS12480	480	140	340	25
		TBS12520	520	140	380	25
		TBS12560	560	140	420	25
		TBS12600	600	140	460	25
		TBS12800	800	160	640	25
		TBS121000	1000	160	840	25

■ ZUGEHÖRIGE PRODUKTE

TBS MAX Seite 92

XYLOFON WASHER
Seite 73


TORQUE LIMITER
Seite 408

■ MINDESTABSTÄNDE DER SCHRAUBEN BEI ABSCHERBEANSPRUCHUNG | HOLZ

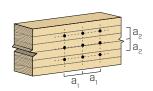
Schraubenabstände OHNE Vorbohrung

 $\rho_k \leq 420 \; kg/m^3$

d_1	[mm]		6	8	10	12
a ₁	[mm]	10·d	60	80	100	120
a ₂	[mm]	5·d	30	40	50	60
a _{3,t}	[mm]	15·d	90	120	150	180
a _{3,c}	[mm]	10·d	60	80	100	120
a _{4,t}	[mm]	5·d	30	40	50	60
a _{4,c}	[mm]	5·d	30	40	50	60

d_1	[mm]		6	8	10	12
a ₁	[mm]	5·d	30	40	50	60
a ₂	[mm]	5·d	30	40	50	60
a _{3,t}	[mm]	10 ⋅d	60	80	100	120
a _{3,c}	[mm]	10 ⋅d	60	80	100	120
a _{4,t}	[mm]	10 ⋅d	60	80	100	120
a _{4,c}	[mm]	5·d	30	40	50	60

Schraubenabstände VORGEBOHRT



d_1	[mm]		6	8	10	12
a ₁	[mm]	5·d	30	40	50	60
a ₂	[mm]	3·d	18	24	30	36
a _{3,t}	[mm]	12·d	72	96	120	144
a _{3,c}	[mm]	7·d	42	56	70	84
a _{4,t}	[mm]	3·d	18	24	30	36
a _{4,c}	[mm]	3·d	18	24	30	36

d_1	[mm]		6	8	10	12
a ₁	[mm]	4·d	24	32	40	48
a ₂	[mm]	4·d	24	32	40	48
a _{3,t}	[mm]	7∙d	42	56	70	84
a _{3,c}	[mm]	7∙d	42	56	70	84
a _{4,t}	[mm]	7∙d	42	56	70	84
a _{4,c}	[mm]	3·d	18	24	30	36

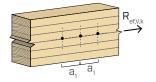
 α = Winkel zwischen Kraft- und Faserrichtung

 $d = d_1 = Nenndurchmesser Schraube$


beanspruchtes Hirnholzende $-90^{\circ} < \alpha < 90^{\circ}$

unbeanspruchtes Hirnholzende 90° < a < 270°

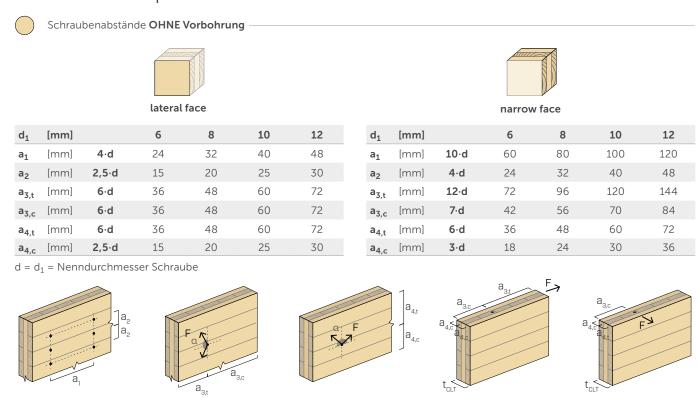
beanspruchter Rand $0^{\circ} < \alpha < 180^{\circ}$


unbeanspruchter Rand $180^{\circ} < \alpha < 360^{\circ}$

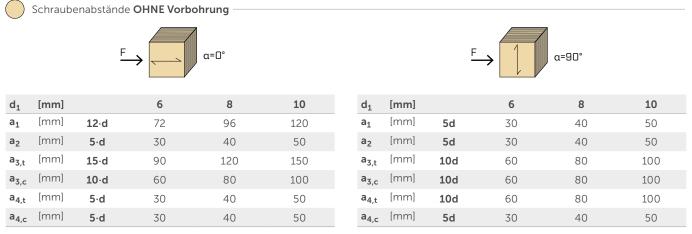
ANMERKUNGEN auf Seite 87.

WIRKSAME SCHRAUBENANZAHL BEI ABSCHERBEANSPRUCHUNG

Die Tragfähigkeit einer Verbindung mit mehreren Schrauben vom gleichen Typ und mit gleicher Größe kann kleiner sein als die Summe der Tragfähigkeiten des einzelnen Verbindungsmittels. Für eine Reihe von n parallel zur Faserrichtung des Holzes in einem Abstand a_1 angeordnete Schrauben entspricht die effektive charakteristische Tragfähigkeit:

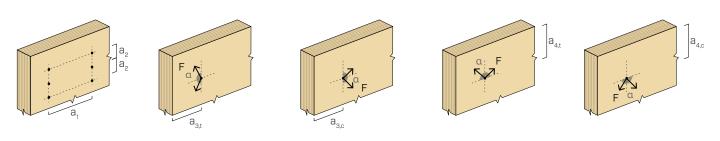

$$R_{ef,V,k} = n_{ef} \cdot R_{V,k}$$

Der Wert von n_{ef} ist in der folgenden Tabelle abhängig von n und a₁ aufgeführt.


							a ₁ (*)					
		4·d	5·d	6·d	7·d	8·d	9·d	10 ⋅d	11·d	12·d	13·d	≥ 14·d
	2	1,41	1,48	1,55	1,62	1,68	1,74	1,80	1,85	1,90	1,95	2,00
n	3	1,73	1,86	2,01	2,16	2,28	2,41	2,54	2,65	2,76	2,88	3,00
	4	2,00	2,19	2,41	2,64	2,83	3,03	3,25	3,42	3,61	3,80	4,00
	5	2,24	2,49	2,77	3,09	3,34	3,62	3,93	4,17	4,43	4,71	5,00

^(*)Für Zwischenwerte a_1 ist eine lineare Interpolation möglich.

MINDESTABSTÄNDE DER SCHRAUBEN BEI SCHERBEANSPRUCHUNG UND AXIALER BEANSPRUCHUNG | BSP


MINDESTABSTÄNDE DER SCHRAUBEN BEI ABSCHERBEANSPRUCHUNG | LVL

α = Winkel zwischen Kraft- und Faserrichtung

 $d = d_1 = Nenndurchmesser Schraube$

ANMERKUNGEN auf Seite 87.

ANMERKUNGEN auf Seite 87.

■ STATISCHE WERTE | HOLZ

					SCHERWERT				ZUGKRÄFTE	
	Geor	metrie		Holz-Holz ε=90°	Holz-Holz ε=0°		stoffplatte- olz	Gewindeauszug ε=90°	Gewindeauszug ε=0°	Kopfdurchzug
	d ₁		A			Span	*			
d ₁	L	b	Α	R _{V,90,k}	R _{V,0,k}	S _{PAN}	$R_{V,k}$	R _{ax,90,k}	R _{ax,0,k}	R _{head,k}
[mm]	[mm]	[mm]	[mm]	[kN]	[kN]	[mm]	[kN]	[kN]	[kN]	[kN]
	60	40	20	1,89	1,02		-	3,03	0,91	2,72
	70	40	30	2,15	1,20		-	3,03	0,91	2,72
	80	50	30	2,15	1,37		2,14	3,79	1,14	2,72
	90	50	40	2,35	1,38		2,50	3,79	1,14	2,72
	100	60	40	2,35	1,58		2,50	4,55	1,36	2,72
	120	75	45	2,35	1,69		2,50	5,68	1,70	2,72
	140	75	65	2,35	1,69		2,50	5,68	1,70	2,72
	160	75	85	2,35	1,69		2,50	5,68	1,70	2,72
6	180	75	105	2,35	1,69	50	2,50	5,68	1,70	2,72
	200	75	125	2,35	1,69	1	2,50	5,68	1,70	2,72
	220	100	120	2,35	1,83		2,50	7,58	2,27	2,72
	240	100	140	2,35	1,83		2,50	7,58	2,27	2,72
	260	100	160	2,35	1,83		2,50	7,58	2,27	2,72
	280	100	180	2,35	1,83		2,50	7,58	2,27	2,72
	300	100	200	2,35	1,83		2,50	7,58	2,27	2,72
	320	100	220	2,35	1,83		2,50	7,58	2,27	2,72
	360	100	260	2,35	1,83		2,50	7,58	2,27	2,72
	400	100	300	2,35	1,83		2,50	7,58	2,27	2,72
	40	32	8	1,08	0,90		-	3,23	0,97	4,09
	60	52	8	1,08	1,08		-	5,25	1,58	4,09
	80	52	28	3,02	1,70		-	5,25	1,58	4,09
	100	52	48	3,71	1,95		3,22	5,25	1,58	4,09
	120	80	40	3,41	2,54		3,89	8,08	2,42	4,09
	140	80	60	3,71	2,61		3,89	8,08	2,42	4,09
	160	100	60	3,71	2,79		3,89	10,10	3,03	4,09
	180	100	80	3,71	2,79		3,89	10,10	3,03	4,09
	200	100	100	3,71	2,79		3,89	10,10	3,03	4,09
	220	100	120	3,71	2,79		3,89	10,10	3,03	4,09
	240	100	140	3,71	2,79		3,89	10,10	3,03	4,09
	260	100	160	3,71	2,79	4.5	3,89	10,10	3,03	4,09
8	280	100	180	3,71	2,79	65	3,89	10,10	3,03	4,09
	300	100	200	3,71	2,79		3,89	10,10	3,03	4,09
	320	100	220	3,71	2,79		3,89	10,10	3,03	4,09
	340	100	240	3,71	2,79		3,89	10,10	3,03	4,09
	360	100	260	3,71	2,79		3,89	10,10	3,03	4,09
	380	100	280	3,71	2,79		3,89	10,10	3,03	4,09
	400	100	300	3,71	2,79		3,89	10,10	3,03	4,09
	440	100	340	3,71	2,79		3,89	10,10	3,03	4,09
	480	100	380	3,71	2,79		3,89	10,10	3,03	4,09
	520	100	420	3,71	2,79		3,89	10,10	3,03	4,09
	560	100	460	3,71	2,79		3,89	10,10	3,03	4,09
	580	100	480	3,71	2,79		3,89	10,10	3,03	4,09
	600	100	500	3,71	2,79		3,89	10,10	3,03	4,09

 $[\]epsilon$ = Winkel zwischen Schraube und Faserrichtung

ANM. und ALLGEMEINE GRUNDLAGEN auf Seite 87.

■ STATISCHE WERTE | HOLZ

					SCHERWERT				ZUGKRÄFTE	
	Geor	netrie		Holz-Holz ε=90°	Holz-Holz ε=0°		stoffplatte- olz	Gewindeauszug ε=90°	Gewindeauszug ε=0°	Kopfdurchzug
	d ₁		A		——————————————————————————————————————	Span				
d_1	L	b	Α	R _{V,90,k}	R _{V,0,k}	S _{PAN}	$R_{V,k}$	R _{ax,90,k}	R _{ax,0,k}	$R_{head,k}$
[mm]	[mm]	[mm]	[mm]	[kN]	[kN]	[mm]	[kN]	[kN]	[kN]	[kN]
	100	52	48	4,92	2,56		-	6,57	1,97	7,08
	120	60	60	5,64	2,75		-	7,58	2,27	7,08
	140	60	80	5,64	2,75		5,84	7,58	2,27	7,08
	160	80	80	5,64	3,28		5,85	10,10	3,03	7,08
	180	80	100	5,64	3,28		5,85	10,10	3,03	7,08
	200	100	100	5,64	3,87		5,85	12,63	3,79	7,08
	220	100	120	5,64	3,87		5,85	12,63	3,79	7,08
	240	100	140	5,64	3,87		5,85	12,63	3,79	7,08
	260	100	160	5,64	3,87		5,85	12,63	3,79	7,08
40	280	100	180	5,64	3,87	0.0	5,85	12,63	3,79	7,08
10	300 320	100 120	200	5,64 5,64	3,87 4,06	80	5,85 5,85	12,63 15,15	3,79 4,55	7,08 7,08
	340	120	220	5,64	4,06		5,85	15,15	4,55	7,08
	360	120	240	5,64	4,06		5,85	15,15	4,55	7,08
	380	120	260	5,64	4,06		5,85	15,15	4,55	7,08
	400	120	280	5,64	4,06		5,85	15,15	4,55	7,08
	440	120	320	5,64	4,06		5,85	15,15	4,55	7,08
	480	120	360	5,64	4,06		5,85	15,15	4,55	7,08
	520	120	400	5,64	4,06		5,85	15,15	4,55	7,08
	560	120	440	5,64	4,06		5,85	15,15	4,55	7,08
	600	120	480	5,64	4,06		5,85	15,15	4,55	7,08
	200	120	80	7,16	4,98		7,35	18,18	5,45	9,53
	240	120	120	7,16	4,98		7,35	18,18	5,45	9,53
	280	120	160	7,16	4,98		7,35	18,18	5,45	9,53
	320	120	200	7,16	4,98		7,35	18,18	5,45	9,53
	360	120	240	7,16	4,98		7,35	18,18	5,45	9,53
	400	140	260	7,16	5,20		7,35	21,21	6,36	9,53
12	440	140	300	7,16	5,20	95	7,35	21,21	6,36	9,53
	480	140	340	7,16	5,20		7,35	21,21	6,36	9,53
	520	140	380	7,16	5,20		7,35	21,21	6,36	9,53
	560	140	420	7,16	5,20		7,35	21,21	6,36	9,53
	600	140	460	7,16	5,20		7,35	21,21	6,36	9,53
	800	160	640	7,16	5,43		7,35	24,24	7,27	9,53
	1000	160	840	7,16	5,43		7,35	24,24	7,27	9,53

 $[\]epsilon$ = Winkel zwischen Schraube und Faserrichtung

■ STATISCHE WERTE | BSP

				SCHERWERT								
	Geomet	rie		BSP-BSP lateral face			e - BSP ral face	BS	BSP - Platte - BSP lateral face			
L						Span		t Span				
d_1	L	b	Α	$R_{V,k}$	$R_{V,k}$	S _{PAN}	$R_{V,k}$	S _{PAN}	t	$R_{V,k}$		
[mm]	[mm]	[mm]	[mm]	[kN]	[kN]	[mm]	[kN]	[mm]	[mm]	[kN]		
6	60÷70 80÷90 100 120÷200	40 50 60 75	≥ 20 ≥ 30 40 ≥ 45	1,77 2,00 2,22 2,22	- - -	18	1,82 1,82 1,82 1,82	18	≥ 20 ≥ 30 ≥ 40 ≥ 50	2,67 2,67 2,67 2,67		
8	220÷400 40 60÷100 120÷140 160÷600	100 32 52 80 100	≥ 120 8 ≥ 30 ≥ 40 ≥ 60	2,22 0,98 2,23 3,16 3,51	- 0,98 1,70 2,80 2,98	22	1,82 1,65 2,66 2,98 2,98	22	≥ 100 ≥ 5 ≥ 15 ≥ 45 ≥ 65	2,67 1,23 3,64 3,64 3,64		
10	100 120÷140 160÷180 200÷300 320÷600	52 60 80 100 120	48 ≥ 60 ≥ 80 ≥ 100 ≥ 200	4,50 5,22 5,33 5,33 5,33	3,14 3,41 4,12 4,52 4,52	25	4,20 4,44 4,44 4,44 4,44	25	≥ 35 ≥ 45 ≥ 65 ≥ 85 ≥ 145	4,47 4,47 4,47 4,47 4,47		
12	200÷360 400÷600 800÷1000	120 140 160	≥ 80 ≥ 260 ≥ 640	6,76 6,76 6,76	5,72 5,72 5,72	25	4,72 4,72 4,72	25	≥ 85 ≥ 185 ≥ 385	4,72 4,72 4,72		

				SCHER	RWERT		
	Geomet	trie		BSP - Holz lateral face	Holz - BSP narrow face		
L			A				
d_1	L	b	Α	$R_{V,k}$	$R_{V,k}$		
[mm]	[mm]	[mm]	[mm]	[kN]	[kN]		
	60-70	40	≥ 20	1,79	-		
	80-90	-90 50 ≥ 30		2,02	-		
6	100	60	40	2,26	-		
	120-200	75	≥ 45	2,26	-		
	220-400	100	≥ 120	2,26	-		
	40	32	8	0,98	1,08		
8	60-100	52	≥ 30	2,36	1,70		
O	120-140	80	≥ 40	3,20	2,90		
	160-600	100	≥ 60	3,57	3,01		
	100	52	48	4,78	3,17		
	120-140	60	≥ 60	5,32	3,43		
10	160-180	80	≥ 80	5,42	4,15		
	200-300	100	≥ 100	5,42	4,56		
	320-600	120	≥ 200	5,42	4,57		
40	200-360	120	≥ 80	6,87	5,77		
12	400-600	140	≥ 260	6,87	5,77		
	800-1000	160	≥ 640	6,87	5,77		

				ZUGKRÄFTE	
	Geometrie		Gewindeauszug lateral face	Gewindeauszug narrow face	Kopfdurchzug
d_1	L	b	R _{ax,k}	R _{ax,k}	$R_{head,k}$
[mm]	[mm]	[mm]	[kN]	[kN]	[kN]
	60÷70	40	2,81	-	2,52
	80÷90	50	3,51	-	2,52
6	100	60	4,21	-	2,52
	120÷200	75	5,27	-	2,52
	220÷400	100	7,02	-	2,52
	40	32	3,00	2,39	3,79
8	60÷100	52	4,87	3,70	3,79
0	120÷140	80	7,49	5,45	3,79
	160÷600	100	9,36	6,66	3,79
	100	52	6,08	4,42	6,56
	120÷140	60	7,02	5,03	6,56
10	160÷180	80	9,36	6,51	6,56
	200÷300	100	11,70	7,96	6,56
	320÷600	120	14,04	9,38	6,56
	200÷360	120	16,85	10,86	8,83
12	400÷600	140	19,66	12,47	8,83
	800÷1000	160	22,46	14,06	8,83

ANM. und ALLGEMEINE GRUNDLAGEN auf Seite 87.

SOFTWARE

						IERWERT			EN 1995:20	14	
	Geometrie		LVL-LVL		LVL-LVL			LVL-Holz		Holz-LVL	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		A		A L		*	A		A	
d_1	L	b	Α	$R_{V,k}$	Α	t ₂	$R_{V,k}$	Α	$R_{V,k}$	Α	$R_{V,k}$
[mm]	[mm]	[mm]	[mm]	[kN]	[mm]	[mm]	[kN]	[mm]	[kN]	[mm]	[kN]
	80÷90	50	-	-	-	-	-	-	-	≥ 30	2,21
6	100	60	45	3,02	-	-	-	45	2,80	40	2,44
· ·	120÷200	75	≥ 45	3,02	≥ 45	≥ 75	5,47	≥ 45	2,92	≥ 45	2,44
	220÷400	100	≥ 120	3,02	≥ 70	≥ 85	6,05	≥ 120	2,92	≥ 120	2,44
	120÷140	80	≥ 60	4,74	-	-	-	≥ 60	4,34	≥ 40	3,51
8	160÷180	100	≥ 60	4,74	-	-	-	≥ 60	4,57	≥ 60	3,85
	200÷600	100	≥ 60	4,74	≥ 60	≥ 75	9,48	≥ 60	4,57	≥ 60	3,85
	120÷140	60	-	-	-	-	-	-	-	≥ 60	5,84
	160÷180	80	≥ 75	7,23	-	-	-	≥ 75	6,60	≥ 80	5,85
10	200	100	100	7,35	-	-	-	100	7,10	100	5,85
	220÷300	100	≥ 120	7,35	≥ 75	≥ 75	13,73	≥ 100	7,10	≥ 100	5,85
	320÷600	120	≥ 200	7,35	≥ 100	≥ 125	14,69	≥ 200	7,10	≥ 200	5,85

				ZUGKRÄFTE		
	Geometrie		Gewindeauszug flat	Gewindeauszug edge	Kopfdurchzug flat	
d_1	L	b	R _{ax,k}	R _{ax,k}	$R_{head,k}$	
[mm]	[mm]	[mm]	[kN]	[kN]	[kN]	
	60÷70	40	3,48	2,32	4,65	
	80÷90	50	4,36	2,90	4,65	
6	100	60	5,23	3,48	4,65	
	120÷200	75	6,53	4,36	4,65	
	220÷400	100	8,71	5,81	4,65	
	40	32	3,72	2,48	6,99	
	60÷100	52	6,04	4,03	6,99	
8	120÷140	80	9,29	6,19	6,99	
	160÷180	100	11,61	7,74	6,99	
	200÷600	100	11,61	7,74	6,99	
	100	52	7,55	5,03	12,10	
	120÷140	60	8,71	5,81	12,10	
10	160÷180	80	11,61	7,74	12,10	
	200÷300	100	14,52	9,68	12,10	
	320÷600	120	17,42	11,61	12,10	

ANM. und ALLGEMEINE GRUNDLAGEN auf Seite 87.

STATISCHE WERTE

ALL GEMEINE GRUNDLAGEN

- Die charakteristischen Werte entsprechen der EN 1995:2014 Norm in Übereinstimmung mit dem ETA-11/0030.
- Die Bemessungswerte werden aus den charakteristischen Werten wie folgt berechnet:

$$R_d = \frac{R_k \cdot k_{mod}}{\gamma_M}$$

Die Beiwerte γ_M und $k_{\mbox{mod}}$ sind aus der entsprechenden geltenden Norm zu übernehmen, die für die Berechnung verwendet wird.

- Bei den Werten für die mechanische Festigkeit und die Geometrie der Schrauben wurde auf die Angaben in der ETA-11/0030 Bezug genommen.
- Die Bemessung und Überprüfung der Holzelemente und der Paneele müssen separat durchgeführt werden.
- Für die Positionierung der Schrauben sind die Mindestabstände zu berücksichtigen.
- Die charakteristischen Scherfestigkeitswerte wurden bei eingeschraubten Schrauben ohne Vorbohrung bewertet. Mit vorgebohrten Schrauben können höhere Festigkeitswerte erreicht werden.
- Die Scherfestigkeitswerte wurden unter Berücksichtigung des vollständig in das zweite Element eingedrehten Gewindeteils berechnet.
- Die charakteristischen Scherfestigkeitswerte wurden für eine OSB-Platte oder eine Spanplatte mit einer Stärke S_{PAN}und einer Dichte von ρ_k = 500 kg/m³ angegeben.
- Die charakteristischen Gewindeauszugswerte wurden unter Berücksichtigung einer Einschraubtiefe b berechnet.
- Die charakteristische Kopfdurchzugsfestigkeit wurden für ein Element aus Holz oder auf Holzbasis berechnet.
- Für weitere Berechnungen steht die kostenlose Software MyProject zur Verfügung (www.rothoblaas.de).

ANMERKUNGEN | HOLZ

- Die charakteristischen Holz-Holz-Scherfestigkeitswerte wurden unter Berücksichtigung eines Winkels ϵ sowohl von 90° ($R_{V,90,k}$) als auch 0° ($R_{V,0,k}$) zwischen den Fasern des zweiten Elements und dem Verbinder berechnet.
- Die charakteristischen Holzwerkstoffplatte-Holz-Scherfestigkeitswerte wurden unter Berücksichtigung eines Winkels ε von 90° zwischen Fasern des Holzelements und dem Verbinder berechnet.
- Die charakteristischen Gewindeauszugswerte wurden unter Berücksichtigung eines Winkels ε sowohl von 90° (R_{ax,90,k}) als auch 0° (R_{ax,0,k}) zwischen den Fasern des Holzelements und dem Verbinder berechnet.
- * Bei der Berechnung wurde eine Rohdichte der Holzelemente von $\rho_k=385 \ kg/m^3$ berücksichtigt.

Für andere ρ_k -Werte können die aufgelisteten Festigkeitswerte (Holz-Holz-Scher- und Zugfestigkeit) mithilfe des k_{dens}-Beiwerts umgerechnet werden

$$R'_{V,k} = K_{dens,v} \cdot R_{V,k}$$

 $R'_{ax,k} = K_{dens,ax} \cdot R_{ax,k}$
 $R'_{head,k} = K_{dens,ax} \cdot R_{head,k}$

ρ _k [kg/m³]	350	380	385	405	425	430	440
C-GL	C24	C30	GL24h	GL26h	GL28h	GL30h	GL32h
k _{dens,v}	0,90	0,98	1,00	1,02	1,05	1,05	1,07
k _{dens,ax}	0,92	0,98	1,00	1,04	1,08	1,09	1,11

Die so ermittelten Festigkeitswerte können zugunsten der Sicherheit von denen abweichen, die sich aus einer genauen Berechnung ergeben.

ANMERKUNGEN I BSP

- Die charakteristischen Werte entsprechen den nationalen Spezifikationen ÖNORM EN 1995 - Annex K.
- Bei der Berechnung wurde eine Rohdichte für die BSP-Elemente von ρ_k = 350 kg/m 3 und für Holzelemente mit ρ_k = 385 kg/m 3 bedacht.
- Die charakteristischen Scherfestigkeitswerte berechnen sich unter Berücksichtigung der minimalen Eindringtiefe der Schraube von $4\cdot d_1$.
- Der charakteristische Scherfestigkeitswert ist unabhängig von der Faserrichtung der äußeren Holzschicht der BSP-Platte.
- Die axiale Auszugsfestigkeit des "narrow-face"-Gewindes gilt unter Einhaltung der BSP-Mindeststärke von $t_{CLT,min} = 10 \cdot d_1$ und einer Mindestdurchzugstiefe der Schraube von $t_{pen} = 10 \cdot d_1$.

ANMERKUNGEN | LVL

- Bei der Berechnung wurde eine Rohdichte der LVL-Elemente aus Nadelholz (Softwood) von ρ_k = 480 kg/m³ und für Holzelemente mit ρ_k = 385 kg/m³ berücksichtigt.
- Die charakteristischen Scherfestigkeitswerte werden für Verbinder berechnet, die auf der Seitenfläche (wide face) eingesetzt werden, wobei für die einzelnen Holzelemente ein Winkel von 90° zwischen dem Verbinder und der Faser, ein Winkel von 90° zwischen Verbinder und Seitenfläche des LVL-Elements und ein Winkel von 0° zwischen der Kraft- und Faserrichtung berücksichtigt wird.
- Der Gewindeauszugswert wurde mit einem Winkel von 90° zwischen Fasern und Verbinder berechnet.
- Schrauben, die kürzer sind als der aufgelistete Mindestwert, sind nicht mit den Berechnungsansätzen kompatibel und deshalb nicht aufgeführt.

MINDESTABSTÄNDE

ANMERKUNGEN | HOLZ

- Die Mindestabstände werden gemäß der Normen EN 1995:2014 und in Übereinstimmung mit ETA-11/0030 berechnet.
- Bei Holzwerkstoffplatten-Verbindungen können die Mindestabstände (a $_1$, a $_2$) mit einem Koeffizienten von 0,85 multipliziert werden.
- Bei Verbindungen von Elementen aus Douglasienholz (Pseudotsuga menziesii) müssen die Mindestabstände und die minimalen, parallelen Abstände zur Faser mit dem Koeffizienten 1,5 multipliziert werden.
- Der Abstand a_1 , aufgelistet für Schrauben mit Spitze 3 THORNS, eingeschraubt ohne Vorbohrung in Holzelemente mit Dichte $\rho_k \leq 420 \text{ kg/m}^3$ und Winkel zwischen Kraft- und Faserrichtung α = 0°, wurde auf der Grundlage experimenteller Untersuchungen mit $10 \cdot d$ angenommen; wahlweise können $12 \cdot d$ gemäß EN $1995 \cdot 2014$ übernommen werden.

ANMERKUNGEN | BSP

- Die Mindestabstände sind gemäß ETA-11/0030 und sind gültig, falls keine anderen Angaben in den technischen Unterlagen der BSP-Bretter angegeben sind.
- Die Mindestabstände gelten für die Mindestdicke BSP $t_{CLT,min} = 10 \cdot d_1$.
- Die auf "narrow face" bezogenen Mindestabstände gelten für die minimale Durchzugtiefe der Schraube $t_{\mbox{\footnotesize pen}}=10\cdot d_1.$

ANMERKUNGEN I LVL

- Die Mindestabstände sind gemäß ETA-11/0030 und sind gültig, falls keine anderen Angaben in den technischen Unterlagen der LVL-Bretter angegeben sind
- Die Mindestabstände gelten bei Verwendung von Furnierschichthölzern aus Nadelholz (Softwood) mit parallelen und überkreuzten Furnierblättern.
- Die Mindestabstände ohne Vorbohren gelten für Mindeststärken der LVL-Elemente t_{min}:

$$t_{1} \ge 8.4 \cdot d - 9$$

$$t_{2} \ge \begin{cases} 11.4 \cdot d \\ 75 \end{cases}$$

Wobei:

- $\rm t_1$ ist die Stärke des LVL-Elements in mm bei einer Verbindung mit 2 Holzelementen. Im Falle von Verbindungen mit 3 oder mehr Elementen ist $\rm t_1$ die Stärke des am weitesten außen angeordneten LVL-Elements;
- t₂ ist die Stärke des mittleren Elements in mm bei einer Verbindung mit 3 oder mehr Elementen.

I TBS SOFTWOOD

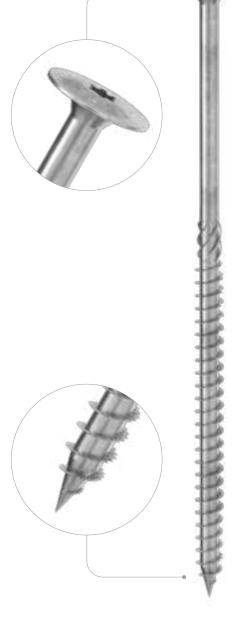
TELLERKOPFSCHRAUBE

SAW-SPITZE

Spezialbohrspitze mit gezacktem Gewinde (SAW-Spitze), die beim Schneiden von Holzfasern das Anbeißen und den nachfolgenden Durchzug erleichtert.

INTEGRIERTE BEILAGSCHEIBE

Der große Tellerkopf hat die Aufgabe einer Unterlegscheibe und garantiert eine hohe Kopfdurchzugsfestigkeit. Ideal als Windsogsicherung des Holzes.

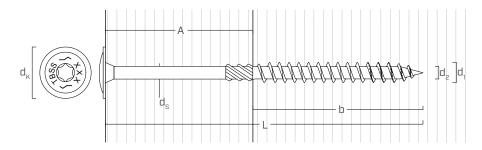

LÄNGERES GEWINDE

Längeres Gewinde (60%) für den optimalen Verschluss der Verbindung und vielseitige Verwendung.

SOFTWOOD

Optimierte Geometrie für maximale Leistung bei den gängigsten Bauhölzern.

ANWENDUNGSGEBIETE


- Holzwerkstoffplatten
- Span- und MDF-Platten
- Massivholz
- Brettschichtholz
- BSP und LVL

ARTIKELNUMMERN UND ABMESSUNGEN

d ₁	d_K	ARTNR.	L	b	Α	Stk.
[mm]	[mm]		[mm]	[mm]	[mm]	
		TBSS680	80	50	30	100
		TBSS6100	100	60	40	100
6 TX 30	15,5	TBSS6120	120	75	45	100
17.30		TBSS6140	140	80	60	100
		TBSS6160	160	90	70	100

d_1	d_K	ARTNR.	L	b	Α	Stk.
[mm]	[mm]		[mm]	[mm]	[mm]	
		TBSS8180	180	100	80	50
		TBSS8200	200	100	100	50
		TBSS8220	220	100	120	50
		TBSS8240	240	100	140	50
		TBSS8260	260	100	160	50
8	19,0	TBSS8280	280	100	180	50
TX 40	19,0	TBSS8300	300	100	200	50
		TBSS8320	320	120	200	50
		TBSS8340	340	120	220	50
		TBSS8360	360	120	240	50
		TBSS8380	380	120	260	50
		TBSS8400	400	120	280	50

GEOMETRIE UND MECHANISCHE EIGENSCHAFTEN

GEOMETRIE

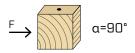
Nenndurchmesser	d_1	[mm]	6	8
Kopfdurchmesser	d_K	[mm]	15,50	19,00
Kerndurchmesser	d ₂	[mm]	3,95	5,40
Schaftdurchmesser	d _S	[mm]	4,30	5,80
Vorbohrdurchmesser (Softwood) ⁽¹⁾	d_V	[mm]	4,0	5,0

 $^{^{(1)}}$ Bei Materialien mit hoher Dichte ist je nach Holzart das Vorbohren empfehlenswert

MECHANISCHE KENNGRÖSSEN

Nenndurchmesser	d_1	[mm]	6	8
Zugfestigkeit	$f_{tens,k}$	[kN]	12,0	19,0
Fließmoment	$M_{y,k}$	[Nm]	9,5	18,5
Parameter der Auszugsfestigkeit	f _{ax,k}	[N/mm ²]	12,0	12,0
Assoziierte Dichte	ρ_a	[kg/m ³]	350	350
Durchziehparameter	f _{head,k}	[N/mm ²]	13,0	13,0
Assoziierte Dichte	ρ _a	[kg/m ³]	350	350

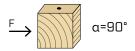
TIMBER FRAME UND SIP PANELS


Der Maßbereich ist ausgelegt für die Anbringungen von Befestigungen an mittelgroßen und großen Konstruktionselementen wie leichten Brettern und Rahmen bis hin zu Platten vom Typ SIP und Sandwich.

■ MINDESTABSTÄNDE DER SCHRAUBEN BEI ABSCHERBEANSPRUCHUNG

Schraubenabstände OHNE Vorbohrung

 $\rho_k \leq 420 \; kg/m^3$


d_1	[mm]		6	8
a ₁	[mm]	12·d	72	96
a ₂	[mm]	5·d	30	40
a _{3,t}	[mm]	15 ⋅d	90	120
a _{3,c}	[mm]	10·d	60	80
a _{4,t}	[mm]	5·d	30	40
a _{4,c}	[mm]	5·d	30	40

d_1	[mm]		6	8
a ₁	[mm]	5·d	30	40
a ₂	[mm]	5·d	30	40
a _{3,t}	[mm]	10 ⋅d	60	80
a _{3,c}	[mm]	10·d	60	80
a _{4,t}	[mm]	10·d	60	80
a _{4,c}	[mm]	5·d	30	40

Schraubenabstände VORGEBOHRT

d ₁	[mm]		6	8
a ₁	[mm]	5·d	30	40
a ₂	[mm]	3·d	18	24
a _{3,t}	[mm]	12·d	72	96
a _{3,c}	[mm]	7∙d	42	56
a _{4,t}	[mm]	3·d	18	24
a _{4,c}	[mm]	3·d	18	24

d_1	[mm]		6	8
a ₁	[mm]	4·d	24	32
a ₂	[mm]	4·d	24	32
a _{3,t}	[mm]	7·d	42	56
a _{3,c}	[mm]	7·d	42	56
a _{4,t}	[mm]	7·d	42	56
a _{4,c}	[mm]	3·d	18	24

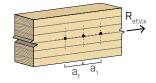
 α = Winkel zwischen Kraft- und Faserrichtung

 $d = d_1 = Nenndurchmesser Schraube$

beanspruchtes Hirnholzende $-90^{\circ} < \alpha < 90^{\circ}$

unbeanspruchtes Hirnholzende $90^{\circ} < \alpha < 270^{\circ}$

beanspruchter Rand $0^{\circ} < \alpha < 180^{\circ}$


unbeanspruchter Rand $180^{\circ} < \alpha < 360^{\circ}$

ANMERKUNGEN auf Seite 91.

■ WIRKSAME SCHRAUBENANZAHL BEI ABSCHERBEANSPRUCHUNG

Die Tragfähigkeit einer Verbindung mit mehreren Schrauben vom gleichen Typ und mit gleicher Größe kann kleiner sein als die Summe der Tragfähigkeiten des einzelnen Verbindungsmittels. Für eine Reihe von n parallel zur Faserrichtung des Holzes in einem Abstand a_1 angeordnete Schrauben entspricht die effektive charakteristische Tragfähigkeit:

$$R_{ef,V,k} = n_{ef} \cdot R_{V,k}$$

Der Wert von n_{ef} ist in der folgenden Tabelle abhängig von n und a₁ aufgeführt.

							a ₁ (*)					
		4·d	5·d	6·d	7·d	8·d	9·d	10 ⋅d	11-d	12·d	13·d	≥ 14·d
	2	1,41	1,48	1,55	1,62	1,68	1,74	1,80	1,85	1,90	1,95	2,00
n	3	1,73	1,86	2,01	2,16	2,28	2,41	2,54	2,65	2,76	2,88	3,00
	4	2,00	2,19	2,41	2,64	2,83	3,03	3,25	3,42	3,61	3,80	4,00
	5	2.24	2.49	2.77	3.09	3.34	3.62	3.93	4,17	4.43	4.71	5,00

 $[\]overline{(\star)}$ Für Zwischenwerte \mathbf{a}_1 ist eine lineare Interpolation möglich.

				SCHEF	RWERT		z	UGKRÄFTE
	Geon	netrie		Holz-Holz ε=90°	Uolaworkstoffniatto-Uola		Gewindeauszug	Kopfdurchzug
			Ā		Nag of	→		
d_1	L	b	Α	R _{V,90,k}	S _{PAN}	$R_{V,k}$	R _{ax,90,k}	R _{head,k}
[mm]	[mm]	[mm]	[mm]	[kN]	[mm]	[kN]	[kN]	[kN]
	80	50	30	2,07		1,92	3,89	3,37
	100	60	40	2,31		2,64	4,66	3,37
6	120	75	45	2,33	50	2,70	5,83	3,37
	140	80	60	2,33		2,70	6,22	3,37
	160	90	70	2,33		2,70	6,99	3,37
	180	100	80	3,57		4,10	10,36	5,06
	200	100	100	3,57		4,10	10,36	5,06
	220	100	120	3,57		4,10	10,36	5,06
	240	100	140	3,57		4,10	10,36	5,06
	260	100	160	3,57		4,10	10,36	5,06
8	280	100	180	3,57	65	4,10	10,36	5,06
0	300	100	200	3,57	03	4,10	10,36	5,06
	320	120	200	3,57		4,10	12,43	5,06
	340	120	220	3,57		4,10	12,43	5,06
	360	120	240	3,57		4,10	12,43	5,06
	380	120	260	3,57		4,10	12,43	5,06
	400	120	280	3,57		4,10	12,43	5,06

STATISCHE WERTE

ALLGEMEINE GRUNDLAGEN

- Die charakteristischen Werte entsprechen der Norm EN 1995:2014.
- Die Bemessungswerte werden aus den charakteristischen Werten wie folgt berechnet:

$$R_d = \frac{R_k \cdot k_{mod}}{\gamma_M}$$

Die Beiwerte γ_M und $k_{\mbox{\footnotesize{mod}}}$ sind aus der entsprechenden geltenden Norm zu übernehmen, die für die Berechnung verwendet wird.

- Werte für mechanische Festigkeit und Geometrie der Schrauben gemäß CE-Kennzeichnung nach EN 14592.
- Die Bemessung und Überprüfung der Holzelemente, der Platten und Metallplatten müssen separat durchgeführt werden.
- Die charakteristischen Scherfestigkeitswerte wurden bei eingeschraubten Schrauben ohne Vorbohrung bewertet. Mit vorgebohrten Schrauben können höhere Festigkeitswerte erreicht werden
- · Die tabellarischen Werte sind unabhängig vom Kraft-Faser-Winkel.
- Für die Positionierung der Schrauben sind die Mindestabstände zu berücksichtigen
- Die charakteristischen Holzwerkstoffplatte-Holz-Scherfestigkeitswerte wurden für eine OSB3- oder OSB4-Platte gemäß EN 300 oder für eine Spanplatte gemäß EN 312 mit einer Stärke Span berechnet.
- Die charakteristischen Gewindeauszugswerte wurden unter Berücksichtigung einer Einschraubtiefe b berechnet
- Die charakteristische Kopfdurchzugsfestigkeit wurden für ein Element aus Holz oder auf Holzbasis berechnet.

ANMERKUNGEN

- Die charakteristischen Holz-Holz-Scherfestigkeitswerte wurden unter Berücksichtigung eines Winkels ϵ von 90° zwischen Fasern des zweiten Elements und dem Verbinder berechnet.
- Die charakteristischen Holzwerkstoffplatte-Holz-Scherfestigkeitswerte wurden unter Berücksichtigung eines Winkels ε von 90° zwischen Fasern des Holzelements und dem Verbinder berechnet.
- Der charakteristische Gewindeauszugswert wurde mit einem Winkel ϵ von 90° zwischen Fasern des Holzelements und dem Verbinder berechnet.
- Bei der Berechnung wurde eine Rohdichte der Holzelemente von ρ_k = 385 kg/ m³ berücksichtigt.

Für andere ρ_k -Werte können die aufgelisteten Festigkeitswerte (Holz-Holz-Scherfestigkeit, Stahl-Holz Scherfestigkeit und Zugkraft) mithilfe des k_{dens}-Beiwerts umgerechnet werden.

$$\begin{aligned} R'_{V,k} &= k_{dens,v} \cdot R_{V,k} \\ R'_{ax,k} &= k_{dens,ax} \cdot R_{ax,k} \\ R'_{head,k} &= k_{dens,ax} \cdot R_{head,k} \end{aligned}$$

0,92

k_{dens,ax}

0,98

Die so ermittelten Festigkeitswerte können zugunsten der Sicherheit von denen abweichen, die sich aus einer genauen Berechnung ergeben.

1,04

1,00

MINDESTABSTÄNDE

ANMERKUNGEN

- Die Mindestabstände werden gemäß der Norm DIN 1995:2014 berechnet.
- Bei Holzwerkstoffplatten-Verbindungen können die Mindestabstände (a1, a2) mit einem Koeffizienten von 0,85 multipliziert werden.

440

TBS MAX

TELLERKOPFSCHRAUBE XL

VERGRÖSSERTER TELLERKOPF

Der vergrößerte große Tellerkopf garantiert einen ausgezeichneten Kopfdurchzugswert und eine ausgezeichnete Befestigung der Verbindung.

LÄNGERES GEWINDE

Das vergrößerte Gewinde der TBS MAX garantiert optimale Auszugsfestigkeit und Verschließen der Verbindung.

RIPPENDECKEN

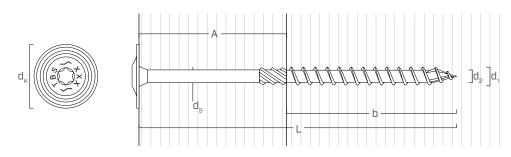
Dank des vergrößerten großen Tellerkopfs und des vergrößerten Gewindes ist es die ideale Schraube für die Herstellung von Rippendecken (ripped floor). In Verbindung mit SHARP METAL optimiert das Produkt die Anzahl der Befestigungen und vermeidet den Einsatz von Pressen beim Verkleben der Holzelemente.

SPITZE 3 THORNS

Dank der Spitze 3 THORNS werden die Mindestabstände reduziert. Mehr Schrauben können auf geringerem Raum und größere Schrauben in kleineren Elementen verwendet werden.

Die Kosten und der Zeitaufwand für die Umsetzung des Projekts verringern sich.

ANWENDUNGSGEBIETE


- Holzwerkstoffplatten
- Span- und MDF-Platten
- SIP- und Rippenplatten.
- Massiv- und Brettschichtholz
- BSP und LVL
- Harthölzer

ARTIKELNUMMERN UND ABMESSUNGEN

d_1	d_K	ARTNR.	L	b	Α	Stk.
[mm]	[mm]		[mm]	[mm]	[mm]	
		TBSMAX8120	120	100	20	50
0		TBSMAX8160	160	120	40	50
8 TX 40	24,5	TBSMAX8180	180	120	60	50
17.40		TBSMAX8200	200	120	80	50
		TBSMAX8220	220	120	100	50

d_1	d_K	ARTNR.	L	b	Α	Stk.
[mm]	[mm]		[mm]	[mm]	[mm]	
		TBSMAX8240	240	120	120	50
0		TBSMAX8280	280	120	160	50
8 TX 40	24,5	TBSMAX8320	320	120	200	50
17.40		TBSMAX8360	360	120	240	50
		TBSMAX8400	400	120	280	50

GEOMETRIE UND MECHANISCHE EIGENSCHAFTEN

GEOMETRIE

Nenndurchmesser	d_1	[mm]	8
Kopfdurchmesser	d_K	[mm]	24,50
Kerndurchmesser	d_2	[mm]	5,40
Schaftdurchmesser	d _S	[mm]	5,80
Vorbohrdurchmesser ⁽¹⁾	d _{V.S}	[mm]	5,0
Vorbohrdurchmesser ⁽²⁾	d _{V,H}	[mm]	6,0

MECHANISCHE KENNGRÖSSEN

Nenndurchmesser	d ₁ [ı	mm] 8	
Zugfestigkeit	f _{tens,k} [F	kN] 20,	.1
Fließmoment	M _{v/k} []	Nml 20.	.1

			Nadelholz (Softwood)	LVL aus Nadelholz (LVL Softwood)	LVL aus Buche, vorgebohrt (Beech LVL predrilled)
Charakteristischer Wert der Ausziehfestigkeit	f _{ax,k}	[N/mm²]	11,7	15,0	29,0
Charakteristischer Durchziehparameter	f _{head,k}	[N/mm ²]	10,5	20,0	-
Assoziierte Dichte	ρ_{a}	[kg/m ³]	350	500	730
Rohdichte	$ ho_k$	[kg/m³]	≤ 440	410 ÷ 550	590 ÷ 750

Für Anwendungen mit anderen Materialien siehe ETA-11/0030.

TBS MAX FÜR RIB TIMBER

Das längere Gewinde (120 mm) und der breitere Kopf (24,5 mm) von TBS MAX garantieren ein optimales Klemmvermögen und Verschluss der Verbindung. Ideal zur Herstellung von Rippendecken (ribbed floor), um die Anzahl der Befestigungen zu optimieren.

SHARP METAL

Der größere Tellerkopf ist ideal in Verbindung mit dem SHARP METAL System, weil er eine ausgezeichnete Befestigung der Verbindung garantiert und keine Pressen beim Verkleben der Holzelemente benötigt werden.

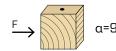
⁽¹⁾ Vorbohrung gültig für Nadelholz (Softwood).
(2) Vorbohrung gültig für Harthölzer (Hardwood) und für LVL aus Buchenholz.

MINDESTABSTÄNDE DER SCHRAUBEN BEI ABSCHERBEANSPRUCHUNG | HOLZ

Schraubenabstände OHNE Vorbohrung

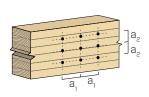
 $\rho_k \leq 420 \; kg/m^3$

d_1	[mm]		8
a ₁	[mm]	10·d	80
a ₂	[mm]	5·d	40
a _{3,t}	[mm]	15·d	120
a _{3,c}	[mm]	10 ⋅d	80
a _{4,t}	[mm]	5·d	40
a _{4,c}	[mm]	5·d	40


d_1	[mm]		8
a ₁	[mm]	5·d	40
a ₂	[mm]	5·d	40
a _{3,t}	[mm]	10·d	80
a _{3,c}	[mm]	10 ⋅d	80
a _{4,t}	[mm]	10 ⋅d	80
a _{4,c}	[mm]	5·d	40

 $d = d_1 = Nenndurchmesser Schraube$

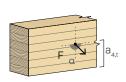
Schraubenabstände VORGEBOHRT



d_1	[mm]		8
a ₁	[mm]	5·d	40
a ₂	[mm]	3·d	24
a _{3,t}	[mm]	12·d	96
a _{3,c}	[mm]	7·d	56
a _{4,t}	[mm]	3·d	24
a ₄ c	[mm]	3·d	24

d ₁	[mm]		8
a ₁	[mm]	4·d	32
a ₂	[mm]	4·d	32
a _{3,t}	[mm]	7·d	56
a _{3,c}	[mm]	7-d	56
a _{4,t}	[mm]	7·d	56
a _{4,c}	[mm]	3·d	24

 $d = d_1 = Nenndurchmesser Schraube$


beanspruchtes Hirnholzende $-90^{\circ} < \alpha < 90^{\circ}$

unbeanspruchtes Hirnholzende 90° < a < 270°

beanspruchter Rand $0^{\circ} < \alpha < 180^{\circ}$

unbeanspruchter Rand $180^{\circ} < \alpha < 360^{\circ}$

ANMERKUNGEN


- Die Mindestabstände wurden nach EN 1995:2014 und in Übereinstimmung mit der ETA-11/0030 berechnet und beziehen sich auf eine Rohdichte der Holzelemente von $\rho_k \leq 420 \; \text{kg/m}^3.$
- Bei Holzwerkstoffplatten-Verbindungen können die Mindestabstände (a₁, a₂) mit einem Koeffizienten von 0,85 multipliziert werden.
- Bei Verbindungen von Elementen aus Douglasienholz (Pseudotsuga menziesii) müssen die Mindestabstände und die minimalen, parallelen Abstände zur Faser mit dem Koeffizienten 1,5 multipliziert werden.
- Der Abstand a_1 , aufgelistet für Schrauben mit Spitze 3 THORNS, eingeschraubt ohne Vorbohrung in Holzelemente mit Dichte $\rho_k \leq 420 \text{ kg/m}^3$ und Winkel zwischen Kraft- und Faserrichtung $\alpha=0^\circ$, wurde auf der Grundlage experimenteller Untersuchungen mit $10\cdot d$ angenommen; wahlweise können $12\cdot d$ gemäß EN 1995:2014 übernommen werden.

SHARP METAL

HAKENBAND AUS STAHL

Die Verbindung zwischen den beiden Holzelementen wird durch das mechanische Einrasten der Metallhaken im Holz hergestellt. Demontierbares und nicht-invasives System.

www.rothoblaas.de

 $[\]alpha$ = Winkel zwischen Kraft- und Faserrichtung

 $[\]alpha$ = Winkel zwischen Kraft- und Faserrichtung

					SCHERWERT			ZUGKRÄFTE			
Geometrie		Holz-Holz ε=90°	Holz-Holz ε=0°			Gewindeauszug ε=90°	Gewindeauszug ε=0°	Kopfdurchzug			
				Span							
d_1	L	b	Α	R _{V,90,k}	R _{V,0,k}	S _{PAN}	$R_{V,k}$	R _{ax,90,k}	R _{ax,0,k}	R _{head,k}	
[mm]	[mm]	[mm]	[mm]	[kN]	[kN]	[mm]	[kN]	[kN]	[kN]	[kN]	
	120	100	20	2,71	2,17		4,27	10,10	3,03	9,72	
	160	120	40	4,78	2,84		5,28	12,12	3,64	9,72	
	180	120	60	5,11	2,94		5,28	12,12	3,64	9,72	
	200	120	80	5,11	2,94		5,28	12,12	3,64	9,72	
8	220	120	100	5,11	2,94	65	5,28	12,12	3,64	9,72	
0	240	120	120	5,11	2,94	03	5,28	12,12	3,64	9,72	
	280	120	160	5,11	2,94		5,28	12,12	3,64	9,72	
	320	120	200	5,11	2,94		5,28	12,12	3,64	9,72	
	360	120	240	5,11	2,94		5,28	12,12	3,64	9,72	
	400	120	280	5,11	2,94		5,28	12,12	3,64	9,72	

 ε = Winkel zwischen Schraube und Faserrichtung

ANMERKUNGEN | HOLZ

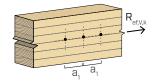
- Die charakteristischen Holz-Holz-Scherfestigkeitswerte wurden unter Berücksichtigung eines Winkels ε sowohl von 90° (R_{V,90,k}) als auch 0° (R_{V,0,k}) zwischen den Fasern des zweiten Elements und dem Verbinder berechnet.
 Die charakteristischen Holzwerkstoffplatte-Holz-Scherfestigkeitswerte
- Die charakteristischen Holzwerkstoffplatte-Holz-Scherfestigkeitswerte wurden unter Berücksichtigung eines Winkels ϵ von 90° zwischen Fasern des Holzelements und dem Verbinder berechnet.
- Die charakteristischen Gewindeauszugswerte wurden unter Berücksichtigung eines Winkels ϵ sowohl von 90° ($R_{ax,90,k}$) als auch 0° ($R_{ax,0,k}$) zwischen den Fasern des Holzelements und dem Verbinder berechnet.
- Bei der Berechnung wurde eine Rohdichte der Holzelemente von $\rho_k=385~{\rm kg/m^3}$ berücksichtigt.

Für andere ρ_k -Werte können die aufgelisteten Festigkeitswerte (Holz-Holz-Scher- und Zugfestigkeit) mithilfe des k $_{dens}$ -Beiwerts umgerechnet werden.

$$R'_{V,k} = k_{dens,v} \cdot R_{V,k}$$

$$R'_{ax,k} = k_{dens,ax} \cdot R_{ax,k}$$

$$R'_{head,k} = K_{dens,ax} \cdot R_{head,k}$$


ρ_k [kg/m³]	350	380	385	405	425	430	440
C-GL	C24	C30	GL24h	GL26h	GL28h	GL30h	GL32h
k _{dens,v}	0,90	0,98	1,00	1,02	1,05	1,05	1,07
k _{dens av}	0.92	0.98	1.00	1.04	1.08	1.09	1.11

Die so ermittelten Festigkeitswerte können zugunsten der Sicherheit von denen abweichen, die sich aus einer genauen Berechnung ergeben.

ALLGEMEINE GRUNDLAGEN auf Seite 97.

■ WIRKSAME SCHRAUBENANZAHL BEI ABSCHERBEANSPRUCHUNG

Die Tragfähigkeit einer Verbindung mit mehreren Schrauben vom gleichen Typ und mit gleicher Größe kann kleiner sein als die Summe der Tragfähigkeiten des einzelnen Verbindungsmittels. Für eine Reihe von n parallel zur Faserrichtung des Holzes in einem Abstand a_1 angeordnete Schrauben entspricht die effektive charakteristische Tragfähigkeit:

$$R_{ef,V,k} = n_{ef} \cdot R_{V,k}$$

Der Wert von n_{ef} ist in der folgenden Tabelle abhängig von n und a₁ aufgeführt.

							a ₁ (*)					
		4·d	5·d	6·d	7·d	8·d	9·d	10 ⋅d	11·d	12·d	13·d	≥ 14·d
	2	1,41	1,48	1,55	1,62	1,68	1,74	1,80	1,85	1,90	1,95	2,00
n	3	1,73	1,86	2,01	2,16	2,28	2,41	2,54	2,65	2,76	2,88	3,00
"	4	2,00	2,19	2,41	2,64	2,83	3,03	3,25	3,42	3,61	3,80	4,00
	5	2,24	2,49	2,77	3,09	3,34	3,62	3,93	4,17	4,43	4,71	5,00

^(*)Für Zwischenwerte a_1 ist eine lineare Interpolation möglich.

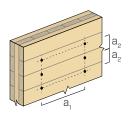
					SCHEF	RWERT				
Geometrie				BSP-BSP BSP - BSP Platte - BSP lateral face lateral face lateral face				BSP - Platte - BSP lateral face		
						Span		t S _{PAN}		
d ₁	L	b	Α	$R_{V,k}$	$R_{V,k}$	S _{PAN}	$R_{V,k}$	S _{PAN}	t	$R_{V,k}$
[mm]	[mm]	[mm]	[mm]	[kN]	[kN]	[mm]	[kN]	[mm]	[mm]	[kN]
	120	100	20	2,46	2,46		3,64		45	3,64
	160	120	40	4,43	3,71		3,64		65	3,64
	180	120	60	4,81	3,99		3,64		75	3,64
	200	120	80	4,81	3,99		3,64		85	3,64
8	220	120	100	4,81	3,99	22	3,64	22	95	3,64
	240	120	120	4,81	3,99		3,64		105	3,64
	280	120	160	4,81	3,99		3,64		125	3,64
	320	120	200	4,81	3,99		3,64		145	3,64
	360	120	240	4,81	3,99		3,64		165	3,64

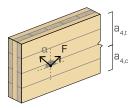
					SCHERWERT	ZUGKRÄFTE			
Geometrie				BSP - Holz lateral face	Holz - BSP narrow face	Gewindeauszug lateral face			
					——————————————————————————————————————				
d ₁	L	b	Α	$R_{V,k}$	$R_{V,k}$	R _{ax,k}	$R_{ax,k}$	$R_{head,k}$	
[mm]	[mm]	[mm]	[mm]	[kN]	[kN]	[kN]	[kN]	[kN]	
	120	100	20	2,46	2,71	9,36	6,66	9,00	
	160	120	40	4,50	3,91	11,23	7,85	9,00	
	180	120	60	4,87	4,02	11,23	7,85	9,00	
	200	120	80	4,87	4,02	11,23	7,85	9,00	
8	220	120	100	4,87	4,02	11,23	7,85	9,00	
	240	120	120	4,87	4,02	11,23	7,85	9,00	
	280	120	160	4,87	4,02	11,23	7,85	9,00	
	320	120	200	4,87	4,02	11,23	7,85	9,00	
	360	120	240	4,87	4,02	11,23	7,85	9,00	

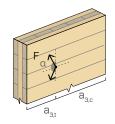
MINDESTABSTÄNDE DER SCHRAUBEN BEI SCHERBEANSPRUCHUNG UND AXIALER BEANSPRUCHUNG | BSP

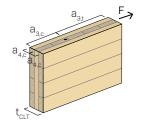
Schraubenabstände OHNE Vorbohrung

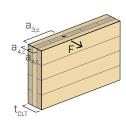
lateral face


d_1	[mm]		8
a ₁	[mm]	4·d	32
a ₂	[mm]	2,5·d	20
a _{3,t}	[mm]	6·d	48
a _{3,c}	[mm]	6·d	48
a _{4,t}	[mm]	6·d	48
a _{4.c}	[mm]	2,5·d	20




narrow face


d_1	[mm]		8
a ₁	[mm]	10·d	80
a ₂	[mm]	4·d	32
a _{3,t}	[mm]	12·d	96
a _{3,c}	[mm]	7·d	56
a _{4,t}	[mm]	6·d	48
a _{4,c}	[mm]	3·d	24


 $d = d_1 = Nenndurchmesser Schraube$

ANMERKUNGEN

- Die Mindestabstände sind gemäß ETA-11/0030 und sind gültig, falls keine anderen Angaben in den technischen Unterlagen der BSP-Bretter angegeben sind.
- Die Mindestabstände gelten für die Mindestdicke BSP t_{CLT,min} = 10·d₁.
- Die auf "narrow face" bezogenen Mindestabstände gelten für die minimale Durchzugtiefe der Schraube $t_{\mbox{\footnotesize pen}}=10\cdot d_1.$

STATISCHE WERTE

ALLGEMEINE GRUNDLAGEN

- Die charakteristischen Werte entsprechen der EN 1995:2014 Norm in Übereinstimmung mit dem ETA-11/0030.
- Die Bemessungswerte werden aus den charakteristischen Werten wie folgt berechnet:

$$R_d = \frac{R_k \cdot k_{mod}}{\gamma_M}$$

Die Beiwerte γ_M und $k_{\mbox{mod}}$ sind aus der entsprechenden geltenden Norm zu übernehmen, die für die Berechnung verwendet wird.

- Bei den Werten für die mechanische Festigkeit und die Geometrie der Schrauben wurde auf die Angaben in der ETA-11/0030 Bezug genommen.
- Die Bemessung und Überprüfung der Holzelemente und der Paneele müssen separat durchgeführt werden.
- Die charakteristischen Scherfestigkeitswerte wurden bei eingeschraubten Schrauben ohne Vorbohrung bewertet. Mit vorgebohrten Schrauben können höhere Festigkeitswerte erreicht werden.
- Für die Positionierung der Schrauben sind die Mindestabstände zu berücksichtigen.
- Die charakteristischen Holzwerkstoffplatte-Holz-Scherfestigkeitswerte wurden für eine OSB-Platte oder eine Spanplatte mit einer Stärke S_{PAN} angegeben.
- Die charakteristischen Gewindeauszugswerte wurden unter Berücksichtigung einer Einschraubtiefe b berechnet.
- Die charakteristische Kopfdurchzugsfestigkeit wurden für ein Element aus Holz oder auf Holzbasis berechnet.
- Für weitere Berechnungen steht die kostenlose Software MyProject zur Verfügung (www.rothoblaas.de).

ANMERKUNGEN | BSP

- Die charakteristischen Werte entsprechen den nationalen Spezifikationen ÖNORM EN 1995 - Annex K.
- Bei der Berechnung wurde eine Rohdichte für die BSP-Elemente von $\rho_k=350~kg/m^3$ und für Holzelemente mit $\rho_k=385~kg/m^3$ bedacht.
- Die charakteristischen Scherfestigkeitswerte berechnen sich unter Berücksichtigung der minimalen Eindringtiefe der Schraube von 4-d₁.
- Der charakteristische Scherfestigkeitswert ist unabhängig von der Faserrichtung der äußeren Holzschicht der BSP-Platte.
- Die axiale Auszugsfestigkeit des Gewindes gilt unter Einhaltung der BSP-Mindeststärke von $t_{CLT,min}=10\cdot d_1$ und einer Mindesteindringtiefe der Schraube von $t_{pen}=10\cdot d_1$.

TBS FRAME

TELLERBAUSCHRAUBE

GROSSER TELLERKOPF

Der große Tellerkopf garantiert eine ausgezeichnete Befestigung der Verbindung; die flache Form ermöglicht eine Verbindung ohne zusätzliche Stärken auf der Holzoberfläche, sodass die Platten ohne Hindernisse am selben Element befestigt werden können.

KURZES GEWINDE

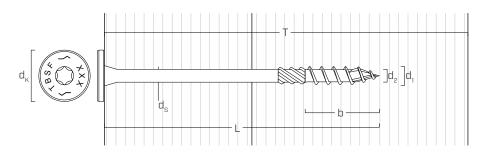
Das kurze Gewinde mit einer festen Länge von $1\,1/3$ " (34 mm) ist für die Befestigung von Mehrschichtplatten (Multi-ply) für die leichte Rahmenkonstruktion optimiert.

SCHWARZES E-COATING

Beschichtet mit schwarzem E-Coating für eine einfache Erkennung auf der Baustelle und erhöhte Korrosionsbeständigkeit.

SPITZE 3 THORNS

Die TBSF lässt sich einfach und ohne Vorbohren montieren. Mehr Schrauben können auf geringerem Raum und größere Schrauben in kleineren Elementen verwendet werden.


ANWENDUNGSGEBIETE

- Holzwerkstoffplatten
- Massiv- und Brettschichtholz
- BSP und LVL
- Harthölzer
- Mehrschicht-Fachwerkholzträger

ARTIKELNUMMERN UND ABMESSUNGEN

d ₁	d_K	ARTNR.	L	b	Т	L	b	T	Stk.
[mm]	[mm]		[mm]	[mm]	[mm]	[in]	[in]	[in]	
		TBSF873	73	34	76	2 7/8''	1 5/16''	3"	50
		TBSF886	86	34	90	3 3/8"	1 5/16''	3 1/2"	50
•		TBSF898	98	34	102	3 7/8"	1 5/16''	4''	50
8 TX 40	19	TBSF8111	111	34	114	4 3/8''	1 5/16''	4 1/2"	50
17.40		TBSF8130	130	34	134	5 1/8''	1 5/16''	5 1/4"	50
		TBSF8149	149	34	152	5 7/8"	1 5/16''	6''	50
		TBSF8175	175	34	178	6 7/8''	1 5/16''	7''	50

GEOMETRIE UND MECHANISCHE EIGENSCHAFTEN

Nenndurchmesser	d_1	[mm]	8
Kopfdurchmesser	d_K	[mm]	19,00
Kerndurchmesser	d_2	[mm]	5,40
Schaftdurchmesser	d_S	[mm]	5,80
Vorbohrdurchmesser ⁽¹⁾	$d_{V,S}$	[mm]	5,0
Vorbohrdurchmesser ⁽²⁾	$d_{V,H}$	[mm]	6,0
Charakteristischer Zugwiderstand	$f_{tens,k}$	[kN]	20,1
Charakteristisches Fließmoment	$M_{y,k}$	[Nm]	20,1

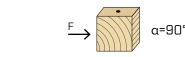
⁽¹⁾ Vorbohrung gültig für Nadelholz (Softwood). (2) Vorbohrung gültig für Harthölzer (Hardwood) und für LVL aus Buchenholz.

			Nadelholz (Softwood)	LVL aus Nadelholz (LVL Softwood)	LVL aus Buche, vorgebohrt (Beech LVL predrilled)
Charakteristischer Wert der Auszugsfestigkeit	f _{ax,k}	[N/mm ²]	11,7	15,0	29,0
Charakteristischer Durchziehparameter	f _{head,k}	[N/mm ²]	10,5	20,0	-
Assoziierte Dichte	ρ_{a}	[kg/m ³]	350	500	730
Rohdichte	ρ_k	[kg/m ³]	≤ 440	410 ÷ 550	590 ÷ 750

Für Anwendungen mit anderen Materialien siehe ETA-11/0030.

MEHRSCHICHT-FACHWERK

Das Produkt ist in optimierten Längen für die Befestigung von Fachwerkelementen mit 2, 3 und 4 Schichten der gängigsten Abmessungen von Massivholz und LVL erhältlich.


■ MINDESTABSTÄNDE DER SCHRAUBEN BEI ABSCHERBEANSPRUCHUNG | HOLZ

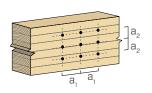
Schraubenabstände OHNE Vorbohrung

 $\rho_k \leq 420 \; kg/m^3$

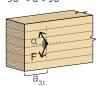
d_1	[mm]		8
a ₁	[mm]	10 ⋅d	80
a ₂	[mm]	5·d	40
a _{3,t}	[mm]	15·d	120
a _{3,c}	[mm]	10·d	80
a _{4.t}	[mm]	5·d	40
a _{4,c}	[mm]	5·d	40

d_1	[mm]		8
a ₁	[mm]	5·d	40
a ₂	[mm]	5·d	40
a _{3,t}	[mm]	10 ⋅d	80
a _{3,c}	[mm]	10 ⋅d	80
		10 ⋅d	80
	[mm]	5·d	40

Schraubenabstände VORGEBOHRT

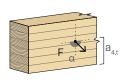


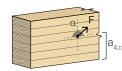
d_1	[mm]		8
a_1	[mm]	5·d	40
a ₂	[mm]	3·d	24
a _{3,t}	[mm]	12·d	96
a _{3.c}	[mm]	7∙d	56
		3·d	24
		3·d	24


d_1	[mm]		8
a_1	[mm]	4·d	32
a ₂	[mm]	4·d	32
a _{3,t}	[mm]	7∙d	56
a _{3,c}	[mm]	7∙d	56
a _{4,t}	[mm]	7⋅d	56
a _{4,c}	[mm]	3·d	24

α = Winkel zwischen Kraft- und Faserrichtung

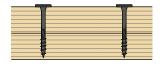
 $d = d_1 = Nenndurchmesser Schraube$


beanspruchtes Hirnholzende -90° < a < 90°

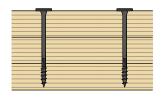

unbeanspruchtes Hirnholzende 90° < α < 270°

beanspruchter Rand 0° < α < 180°

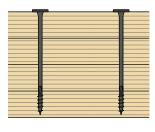
unbeanspruchter Rand $180^{\circ} < \alpha < 360^{\circ}$



ANMERKUNGEN


- Die Mindestabstände werden gemäß der Normen EN 1995:2014 und in Übereinstimmung mit ETA-11/0030 berechnet.
- Bei Verbindungen von Elementen aus Douglasienholz (Pseudotsuga menziesii) müssen die Mindestabstände und die minimalen, parallelen Abstände zur Faser mit dem Koeffizienten 1,5 multipliziert werden.
- Der Abstand a_1 , aufgelistet für Schrauben mit Spitze 3 THORNS, eingeschraubt ohne Vorbohrung in Holzelemente mit Dichte $\rho_k \leq 420 \text{ kg/m}^3$ und Winkel zwischen Kraft- und Faserrichtung $\alpha=0^\circ$, wurde auf der Grundlage experimenteller Untersuchungen mit 10-d angenommen; wahlweise können 12-d gemäß EN 1995:2014 übernommen werden.
- Für Mindestabstände auf LVL siehe TBS auf S. 81.

ANWENDUNGSBEISPIELE: LEICHTER RAHMEN



Schraube: TBSF873 Holzelemente: 2 x 38 mm (1 1/2") Gesamtstärke: 76 mm (3 ")

Schraube: TBSF8111 Holzelemente: 3 x 38 mm (1 1/2") Gesamtstärke: 114 mm (4 1/2")

Schraube: TBSF8149 Holzelemente: 4 x 38 mm (1 1/2") Gesamtstärke: 152 mm (6")

							SCHERWERT		ZUGKRÄFTE	
	Geometrie						Holz-Holz ε=90°	Gewindeauszug ε=90°	Gewindeauszug ε=0°	Kopfdurchzug
		d ,			A		→ A A A		↑ <u> </u>	
d ₁	L	b	Т.	T	Α	Α	R _{V,90,k}	R _{ax,90,k}	R _{ax,0,k}	R _{head,k}
[mm]	[mm]	[mm]	[mm]	[in]	[mm]	[in]	[kN]	[kN]	[kN]	[kN]
	73	34	76	3''	38	1 1/2"	2,91	3,43	1,03	4,09
	86	34	90	3 1/2"	45	1 3/4"	3,27	3,43	1,03	4,09
	98	34	102	4''	51	2"	3,51	3,43	1,03	4,09
8	111	34	114	4 1/2"	57	2 1/4''	3,54	3,43	1,03	4,09
	130	34	134	5 1/4"	67	2 5/8''	3,54	3,43	1,03	4,09
	149	34	152	6''	76	3''	3,54	3,43	1,03	4,09
	175	34	178	7''	89	3 1/2"	3,54	3,43	1,03	4,09

STATISCHE WERTE | LVL

							SCHERWERT	SCHERWERT ZUGKRÄFTE				
		C	ieometri	ie			LVL-LVL ε=90°	Gewindeauszug ε=90°	Gewindeauszug ε=0°	Kopfdurchzug		
					A		→ A A					
d ₁ [mm]	L [mm]	b [mm]	T [mm]	T [in]	A [mm]	A [in]	R_{V,90,k} [kN]	R ax,90,k [kN]	R _{ax,0,k} [kN]	R _{head,k} [kN]		
[]	73	34	76	3''	38	1 1/2"	3,54	3,95	2,63	6,99		
	86	34	90	3 1/2"	45	1 3/4''	3,90	3,95	2,63	6,99		
	98	34	102	4''	51	2"	3,98	3,95	2,63	6,99		
8	111	34	114	4 1/2"	57	2 1/4''	3,98	3,95	2,63	6,99		
	130	34	134	5 1/4''	67	2 5/8"	3,98	3,95	2,63	6,99		
	149	34	152	6''	76	3''	3,98	3,95	2,63	6,99		
	175	34	178	7''	89	3 1/2"	3,98	3,95	2,63	6,99		

ε = Winkel zwischen Schraube und Faserrichtung

ALLGEMEINE GRUNDLAGEN

- Die charakteristischen Werte werden gemäß der Norm EN 1995:2014 und in Übereinstimmung mit ETA-11/0030 berechnet.
- Die Bemessungswerte werden aus den charakteristischen Werten wie folgt berechnet:

$$R_d = \frac{R_k \cdot k_{mod}}{\gamma_M}$$

Die Beiwerte γ_M und $k_{\mbox{mod}}$ sind aus der entsprechenden geltenden Norm zu übernehmen, die für die Berechnung verwendet wird.

- Bei den Werten für die mechanische Festigkeit und die Geometrie der Schrauben wurde auf die Angaben in der ETA-11/0030 Bezug genommen.
- Die Bemessung und Überprüfung der Holzelemente müssen getrennt durchgeführt werden.
- Für die Positionierung der Schrauben sind die Mindestabstände zu berücksichtigen.
- Die charakteristischen Scherfestigkeitswerte wurden bei eingeschraubten Schrauben ohne Vorbohrung bewertet. Mit vorgebohrten Schrauben können höhere Festigkeitswerte erreicht werden.
- Die charakteristischen Scherfestigkeitswerte wurden unter Berücksichtigung des vollständig in das zweite Element eingedrehten Gewindeteils berechnet.
- Die charakteristischen Gewindeauszugswerte wurden unter Berücksichtigung einer Einschraubtiefe b berechnet
- Die charakteristische Kopfdurchzugsfestigkeit wurden für ein Element aus Holz oder auf Holzbasis berechnet

ANMERKUNGEN | HOLZ

- Die charakteristischen Holz-Holz-Scherfestigkeitswerte wurden unter Berücksichtigung eines Winkels ϵ von 90° ($R_{V,90,k}$) zwischen Fasern des zweiten Elements und dem Verbinder berechnet.
- Die charakteristischen Gewindeauszugswerte wurden unter Berücksichtigung eines Winkels ϵ sowohl von 90° ($R_{ax,90,k}$) als auch 0° ($R_{ax,0,k}$) zwischen den Fasern des Holzelements und dem Verbinder berechnet.
- Bei der Berechnung wurde eine Rohdichte der Holzelemente von ρ_k = 385 kg/m³ berücksichtigt. Für andere pk-Werte können die aufgelisteten Festigkeiten mithilfe des k_{dens}-Beiwerts umgerechnet werden (siehe Seite 87).
- Für eine Reihe von n parallel zur Faserrichtung des Holzes in einem Abstand ${\sf a_1}$ angeordnete Schrauben kann die effektive charakteristische Tragfähigkeit Ref,V,k mittels der wirksamen Anzahl nef berechnet werden (siehe S. 80).

ANMERKUNGEN | LVL

- Bei der Berechnung wurde eine Rohdichte der LVL-Elemente aus Nadelholz (Softwood) von ρ_k = 480 kg/m³ berücksichtigt.
- Die charakteristischen Scherfestigkeitswerte werden für Verbinder berechnet, die auf der Seitenfläche (wide face) eingesetzt werden, wobei für die einzelnen Holzelemente ein Winkel von 90° zwischen dem Verbinder und der Faser, ein Winkel von 90° zwischen Verbinder und Seitenfläche des LVL-Elements und ein Winkel von 0° zwischen der Kraft- und Faserrichtung berücksichtigt wird.
- Der Gewindeauszugswert wurde mit einem Winkel von 90° zwischen Fasern und Verbinder berechnet.

I TBS EVO

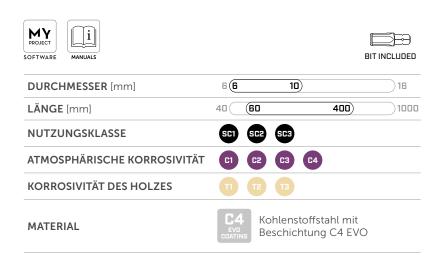
TELLERKOPFSCHRAUBE

BESCHICHTUNG C4 EVO

Mehrschichtige Beschichtung mit Oberflächenbehandlung auf Epoxidharzbasis mit Aluminiumflakes.

Rostfrei nach einem Test von 1440 Stunden nach Exposition in Salzsprühnebel entsprechend ISO 9227. Zur Verwendung im Außenbereich bei Nutzungsklasse 3 und Korrosionskategorie C4.

INTEGRIERTE BEILAGSCHEIBE


Der große Tellerkopf hat die Aufgabe einer Unterlegscheibe und garantiert eine hohe Kopfdurchzugsfestigkeit. Ideal als Windsogsicherung des Holzes.

AUTOKLAVIERTES HOLZ

Die C4 EVO Beschichtung ist nach dem US-Akzeptanzkriterium AC257 für die Verwendung im Freien mit Holz zertifiziert, das einer Behandlung vom Typ ACQ unterzogen wurde.

KORROSIVITÄT DES HOLZES T3

Für Anwendungen auf Hölzern mit einem Säuregehalt (pH-Wert) von mehr als 4, wie Tanne, Lärche und Kiefer, geeignete Beschichtung (siehe S. 314).

ANWENDUNGSGEBIETE

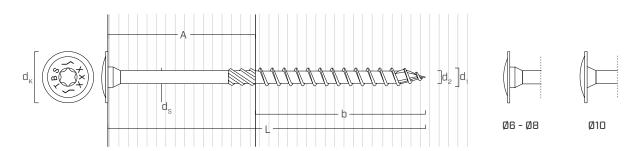
- Holzwerkstoffplatten
- Massiv- und Brettschichtholz
- BSP und LVL
- Harthölzer
- ACQ-, CCA-behandelte Hölzer

LAUFSTEGE IM AUSSENBEREICH

Ideal für den Bau von Konstruktionen im Außenbereich, wie Laufstege und Laubengängen. Die Schraube verfügt ebenfalls über eine Zulassung, wenn sie parallel zur Faser eingesetzt wird. Ideal zur Befestigung von aggressiven Hölzern mit Gerbsäure.

SIP PANELS

Werte auch für BSP und Harthölzer, sowie Furnierschichtholz (LVL) geprüft, zertifiziert und berechnet. Auch für die Befestigung von SIPund Sandwich-Platten.



Befestigung von Holz-Fachwerken im Außenbereich.

Befestigung von Mehrschichtplatten.

GEOMETRIE UND MECHANISCHE EIGENSCHAFTEN

GEOMETRIE

Nenndurchmesser	d ₁ [mm]	6	8	10
Kopfdurchmesser	d _K [mm]	15,50	19,00	25,00
Kerndurchmesser	d ₂ [mm]	3,95	5,40	6,40
Schaftdurchmesser	d _S [mm]	4,30	5,80	7,00
Vorbohrdurchmesser ⁽¹⁾	d _{V,S} [mm]	4,0	5,0	6,0
Vorbohrdurchmesser ⁽²⁾	d _{V.H} [mm]	4,0	6,0	7,0

MECHANISCHE KENNGRÖSSEN

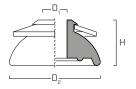
Nenndurchmesser	d_1	[mm]	6	8	10
Zugfestigkeit	f _{tens,k}	[kN]	11,3	20,1	31,4
Fließmoment	$M_{y,k}$	[Nm]	9,5	20,1	35,8

			Nadelholz (Softwood)	LVL aus Nadelholz (LVL Softwood)	LVL aus Buche, vorgebohrt (Beech LVL predrilled)
Charakteristischer Wert der Ausziehfestigkeit	$f_{ax,k}$	[N/mm ²]	11,7	15,0	29,0
Charakteristischer Durchziehparameter	$f_{\text{head},k}$	[N/mm ²]	10,5	20,0	-
Assoziierte Dichte	ρ_{a}	[kg/m ³]	350	500	730
Rohdichte	$ ho_k$	[kg/m³]	≤ 440	410 ÷ 550	590 ÷ 750

Für Anwendungen mit anderen Materialien siehe ETA-11/0030.

⁽¹⁾ Vorbohrung gültig für Nadelholz (Softwood).
(2) Vorbohrung gültig für Harthölzer (Hardwood) und für LVL aus Buchenholz.

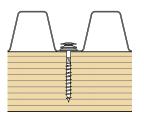
ARTIKELNUMMERN UND ABMESSUNGEN

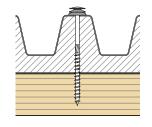

d_1	d_K	ARTNR.	L	b	Α	Stk.
[mm]	[mm]		[mm]	[mm]	[mm]	
		TBSEVO660	60	40	20	100
		TBSEVO680	80	50	30	100
		TBSEVO6100	100	60	40	100
6	15,5	TBSEVO6120	120	75	45	100
TX 30	13,3	TBSEVO6140	140	75	65	100
		TBSEVO6160	160	75	85	100
		TBSEVO6180	180	75	105	100
		TBSEVO6200	200	75	125	100
		TBSEVO8100	100	52	48	50
		TBSEVO8120	120	80	40	50
		TBSEVO8140	140	80	60	50
		TBSEVO8160	160	100	60	50
		TBSEVO8180	180	100	80	50
8	19.0	TBSEVO8200	200	100	100	50
TX 40	19,0	TBSEVO8220	220	100	120	50
		TBSEVO8240	240	100	140	50
		TBSEVO8280	280	100	180	50
		TBSEVO8320	320	100	220	50
		TBSEVO8360	360	100	260	50
		TBSEVO8400	400	100	300	50

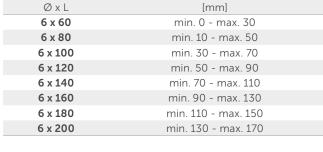
d_1	\mathbf{d}_{K}	ARTNR.	L	b	Α	Stk.
[mm]	[mm]		[mm]	[mm]	[mm]	
	25,0	TBSEVO10120	120	60	60	50
		TBSEVO10140	140	60	80	50
		TBSEVO10160	160	80	80	50
10		TBSEVO10180	180	80	100	50
TX 50	25,0	TBSEVO10200	200	100	100	50
		TBSEVO10220	220	100	120	50
		TBSEVO10240	240	100	140	50
		TBSEVO10280	280	100	180	50

WBAZ-UNTERLEGSCHEIBE

TBS EVO + WBAZ

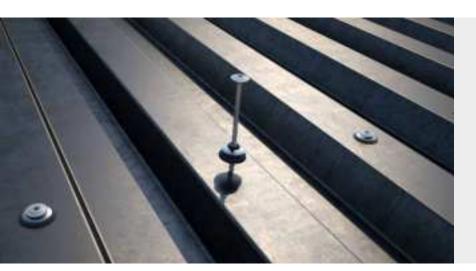





zu befestigendes Paket

ARTNR.	Schraube	D_2	Н	D_1	Stk.
	[mm]	[mm]	[mm]	[mm]	
WBAZ25A2	6,0 - 6,5	25	15	6,5	100

MONTAGE


schrauben

schräg zur Achse

ANMERKUNGEN: Die Stärke der Beilagscheibe beträgt nach der erfolgten Installation ungefähr 8 - 9 mm.

Die maximale Stärke des fixierbaren Pakets wurde so berechnet, dass eine minimale Einschraubtiefe in das Holz von 4-d gewährleistet ist.

BEFESTIGUNG VON BLECHEN

Kann ohne Vorbohrung durch bis 0,7 mm dickes Blech montiert werden. TBS EVO Ø6 mm ideal mit Unterlegscheibe WBAZ. Verwendung im Außenbereich bei Nutzungsklasse 3.

■ MINDESTABSTÄNDE DER SCHRAUBEN BEI ABSCHERBEANSPRUCHUNG

Schraubenabstände OHNE Vorbohrung

 $\rho_k \leq 420 \; kg/m^3$

d_1	[mm]		6	8	10
a ₁	[mm]	10·d	60	80	100
a ₂	[mm]	5·d	30	40	50
a _{3,t}	[mm]	15·d	90	120	150
a _{3,c}	[mm]	10·d	60	80	100
a _{4,t}	[mm]	5·d	30	40	50
a _{4,c}	[mm]	5·d	30	40	50

$F \rightarrow \alpha = 90$	٥°
-----------------------------	----

d_1	[mm]		6	8	10
a ₁	[mm]	5·d	30	40	50
a ₂	[mm]	5·d	30	40	50
a _{3,t}	[mm]	10·d	60	80	100
a _{3,c}	[mm]	10·d	60	80	100
a _{4,t}	[mm]	10·d	60	80	100
a _{4,c}	[mm]	5·d	30	40	50

Schraubenabstände OHNE Vorbohrung

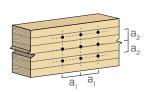
 $420 \text{ kg/m}^3 < \rho_k \le 500 \text{ kg/m}^3$

d_1	[mm]		6	8	10
a ₁	[mm]	15·d	90	120	150
a ₂	[mm]	7·d	42	56	70
a _{3,t}	[mm]	20·d	120	160	200
a _{3,c}	[mm]	15·d	90	120	150
a _{4,t}	[mm]	7·d	42	56	70
a _{4,c}	[mm]	7·d	42	56	70

d_1	[mm]		6	8	10
a ₁	[mm]	7·d	42	56	70
a ₂	[mm]	7·d	42	56	70
a _{3,t}	[mm]	15·d	90	120	150
a _{3,c}	[mm]	15·d	90	120	150
a _{4,t}	[mm]	12·d	72	96	120
a _{4.c}	[mm]	7·d	42	56	70

Schraubenabstände VORGEBOHRT

	α=0°	
Į.		

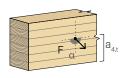

$\stackrel{F}{\longrightarrow}$.=90
---------------------------------	------

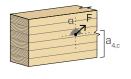
d_1	[mm]		6	8	10
a ₁	[mm]	5·d	30	40	50
a ₂	[mm]	3·d	18	24	30
a _{3,t}	[mm]	12·d	72	96	120
a _{3,c}	[mm]	7·d	42	56	70
a _{4,t}	[mm]	3·d	18	24	30
a _{4,c}	[mm]	3·d	18	24	30

d_1	[mm]		6	8	10
a ₁	[mm]	4·d	24	32	40
a ₂	[mm]	4·d	24	32	40
a _{3,t}	[mm]	7·d	42	56	70
a _{3,c}	[mm]	7·d	42	56	70
a _{4,t}	[mm]	7·d	42	56	70
a _{4,c}	[mm]	3·d	18	24	30

 α = Winkel zwischen Kraft- und Faserrichtung

 $d = d_1 = Nenndurchmesser Schraube$


beanspruchtes Hirnholzende $-90^{\circ} < \alpha < 90^{\circ}$


unbeanspruchtes Hirnholzende 90° < α < 270°

beanspruchter Rand $0^{\circ} < \alpha < 180^{\circ}$

unbeanspruchter Rand $180^{\circ} < \alpha < 360^{\circ}$

ANMERKUNGEN

- Die Mindestabstände werden gemäß der Normen EN 1995:2014 und in Übereinstimmung mit ETA-11/0030 berechnet.
- Bei Holzwerkstoffplatten-Verbindungen können die Mindestabstände (a₁, a₂) mit einem Koeffizienten von 0,85 multipliziert werden.
- Bei Verbindungen von Elementen aus Douglasienholz (Pseudotsuga menziesii) müssen die Mindestabstände und die minimalen, parallelen Abstände zur Faser mit dem Koeffizienten 1,5 multipliziert werden.
- Der Abstand a_1 , aufgelistet für Schrauben mit Spitze 3 THORNS, eingeschraubt ohne Vorbohrung in Holzelemente mit Dichte $\rho_k \leq 420 \text{ kg/m}^3$ und Winkel zwischen Kraft- und Faserrichtung α = 0°, wurde auf der Grundlage experimenteller Untersuchungen mit $10 \cdot d$ angenommen; wahlweise können $12 \cdot d$ gemäß EN 1995 : 2014 übernommen werden.

				SCHERWERT			ZUGKRÄFTE			
Geometrie			Holz-Holz ε=90°	Holz-Holz ε=0°	Holzwerkstoffplatte- Holz		Gewindeauszug ε=90°	Gewindeauszug ε=0°	Kopfdurchzug	
	d,		A			NAM				
d ₁	L [mm]	b [mm]	A [mm]	R_{V,90,k} [kN]	R_{V,0,k} [kN]	S _{PAN} [mm]	R _{V,k} [kN]	R _{ax,90,k} [kN]	R _{ax,0,k} [kN]	R _{head,k} [kN]
[111111]	60	40	20	1,89	1,02	[iiiiii]	- [[X] 4]	3,03	0,91	2,72
	80	50	30	2,15	1,37		2,14	3,79	1,14	2,72
	100	60	40	2,35	1,58		2,50	4,55	1,36	2,72
	120	75	45	2,35	1,69		2,50	5,68	1,70	2,72
6	140	75	65	2,35	1,69	50	2,50	5,68	1,70	2,72
	160	75	85	2,35	1,69		2,50	5,68	1,70	2,72
	180	75	105	2,35	1,69		2,50	5,68	1,70	2,72
	200	75	125	2,35	1,69		2,50	5,68	1,70	2,72
	100	52	48	3,71	1,95		3,22	5,25	1,58	4,09
	120	80	40	3,41	2,54		3,89	8,08	2,42	4,09
	140	80	60	3,71	2,61		3,89	8,08	2,42	4,09
	160	100	60	3,71	2,79		3,89	10,10	3,03	4,09
	180	100	80	3,71	2,79		3,89	10,10	3,03	4,09
	200	100	100	3,71	2,79	65	3,89	10,10	3,03	4,09
8	220	100	120	3,71	2,79	65	3,89	10,10	3,03	4,09
	240	100	140	3,71	2,79		3,89	10,10	3,03	4,09
	280	100	180	3,71	2,79		3,89	10,10	3,03	4,09
	320	100	220	3,71	2,79		3,89	10,10	3,03	4,09
	360	100	260	3,71	2,79		3,89	10,10	3,03	4,09
	400	100	300	3,71	2,79		3,89	10,10	3,03	4,09
	120	60	60	5,64	2,75		-	7,58	2,27	7,08
	140	60	80	5,64	2,75		5,84	7,58	2,27	7,08
	160	80	80	5,64	3,28		5,85	10,10	3,03	7,08
10	180	80	100	5,64	3,28	80	5,85	10,10	3,03	7,08
10	200	100	100	5,64	3,87	00	5,85	12,63	3,79	7,08
	220	100	120	5,64	3,87		5,85	12,63	3,79	7,08
	240	100	140	5,64	3,87		5,85	12,63	3,79	7,08
	280	100	180	5,64	3,87		5,85	12,63	3,79	7,08

ε = Winkel zwischen Schraube und Faserrichtung

ALLGEMEINE GRUNDLAGEN

- Die charakteristischen Werte entsprechen der EN 1995:2014 Norm in Übereinstimmung mit dem ETA-11/0030.
- Die Bemessungswerte werden aus den charakteristischen Werten wie folgt berechnet:

$$R_d = \frac{R_k \cdot k_{mod}}{\gamma_M}$$

Die Beiwerte γ_M und k_{mod} sind aus der entsprechenden geltenden Norm zu übernehmen, die für die Berechnung verwendet wird.

- Bei den Werten für die mechanische Festigkeit und die Geometrie der Schrauben wurde auf die Angaben in der ETA-11/0030 Bezug genommen.
- Die Bemessung und Überprüfung der Holzelemente und der Paneele müssen separat durchgeführt werden.
- Für die Positionierung der Schrauben sind die Mindestabstände zu berücksichtigen.
- Die charakteristischen Scherfestigkeitswerte wurden bei eingeschraubten Schrauben ohne Vorbohrung bewertet. Mit vorgebohrten Schrauben können höhere Festigkeitswerte erreicht werden.
- Die Scherfestigkeitswerte wurden unter Berücksichtigung des vollständig in das zweite Element eingedrehten Gewindeteils berechnet.
- Die charakteristischen Scherfestigkeitswerte wurden für eine OSB-Platte oder eine Spanplatte mit einer Stärke S_{PAN}und einer Dichte von ρ_k = 500 kg/m³ angegeben.
- Die charakteristischen Gewindeauszugswerte wurden unter Berücksichtigung einer Einschraubtiefe b berechnet.

- Die charakteristische Kopfdurchzugsfestigkeit wurden für ein Element aus Holz oder auf Holzbasis berechnet.
- Für Mindestabstände und statische Werte auf BSP und LVL siehe TBS auf S. 76.
- Für weitere Berechnungen steht die kostenlose Software MyProject zur Verfügung (www.rothoblaas.de).

ANMERKUNGEN

- Die charakteristischen Holz-Holz-Scherfestigkeitswerte wurden unter Berücksichtigung eines Winkels ϵ sowohl von 90° (R_{V,90,k}) als auch 0° (R_{V,0,k}) zwischen den Fasern des zweiten Elements und dem Verbinder berechnet.
- Die charakteristischen Holzwerkstoffplatte-Holz-Scherfestigkeitswerte wurden unter Berücksichtigung eines Winkels ε von 90° zwischen Fasern des Holzelements und dem Verbinder berechnet.
- Die charakteristischen Gewindeauszugswerte wurden unter Berücksichtigung eines Winkels ϵ sowohl von 90° (Ra $_{ax,90,k}$) als auch 0° (Ra $_{ax,0,k}$) zwischen den Fasern des Holzelements und dem Verbinder berechnet.
- Bei der Berechnung wurde eine Rohdichte der Holzelemente von ρ_k = 385 kg/m³ berücksichtigt. Für andere ρ_k -Werte können die aufgelisteten Festigkeitswerte (Holz-Holz-
- Für andere ρ_k -Werte können die aufgelisteten Festigkeitswerte (Holz-Holz-Scher- und Zugfestigkeit) mithilfe des k_{dens} -Beiwerts umgerechnet werden (siehe S. 87).
- Für eine Reihe von n parallel zur Faserrichtung des Holzes in einem Abstand a₁ angeordnete Schrauben kann die effektive charakteristische Tragfähigkeit R_{ef,V,k} mittels der wirksamen Anzahl n_{ef} berechnet werden (siehe S. 80).

TBS EVO C5

TELLERKOPFSCHRAUBE

ATMOSPHÄRISCHE KORROSIVITÄT C5

Mehrschichtige Beschichtung, die Außenumgebungen mit C5-Klassifizierung nach ISO 9223 standhält. SST (Salt Spray Test) mit einer Expositionszeit von über 3000 Stunden, durchgeführt an zuvor verschraubten und gelösten Schrauben in Douglasie.

MAXIMALE FESTIGKEIT

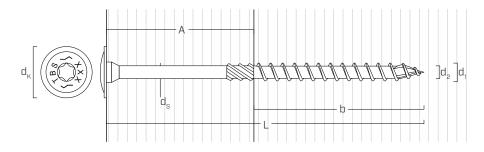
Die richtige Schraube, wenn hohe mechanische Leistung unter sehr ungünstigen Umweltbedingungen und bei Holzkorrosion erforderlich sind. Der großen Tellerkopf garantiert zusätzliche Zugfestigkeit und ist somit ideal bei Wind oder Maßabweichungen des Holzes.

SPITZE 3 THORNS

Dank der Spitze 3 THORNS werden die Mindestabstände reduziert. Mehr Schrauben können auf geringerem Raum und größere Schrauben in kleineren Elementen verwendet werden.

Die Kosten und der Zeitaufwand für die Umsetzung des Projekts verringern sich.

ANWENDUNGSGEBIETE


- Holzwerkstoffplatten
- Massiv- und Brettschichtholz
- BSP und LVL
- Harthölzer

ARTIKELNUMMERN UND ABMESSUNGEN

d_1	d_K	ARTNR.	L	b	Α	Stk.
[mm]	[mm]		[mm]	[mm]	[mm]	
		TBSEVO660C5	60	40	20	100
		TBSEVO680C5	80	50	30	100
		TBSEVO6100C5	100	60	40	100
6	15,5	TBSEVO6120C5	120	75	45	100
TX 30	15,5	TBSEVO6140C5	140	75	65	100
		TBSEVO6160C5	160	75	85	100
		TBSEVO6180C5	180	75	105	100
		TBSEVO6200C5	200	75	125	100

d_1	d_K	ARTNR.	L	b	Α	Stk.
[mm]	[mm]		[mm]	[mm]	[mm]	
	TBSEVO8100C5	100	52	48	50	
		TBSEVO8120C5	120	80	40	50
		TBSEVO8140C5	140	80	60	50
8	19,0	TBSEVO8160C5	160	100	60	50
TX 40	19,0	TBSEVO8180C5	180	100	80	50
		TBSEVO8200C5	200	100	100	50
		TBSEVO8220C5	220	100	120	50
		TBSEVO8240C5	240	100	140	50

■ GEOMETRIE UND MECHANISCHE EIGENSCHAFTEN

Nenndurchmesser	d_1	[mm]	6	8
Kopfdurchmesser	d_K	[mm]	15,50	19,00
Kerndurchmesser	d_2	[mm]	3,95	5,40
Schaftdurchmesser	d_S	[mm]	4,30	5,80
Vorbohrdurchmesser ⁽¹⁾	$d_{V,S}$	[mm]	4,0	5,0
Vorbohrdurchmesser ⁽²⁾	$d_{V,H}$	[mm]	4,0	6,0
Charakteristischer Zugwiderstand	$f_{tens,k}$	[kN]	11,3	20,1
Charakteristisches Fließmoment	$M_{y,k}$	[Nm]	9,5	20,1

⁽¹⁾ Vorbohrung gültig für Nadelholz (Softwood).

⁽²⁾ Vorbohrung gültig für Harthölzer (Hardwood) und für LVL aus Buchenholz.

Charakteristischer Wert der Ausziehfestigkeit	f _{ax,k}	[N/mm²]	Nadelholz (Softwood)	LVL aus Nadelholz (LVL Softwood)	LVL aus Buche, vorgebohrt (Beech LVL predrilled)
Charakteristischer Durchziehparameter	f _{head,k}	[N/mm ²]	10,5	20,0	-
Assoziierte Dichte	ρ_{a}	[kg/m ³]	350	500	730
Rohdichte	ρ_k	[kg/m ³]	≤ 440	410 ÷ 550	590 ÷ 750

Für Anwendungen mit anderen Materialien siehe ETA-11/0030.

Für Mindestabstände und statische Werte siehe TBS EVO auf S. 102.

LIGHT FRAME UND MASS TIMBER

Das große Angebot an Maßen ermöglicht eine Vielzahl von Anwendungen: von leichten Rahmen und Fachwerkträgern bis hin zu Verbindungen von veredelten Bauhölzern wie LVL und CLT in aggressiven Kontexten, wie sie die Korrosionskategorie C5 kennzeichnen.

SCHLÜSSELSCHRAUBE DIN571

CE-KENNZEICHNUNG

Schraube mit CE-Kennzeichnung nach EN 14592.

SECHSKANTKOPF

Dank des Sechskantkopfes eignet sich die Schraube für die Anwendung bei Stahl-Holz-Verbindungen.

AUSFÜHRUNG FÜR AUSSENBEREICHE

Für Anwendungen im Außenbereich (Nutzungsklasse 3) auch aus Edelstahl A2/AISI304 erhältlich.

ANWENDUNGSGEBIETE

- Holzwerkstoffplatten
- Span- und MDF-Platten
- Massivholz
- Brettschichtholz
- BSP, LVL

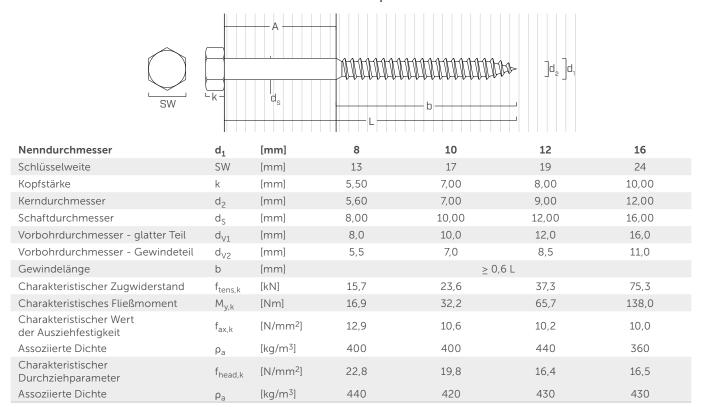
ARTIKELNUMMERN UND ABMESSUNGEN


Money	d_1	ARTNR.	L	Stk.
KOP860 60 100 KOP870 70 100 KOP880 80 100 KOP8100 100 50 KOP8120 120 50 KOP8140 140 50 KOP8180 180 50 KOP8180 180 50 KOP8200 200 50 KOP1050(*) 50 50 KOP1080 80 50 KOP10120 120 50 KOP10140 140 50 KOP10150 150 50 KOP10180 180 50 KOP10180 180 50 KOP10180 180 50 KOP10200 220 50 KOP10240 240 50 KOP10280 280 50 KOP10300 300 50 KOP1250(*) 50 50 KOP1250(*) 50 50 KOP1270(*) 70 50 12 KOP1280 80 50 KOP1270(*) 70 50 12 KOP1280 80 50 KOP1270(*) 70 50 KOP1280 80 50 KOP1280 80 50 KOP1270(*) 70 50 KOP1280 80 50 KO	[mm]		[mm]	
KOP870 70 100 KOP880 80 100 SW 13 KOP8120 120 50 KOP8140 140 50 KOP8160 160 50 KOP8180 180 50 KOP8200 200 50 KOP1050(*) 50 50 KOP10100 100 50 KOP10120 120 50 KOP10140 140 50 KOP10150 150 50 KOP10180 180 50 KOP10180 180 50 KOP10180 180 50 KOP10180 180 50 KOP10200 220 50 KOP10220 220 50 KOP10240 240 50 KOP10260 260 50 KOP10300 300 50 KOP1250(*) 50 50 KOP1250(*) 50 50 KOP1270(*) 70 50 KOP1280 80 50 KOP1270(*) 70 50 KOP1270(*) 70 50 KOP1270(*) 70 50 KOP1270(*) 70 50 KOP1280 80 50 KOP1270(*) 70 50 KOP1270(*) 70 50 KOP1270(*) 70 50 KOP1280 80 50 KOP1270(*) 70 50 KOP1280 80 50		KOP850 ^(*)	50	100
KOP880 80 100		KOP860	60	100
8 SW 13 KOP8100 100 50 SW 13 KOP8120 120 50 KOP8140 140 50 KOP8160 160 50 KOP8180 180 50 KOP8200 200 50 KOP1050(*) 50 50 KOP1060(*) 60 50 KOP1080 80 50 KOP10100 100 50 KOP10120 120 50 KOP10140 140 50 KOP10150 150 50 KOP10180 180 50 KOP10180 180 50 KOP10200 200 50 KOP10240 240 50 KOP10260 260 50 KOP10300 300 50 KOP1250(*) 50 50 KOP1260(*) 60 50 KOP1270(*) 70 50 KOP1280 80 50		KOP870	70	100
SW 13 KOP8120 KOP8140 KOP8160 KOP8160 KOP8180 KOP8200 200 50 KOP1050(*) 50 KOP1060(*) 60 KOP10100 KOP10120 KOP10140 KOP10150 KOP10160 KOP10200 KOP10200 KOP10240 KOP10240 KOP10240 KOP10260 KOP10300 KOP10300 KOP10300 KOP10300 KOP10300 KOP10300 KOP1250(*) KOP1270(*) 70 50 KOP1270(*) 70 50 KOP1270(*) 70 50		KOP880	80	100
KOP8140	8	KOP8100	100	50
KOP8160 160 50 KOP8180 180 50 KOP8200 200 50 KOP1050(*) 50 50 KOP1060(*) 60 50 KOP10100 100 50 KOP10120 120 50 KOP10140 140 50 KOP10150 150 50 KOP10180 180 50 KOP10180 180 50 KOP10180 200 50 KOP10200 220 50 KOP10240 240 50 KOP10260 260 50 KOP10280 280 50 KOP10300 300 50 KOP1250(*) 50 50 KOP1260(*) 60 50 KOP1270(*) 70 50 12 KOP1280 80 50 KOP1270(*) 70 50 12 KOP1280 80 50 KOP1280 80 50 KOP1270(*) 70 50 12 KOP1280 80 50 KOP1280 80 50 KOP1270(*) 70 50 12 KOP1280 80 50 KOP1280 80 50 KOP1270(*) 70 50 KOP1270(*) 70 50 KOP1270(*) 70 50 KOP1270(*) 70 50 KOP1280 80 50 K	SW 13	KOP8120	120	50
KOP8180 180 50 KOP8200 200 50 KOP1050(*) 50 50 KOP1060(*) 60 50 KOP1080 80 50 KOP10100 100 50 KOP10120 120 50 KOP10140 140 50 KOP10150 150 50 KOP10180 180 50 KOP10200 200 50 KOP10220 220 50 KOP10240 240 50 KOP10280 280 50 KOP10300 300 50 KOP1250(*) 50 50 KOP1260(*) 60 50 KOP1270(*) 70 50 12 KOP1280 80 50		KOP8140	140	50
KOP8200 200 50 KOP1050(*) 50 50 KOP1060(*) 60 50 KOP1080 80 50 KOP10100 100 50 KOP10120 120 50 KOP10140 140 50 KOP10150 150 50 KOP10160 160 50 KOP10180 180 50 KOP10200 200 50 KOP10240 240 50 KOP10240 240 50 KOP10280 280 50 KOP10300 300 50 KOP1250(*) 50 50 KOP1260(*) 60 50 KOP1270(*) 70 50 12 KOP1280 80 50		KOP8160	160	50
KOP1050(*) 50 50 KOP1060(*) 60 50 KOP1080 80 50 KOP10100 100 50 KOP10120 120 50 KOP10140 140 50 KOP10150 150 50 KOP10160 160 50 KOP10180 180 50 KOP10200 200 50 KOP10220 220 50 KOP10240 240 50 KOP10260 260 50 KOP10280 280 50 KOP10300 300 50 KOP1250(*) 50 KOP1250(*) 50 KOP1260(*) 60 50 KOP1270(*) 70 50 KOP1280 80 50 KOP1280 8		KOP8180	180	50
KOP1060(*) 60 50 KOP1080 80 50 KOP10100 100 50 KOP10120 120 50 KOP10140 140 50 KOP10150 150 50 KOP10160 160 50 KOP10180 180 50 KOP10200 200 50 KOP10220 220 50 KOP10240 240 50 KOP10260 260 50 KOP10280 280 50 KOP10300 300 50 KOP1250(*) 50 50 KOP1260(*) 60 50 KOP1270(*) 70 50 12 KOP1280 80 50		KOP8200	200	50
KOP1080 80 50 KOP10100 100 50 KOP10120 120 50 KOP10140 140 50 KOP10150 150 50 KOP10160 160 50 KOP10180 180 50 KOP10200 200 50 KOP10220 220 50 KOP10240 240 50 KOP10260 260 50 KOP10280 280 50 KOP10300 300 50 KOP1250(*) 50 50 KOP1260(*) 60 50 KOP1270(*) 70 50 12 KOP1280 80 50		KOP1050(*)	50	50
KOP10100 100 50 KOP10120 120 50 KOP10140 140 50 KOP10150 150 50 KOP10160 160 50 KOP10180 180 50 KOP10200 200 50 KOP10220 220 50 KOP10240 240 50 KOP10260 260 50 KOP10300 300 50 KOP10300 300 50 KOP1250(*) 50 50 KOP1260(*) 60 50 KOP1270(*) 70 50 12 KOP1280 80 50		KOP1060(*)	60	50
KOP10120 120 50 KOP10140 140 50 KOP10150 150 50 KOP10160 160 50 KOP10180 180 50 KOP10200 200 50 KOP10220 220 50 KOP10240 240 50 KOP10260 260 50 KOP10280 280 50 KOP10300 300 50 KOP1250(*) 50 50 KOP1260(*) 60 50 KOP1270(*) 70 50 12 KOP1280 80 50		KOP1080	80	50
KOP10140 140 50 KOP10150 150 50 KOP10160 160 50 KOP10180 180 50 KOP10200 200 50 KOP10220 220 50 KOP10240 240 50 KOP10260 260 50 KOP10280 280 50 KOP10300 300 50 KOP1250(*) 50 50 KOP1260(*) 60 50 KOP1270(*) 70 50 12 KOP1280 80 50		KOP10100	100	50
KOP10150		KOP10120	120	50
10 SW 17 KOP10160 160 50 KOP10180 180 50 KOP10200 200 50 KOP10220 220 50 KOP10240 240 50 KOP10260 260 50 KOP10280 280 50 KOP10300 300 50 KOP1250** 50 KOP1260** 60 50 KOP1270** 70 50 KOP1280 80 50		KOP10140	140	50
SW 17 KOP10160 160 50 KOP10180 180 50 KOP10200 200 50 KOP10220 220 50 KOP10240 240 50 KOP10260 260 50 KOP10280 280 50 KOP10300 300 50 KOP1250(*) 50 50 KOP1260(*) 60 50 KOP1270(*) 70 50 12 KOP1280 80 50	4.0	KOP10150	150	50
KOP10180 180 50 KOP10200 200 50 KOP10220 220 50 KOP10240 240 50 KOP10260 260 50 KOP10280 280 50 KOP10300 300 50 KOP1250(*) 50 50 KOP1260(*) 60 50 KOP1270(*) 70 50 12 KOP1280 80 50		KOP10160	160	50
KOP10220 220 50 KOP10240 240 50 KOP10260 260 50 KOP10280 280 50 KOP10300 300 50 KOP1250(*) 50 50 KOP1260(*) 60 50 KOP1270(*) 70 50 12 KOP1280 80 50	011 17	KOP10180	180	50
KOP10240 240 50 KOP10260 260 50 KOP10280 280 50 KOP10300 300 50 KOP1250(*) 50 50 KOP1260(*) 60 50 KOP1270(*) 70 50 12 KOP1280 80 50		KOP10200	200	50
KOP10260 260 50 KOP10280 280 50 KOP10300 300 50 KOP1250(*) 50 50 KOP1260(*) 60 50 KOP1270(*) 70 50 12 KOP1280 80 50		KOP10220	220	50
KOP10280 280 50 KOP10300 300 50 KOP1250(*) 50 50 KOP1260(*) 60 50 KOP1270(*) 70 50 12 KOP1280 80 50		KOP10240	240	50
KOP10300 300 50 KOP1250(*) 50 50 KOP1260(*) 60 50 KOP1270(*) 70 50 12 KOP1280 80 50		KOP10260	260	50
KOP1250(*) 50 50 KOP1260(*) 60 50 KOP1270(*) 70 50 12 KOP1280 80 50		KOP10280	280	50
KOP1260(*) 60 50 KOP1270(*) 70 50 12 KOP1280 80 50		KOP10300	300	50
KOP1270(*) 70 50 12 KOP1280 80 50		KOP1250(*)	50	50
12 KOP1280 80 50		KOP1260(*)	60	50
		KOP1270(*)	70	50
SW 19 KOP1290 90 50	12	KOP1280	80	50
	SW 19	KOP1290	90	50
KOP12100 100 25		KOP12100	100	25
KOP12120 120 25		KOP12120	120	25
KOP12140 140 25		KOP12140	140	25

d_1	ARTNR.	L	Stk.
[mm]		[mm]	
	KOP12150	150	25
	KOP12160	160	25
	KOP12180	180	25
	KOP12200	200	25
	KOP12220	220	25
	KOP12240	240	25
12	KOP12260	260	25
SW 19	KOP12280	280	25
	KOP12300	300	25
	KOP12320	320	25
	KOP12340	340	25
	KOP12360	360	25
	KOP12380	380	25
	KOP12400	400	25
	KOP1680(*)	80	25
	KOP16100(*)	100	25
	KOP16120	120	25
	KOP16140	140	25
	KOP16150	150	25
	KOP16160	160	25
	KOP16180	180	25
	KOP16200	200	25
16	KOP16220	220	25
SW 24	KOP16240	240	25
	KOP16260	260	25
	KOP16280	280	25
	KOP16300	300	25
	KOP16320	320	25
	KOP16340	340	25
	KOP16360	360	25
	KOP16380	380	25
	KOP16400	400	25

^(*) Ohne CE-Kennzeichnung.

AI571 - VERSION A2 | AISI304


d ₁ [mm]	ARTNR.	L [mm]	Stk.
	AI571850	50	100
	AI571860	60	100
8 SW 13	AI571880	80	100
311 13	AI5718100	100	100
	AI5718120	120	100
	AI5711050	50	100
	AI5711060	60	100
	AI5711080	80	100
40	AI57110100	100	50
10 SW 17	AI57110120	120	50
311 17	AI57110140	140	50
	AI57110160	160	50
	AI57110180	180	50
	AI57110200	200	50

d₁ [mm]	ARTNR.	L [mm]	Stk.
	AI57112100	100	50
40	AI57112120	120	25
12 SW 19	AI57112140	140	25
	AI57112160	160	25
	AI57112180	180	25

Die Schrauben aus Edelstahl verfügen nicht über die CE-Kennzeichnung.

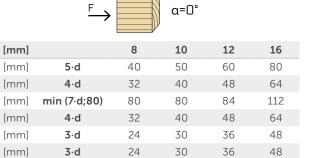
■ GEOMETRIE UND MECHANISCHE EIGENSCHAFTEN | KOP

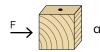
■ MINDESTABSTÄNDE DER SCHRAUBEN BEI ABSCHERBEANSPRUCHUNG

 d_1

 a_1

 a_2

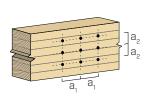

 $a_{3,t}$


 $a_{3,c}$

 $a_{4,t}$

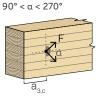
 $a_{4,c}$

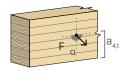
Schraubenabstände VORGEBOHRT

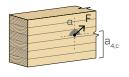


α=90°

d_1	[mm]		8	10	12	16
a ₁	[mm]	4·d	32	40	48	64
a ₂	[mm]	4·d	32	40	48	64
a _{3,t}	[mm]	min (7·d;80)	80	80	84	112
a _{3,c}	[mm]	7·d	56	70	84	112
a _{4,t}	[mm]	4·d	32	40	48	64
a _{4,c}	[mm]	3·d	24	30	36	48


 $d = d_1$ = Nenndurchmesser Schraube




unbeanspruchtes Hirnholzende

beanspruchter Rand 0° < α < 180°

unbeanspruchter Rand $180^{\circ} < \alpha < 360^{\circ}$

ANMERKUNGEN

- Die Mindestabstände werden gemäß der Norm DIN 1995:2014 berechnet.
- Für KOP-Schrauben ist eine Vorbohrung gemäß EN 1995:2014 notwendig:
 - Lochführung für den glatten Schaft, Abmessungen entsprechen dem Schaftdurchmesser und die Tiefe der Schaftlänge.
 - Die Lochführung für den Gewindeabschnitt hat einen Durchmesser, der ungefähr 70% des Schaftdurchmessers entspricht.

 $[\]alpha$ = Winkel zwischen Kraft- und Faserrichtung

STATISCHE WERTE

					SCHE	RWERT				ZUGKRÄFTE		
	Geom	etrie		Holz-Holz a=0°	Holz-Holz α=90°	dicke	l-Holz s Blech =0°	dicke	l-Holz s Blech :90°	Gewindeauszug	Kopfdurchzug	
	Throatenanananananananananananananananananan		A	←		Splate		Splate		↑		
d ₁	L	b	Α	R _{V,0,k}	R _{V,90,k}	S _{PLATE}	$R_{V,k}$	S _{PLATE}	$R_{V,k}$	$R_{ax,k}$	$R_{head,k}$	
[mm]	[mm]	[mm]	[mm]	[kN]	[kN]	[mm]	[kN]	[mm]	[kN]	[kN]	[kN]	
	50	30	20	3,17	2,44		5,31		4,05	3,00	3,82	
	60	36	24	3,53	2,89		5,46		4,66	3,60	3,82	
	70	42	28	3,83	3,08		5,61		4,81	4,20	3,82	
	80	48	32	4,08	3,24		5,76		4,96	4,80	3,82	
8	100	60	40	4,18	3,59	8	6,06	8	5,26	6,01	3,82	
-	120	72	48	4,18	3,61		6,36	'	5,56	7,21	3,82	
	140	84	56	4,18	3,61		6,66		5,86	8,41	3,82	
	160	96	64	4,18	3,61		6,96		6,16	9,61	3,82	
	180	108	72	4,18	3,61		7,26		6,46	10,81	3,82	
	200	120	80	4,18	3,61		7,56		6,76	12,01	3,82	
	50 60	30 36	20 24	3,81	2,80		6,58		4,99	3,08	5,89 5,89	
	80	48	32	4,56 5,40	3,36 4,31		7,70 8,19		5,73 6,91	3,70 4,93	5,89	
	100	60	40	6,25	4,91		8,50		7,22	6,17	5,89	
	120	72	48	6,39	5,32		8,81		7,53	7,40	5,89	
	140	84	56	6,39	5,49		9,12		7,84	8,64	5,89	
	150	90	60	6,39	5,49	1	9,27		7,99	9,25	5,89	
10	160	96	64	6,39	5,49	10	9,42	10	8,15	9,87	5,89	
	180	108	72	6,39	5,49		9,73		8,46	11,10	5,89	
	200	120	80	6,39	5,49		10,04		8,76	12,34	5,89	
	220	132	88	6,39	5,49	1	10,35		9,07	13,57	5,89	
	240	144	96	6,39	5,49		10,66		9,38	14,80	5,89	
	260	156	104	6,39	5,49		10,97		9,69	16,04	5,89	
	280	168	112	6,39	5,49		11,27		10,00	17,27	5,89	
	300	180	120	6,39	5,49		11,58		10,31	18,51	5,89	
	50	30	20	4,39	3,16		8,37		6,49	3,30	5,98	
	60	36	24	5,27	3,79		9,48		7,15	3,96	5,98	
	70	42	28	6,15	4,42		10,72		7,93	4,62	5,98	
	80	48	32	6,97	5,05		12,05		8,78	5,28	5,98	
	90	54	36	7,42	5,68		12,25		9,69	5,94	5,98	
	100	60	40	7,75	6,08		12,41		10,35	6,60	5,98	
	120	72	48	8,45	6,47		12,74		10,68	7,92	5,98	
	140	84	56	9,11	6,92		13,07		11,01	9,24	5,98	
	150	90	60	9,11	7,16		13,24		11,18	9,90	5,98	
	160	96	64	9,11	7,40		13,40		11,34	10,56	5,98	
12	180 200	108 120	72	9,11	7,65 7,65	12	13,73 14,06	12	11,67	11,88	5,98 5,98	
	220	132	80 88	9,11 9,11	7,65		14,06		12,00 12,33	13,20 14,52	5,98	
	240	144	96	9,11	7,65	1	14,72		12,55	15,84	5,98	
	260	156	104	9,11	7,65		15,05		12,99	17,16	5,98	
	280	168	112	9,11	7,65	1	15,38	1 '	13,32	18,48	5,98	
	300	180	120	9,11	7,65		15,71		13,65	19,80	5,98	
	320	192	128	9,11	7,65	1	16,04	1 '	13,98	21,12	5,98	
	340	195(*)	145	9,11	7,65		16,13		14,06	21,45	5,98	
	360	195(*)	165	9,11	7,65	1 '	16,13	1 '	14,06	21,45	5,98	
	380	195(*)	185	9,11	7,65		16,13		14,06	21,45	5,98	
	400	195	205	9,11	7,65		16,13		14,06	21,45	5,98	
				· · · · ·		1	, -	1				

α = Winkel zwischen Kraft- und Faserrichtung

					SCHEF	RWERT				ZUGKF	RÄFTE
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				s Blech	Gewindeauszug	Kopfdurchzug				
	d ₁		Ā	←		Sp.WE		Splate			
d_1	L	b	Α	R _{V,0,k}	R _{V,90,k}	S _{PLATE}	$R_{V,k}$	S _{PLATE}	$R_{V,k}$	$R_{ax,k}$	R _{head,k}
[mm]	[mm]	[mm]	[mm]	[kN]	[kN]	[mm]	[kN]	[mm]	[kN]	[kN]	[kN]
	80	48	32	9,29	6,60		16,21		11,98	8,10	9,59
	100	60	40	11,48	8,11 9,26	19,57		14,06	10,13	9,59	
	120	72	48	12,28		20,64		16,37	12,16	9,59	
	140	84	56	13,13	9,96		21,15		17,50	14,18	9,59
	150	90	60	13,58	10,20		21,40		17,76	15,19	9,59
	160	96	64	14,05	10,46		21,65		18,01	16,21	9,59
	180	108	72	14,84	11,00		22,16		18,52	18,23	9,59
	200	120	80	14,84	11,58		22,66		19,02	20,26	9,59
16	220	132	88	14,84	12,19	16	23,17	16	19,53	22,29	9,59
10	240	144	96	14,84	12,27	10	23,68	10	20,04	24,31	9,59
	260	156	104	14,84	12,27		24,18		20,54	26,34	9,59
	280	168	112	14,84	12,27		24,69		21,05	28,36	9,59
	300	180	120	14,84	12,27		25,20		21,55	30,39	9,59
	320	192	128	14,84	12,27		25,70		22,06	32,42	9,59
	340	204	136	14,84	12,27		26,21		22,57	34,44	9,59
	360	205(*)	155	14,84	12,27		26,25		22,61	34,61	9,59
	380	205(*)	175	14,84	12,27		26,25		22,61	34,61	9,59
	400	205(*)	195	14,84	12,27		26,25		22,61	34,61	9,59

α = Winkel zwischen Kraft- und Faserrichtung

STATISCHE WERTE

ALLGEMEINE GRUNDLAGEN

- Die charakteristischen Werte entsprechen der Norm EN 1995:2014 in Übereinstimmung mit der EN 14592.
- Die Bemessungswerte werden aus den charakteristischen Werten wie folgt berechnet:

$$R_d = \frac{R_k \cdot k_{mod}}{\gamma_M}$$

Die Beiwerte γ_M und $k_{\mbox{\footnotesize{mod}}}$ sind aus der entsprechenden geltenden Norm zu übernehmen, die für die Berechnung verwendet wird.

- Werte für mechanische Festigkeit und Geometrie der KOP-Schrauben gemäß CE-Kennzeichnung nach EN 14592.
- Die Bemessung und Überprüfung der Holzelemente müssen getrennt durchgeführt werden.
- Die charakteristischen Scherfestigkeitswerte wurden bei eingeschraubten Schrauben mit Vorbohrung berechnet.
- Für die Positionierung der Schrauben sind die Mindestabstände zu berück-
- Die charakteristischen Gewindeauszugswerte wurden unter Berücksichtigung einer Einschraubtiefe b berechnet.
- Die charakteristische Kopfdurchzugsfestigkeit wurden für ein Element aus Holz oder auf Holzbasis berechnet.

Bei Stahl-Holz-Verbindungen ist in Bezug auf den Abreiß- oder Durchzugswiderstand des Schraubenkopfes für gewöhnlich die Zugfestigkeit des Stahls ausschlaggebend.

ANMERKUNGEN

- Die charakteristischen Holz-Holz-Scherfestigkeitswerte wurden unter Berücksichtigung eines Winkels α zwischen der wirkenden Kraft- und Faserrichtung der Holzelemente sowohl bei 0° ($R_{v,0,k}$) als auch bei 90° ($R_{v,90,k}$)
- Die charakteristischen Stahl-Holz-Scherfestigkeitswerte wurden unter Berücksichtigung eines Winkels a zwischen der wirkenden Kraft- und Faserrichtung des Holzelements sowohl bei 0° ($R_{V,0,k}$) als auch bei 90° ($R_{V,9,k}$)
- Die charakteristischen Scherfestigkeitswerte auf Platte wurden für eine dicke Platte berechnet ($S_{PLATE} \le d_1$).
- Die charakteristischen Gewindeauszugswerte wurden unter Berücksichtigung eines Winkels a von 90° ($R_{ax,90,k}$) zwischen der wirkenden Kraft- und der Faserrichtung des Holzelements berechnet.
- Bei der Berechnung wurde eine Gewindelänge von b = 0,6 L berücksichtigt, mit Ausnahme der mit $^{(\star)}$ gekennzeichneten Werte.
- Bei der Berechnung wurde eine Rohdichte der Holzelemente von ρ_k = 385 kg/m³ berücksichtigt. Für andere ρ_k -Werte können die aufgelisteten Festigkeiten mithilfe des k_{dens}-Beiwerts umgerechnet werden (siehe Seite 87).
- Für eine Reihe von n parallel zur Faserrichtung des Holzes in einem Abstand a₁ angeordnete Schrauben kann die effektive charakteristische Tragfähigkeit R_{ef,V,k} mittels der wirksamen Anzahl n_{ef} berechnet werden (siehe S. 80).

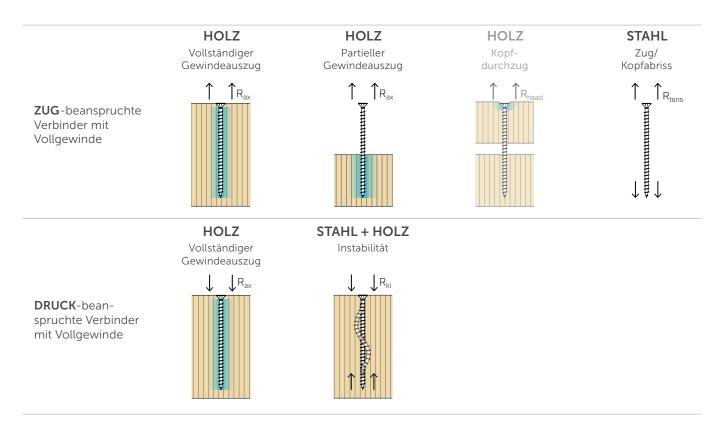
KLEINE GRÖSSEN, GROSSE LEISTUNGEN

NINO, die universelle Befestigungslösung für Holzwände.

Die Winkelverbinder NINO erweitern das Sortiment von Rothoblaas durch das neue Konzept des universellen Winkelverbinders. Sie bilden eine Kombination der einfachen Anwendung von WBR-Winkelverbindern für den Hausbau mit der technischen Qualität der Winkelverbinder TITAN.

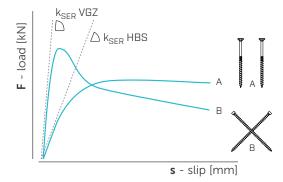
AXIAL BEANSPRUCHTE VERBINDER

VOLLGEWINDESCHRAUBEN


FESTIGKEIT

Die Festigkeit ist proportional zur effektiven Gewindelänge innerhalb des Holzelements.

Die Verbinder garantieren eine hohe Leistung auch bei kleinen Durchmessern. Die Beanspruchungen verteilen sich in Form von tangentialen Spannungen über die gesamte vom Schraubengewinde betroffene Holzoberfläche.


Für die Überprüfung einer Verbindung mit axial beanspruchten Verbindern ist es notwendig, den begrenzenden Widerstand abhängig von der wirkenden Beanspruchung zu berechnen.

Die Festigkeit des Verbinders mit Vollgewinde hängt von seiner mechanischen Leistung und der Art des Holzmaterials ab, in dem er verwendet wird.

STEIFIGKEIT

Die mit Verbindern mit Vollgewinde gefertigte Verbindung, welche ihre axiale Festigkeit nutzt, garantiert eine sehr hohe Steifigkeit, begrenzte Verschiebungen der Elemente und eine geringe Duktilität.

Die Grafik bezieht sich auf Scherversuche mit Verschiebungskontrolle für HBS-Holzbauschrauben, die seitlich (Scherkraft) beansprucht werden, sowie für kreuzweise eingedrehte VGZ-Schrauben, die axial beansprucht werden.

SCHRAUBEN MIT TEILGEWINDE

Die Festigkeit ist proportional zum Durchmesser und hängt mit der Lochleibung des Holzes und dem Fließmoment der Schraube zusammen. Das Teilgewinde wird hauptsächlich verwendet, um Scherkräfte zu übertragen, welche die Schraube senkrecht zu ihrer eigenen Achse belasten.

Wenn die Schraube mit Zugkraft beansprucht wird, müssen die Kopfdurchzugswerte berücksichtigt werden, die oftmals eine Einschränkung in Bezug auf die Ausziehfestigkeit des Gewindeteils und im Vergleich zur Zugfestigkeit auf der Stahlseite darstellen.

ANWENDUNGEN

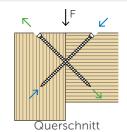
Um die Leistung von Verbindern mit Vollgewinde oder doppeltem Gewinde zu optimieren, ist es wichtig, sie so einzusetzen, dass sie einer axialen Belastung ausgesetzt sind. Die Belastung wird parallel zur Achse der Verbinder entlang des Abschnitts des wirksamen Gewindes berechnet.

Sie werden zur Übertragung von Scher- und Kriechspannungen eingesetzt, für konstruktive Verstärkungen oder für die Aufsparrendämmung mit durchgängig verlegtem Dämmstoff.

GEKREUZTE SCHRAUBEN

HOLZ-HOLZ SCHERVERBINDUNG

VERBINDER


VGZ oder VGS

EINSCHRAUBEN

45° zur Scherfläche

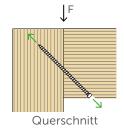
BEANSPRUCHUNG DER VERBINDER

Zug- und Druckkraft

GENEIGTE SCHRAUBEN

HOLZ-HOLZ SCHERVERBINDUNG

VERBINDER

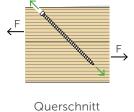

VGZ oder VGS

EINSCHRAUBEN

45° zur Scherfläche

BEANSPRUCHUNG DER VERBINDER

Zugkräfte


HOLZ-HOLZ-SCHIEBEVERBINDUNG

VERBINDER

VGZ oder VGS

EINSCHRAUBEN

45° zur Scherfläche

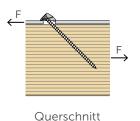
Draufsicht

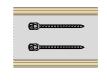
STAHL-HOLZ- SCHIEBEVERBINDUNG

BEANSPRUCHUNG DER VERBINDER

VERBINDER

Zugkräfte


VGS (mit VGU)


EINSCHRAUBEN

45° zur Scherfläche

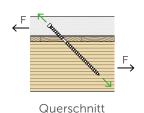
BEANSPRUCHUNG DER VERBINDER

Zugkräfte

Draufsicht

BETON-HOLZ-SCHIEBEVERBINDUNG

VERBINDER


CTC

EINSCHRAUBEN

45° zur Scherfläche

BEANSPRUCHUNG DER VERBINDER

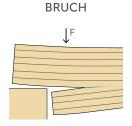
Zugkräfte

■ KONSTRUKTIVE VERSTÄRKUNGEN

Holz ist ein anisotropes Material: Es weist deshalb je nach Faserrichtung und Beanspruchung unterschiedliche mechanische Eigenschaften auf. Es bietet weniger Festigkeit und Steifigkeit gegenüber Beanspruchungen rechtwinklig zur Faserrichtung, kann jedoch mit Vollgewindeverbindern (VGS, VGZ oder RTR) verstärkt werden.

BALKEN MIT KERBE

VERSTÄRKUNGSTYP


Senkrecht zu den Fasern wirkende Zugkraft

EINSCHRAUBEN

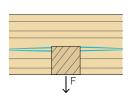
90° zu den Fasern

BEANSPRUCHUNG DER VERBINDER

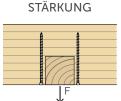
Zugkräfte

BALKEN MIT ANGEHÄNGTER LAST

VERSTÄRKUNGSTYP


Senkrecht zu den Fasern wirkende Zugkraft

EINSCHRAUBEN


90° zu den Fasern

BEANSPRUCHUNG DER VERBINDER

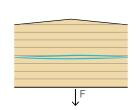
Zugkräfte

BRUCH

AUFLAGERVER-

SPEZIALBALKEN (gebogen, verjüngt, mit doppelter Neigung)

VERSTÄRKUNGSTYP


Senkrecht zu den Fasern wirkende Zugkraft

EINSCHRAUBEN

90° zu den Fasern

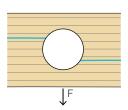
BEANSPRUCHUNG DER VERBINDER

Zugkräfte

BRUCH

BALKEN MIT ÖFFNUNGEN

VERSTÄRKUNGSTYP


Senkrecht zu den Fasern wirkende Zugkraft

EINSCHRAUBEN

90° zu den Fasern

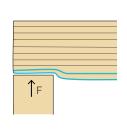
BEANSPRUCHUNG DER VERBINDER

Zugkräfte

BRUCH

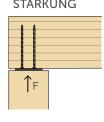
AUFLIEGENDER BALKEN

VERSTÄRKUNGSTYP


Senkrecht zu den Fasern wirkender Druck

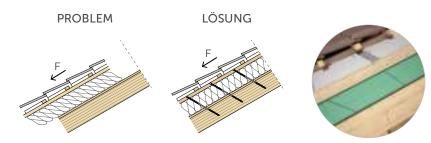
EINSCHRAUBEN

90° zu den Fasern


BEANSPRUCHUNG DER VERBINDER

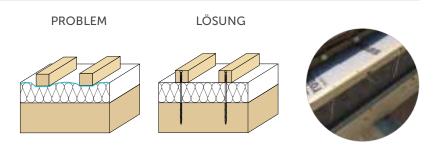
Druckkraft

BRUCH



BEFESTIGUNG DER AUFSPARRENDÄMMUNG

Die durchgängige Verlegung der Dämmschicht garantiert optimale Energieleistungen und begrenzt Wärmebrücken. Die Effizienz der Dämmschicht ist an die korrekte Verwendung geeigneter und entsprechend bemessener Befestigungssysteme (z. B. DGZ) gebunden.


VERSCHIEBUNG DES DÄMMSTOFFS UND DER DÄMMSCHICHT

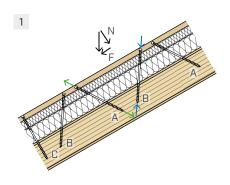
Die Verbinder zur Befestigung des Dämmstoffs verhindern, dass das Paket sich durch die parallel zur Dachfläche wirkende Kraft verschiebt, wodurch es zu einer Beschädigung des Dachs und einem Verlust der Schalldämmleistung kommen würde.

QUETSCHUNG DES DÄMMSTOFFES

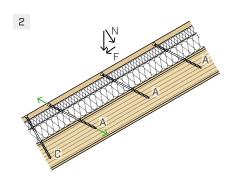
Wenn der Dämmstoff keine ausreichende Druckfestigkeit aufweist, werden über die Verbinder mit doppelten Gewinde die Belastungen effektiv übertragen und Querdruckversagen verhindert, das zu einem Verlust der Dämmleistung des Pakets führen würde.

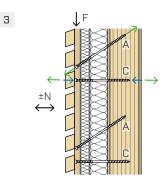
ANWENDUNGEN FÜR DÄCHER UND FASSADEN

BEDACHUNG


WEICHER DÄMMSTOFF Niedriae Druckfestiakeit □(10%) < 50 kPa (EN 826)
</p>

HARTER DÄMMSTOFF Hohe Druckfestigkeit


 $\sigma_{(10\%)} \ge 50 \text{ kPa (EN 826)}$


FASSADE

Die Aufsparrendämmung hält der senkrecht zur Dachfläche wirkenden Kraft (N) nicht stand;

Die Aufsparrendämmung hält der senkrecht zur Dachfläche wirkenden Kraft (N) stand;

Befestigungselemente müssen sowohl den Windeinwirkungen (±N) standhalten als auch die vertikalen Kräfte (F) übertragen.

LEGENDE: A. Zugbeanspruchte Schraube. B. Druckbeanspruchte Schraube. C. Zusatzschraube bei hoher Windsoglast.

ANMERKUNG: Eine angemessene Lattenstärke ermöglicht es, die Befestigungsanzahl zu optimieren

Für die Bemessung und Positionierung der Verbinder MyProject herunterladen. Erleichtern Sie sich die Arbeit!

VGZ

SCHRAUBE MIT VOLLGEWINDE UND ZYLINDERKOPF

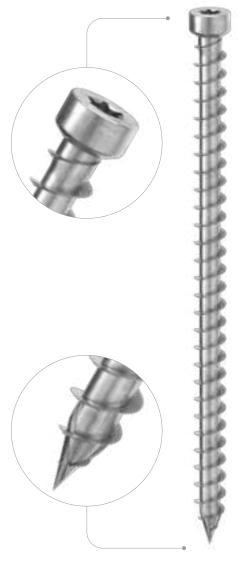
SPITZE 3 THORNS

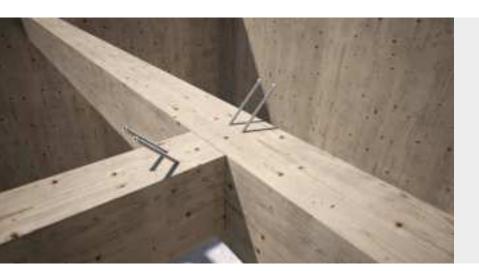
Dank der Spitze 3 THORNS werden die Mindestabstände reduziert. Mehr Schrauben können auf geringerem Raum und größere Schrauben in kleineren Elementen verwendet werden.

Die Kosten und der Zeitaufwand für die Umsetzung des Projekts verringern sich.

EINSATZ IN STATISCH TRAGENDEN VERBINDUNGEN

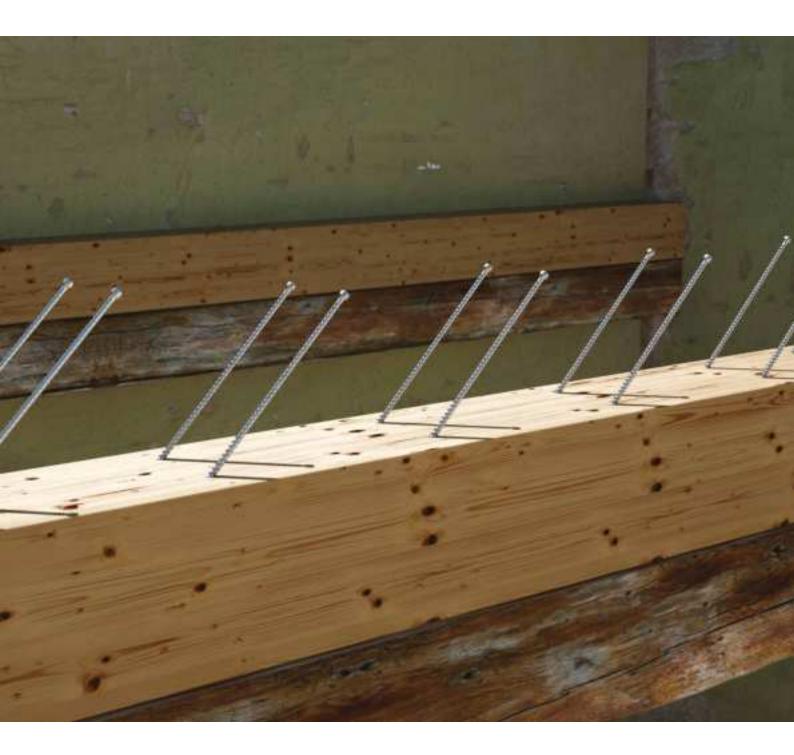
Für die Verwendung bei statisch tragenden Verbindungen zugelassen, bei denen die Schraube in jeder Richtung zur Faser beansprucht wird (0° \div 90°). Zyklische Prüfung SEISMIC-REV gemäß EN 12512.


ZYLINDERKOPF


Ermöglicht der Schraube, die Oberfläche des Holzsubstrats zu durchdringen und zu überwinden. Ideal bei verdeckten Verbindungen, Holzverbindungen und konstruktive Verstärkungen. Die richtige Wahl, um die Festigkeit im Brandfall zu gewährleisten.

TIMBER FRAME

Ideal zur Verbindung von Holzelementen auch mit kleinem Querschnitt, wie Querträger und Pfosten leichter Rahmenkonstruktionen



ANWENDUNGSGEBIETE

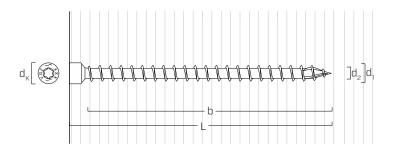
- Holzwerkstoffplatten
- Massivholz
- Brettschichtholz
- BSP und LVL
- Harthölzer

SANIERUNG

Ideal zur Verbindung von Balken der Sanierung und neuen Konstruktionen. Kann auch, dank der besonderen Zulassung, parallel zur Faser verwendet werden.

BSP, LVL

Werte auch für BSP und Harthölzer, sowie Furnierschichtholz (LVL) geprüft, zertifiziert und berechnet.



Verbindungen mit sehr hoher Steifigkeit nebeneinander liegender BSP- Deckenbalken. Anwendung mit doppelter 45°-Neigung, ideal zur Realisierung mit Montagelehre JIG VGZ.

Rechtwinklige Verstärkung zur Faser durch hängende Last mittels Verbindung des Haupt- und Nebenträgers.

GEOMETRIE UND MECHANISCHE EIGENSCHAFTEN

Ø9 | L > 520 mm Ø11 | L > 600 mm

GEOMETRIE

Nenndurchmesser	d_1	[mm]	7	9	11
Kopfdurchmesser	d_K	[mm]	9,50	11,50	13,50
Kerndurchmesser	d_2	[mm]	4,60	5,90	6,60
Vorbohrdurchmesser ⁽¹⁾	$d_{V,S}$	[mm]	4,0	5,0	6,0
Vorbohrdurchmesser ⁽²⁾	$d_{V,H}$	[mm]	5,0	6,0	7,0

MECHANISCHE KENNGRÖSSEN

Nenndurchmesser	d_1	[mm]	7	9	11
Zugfestigkeit	$f_{\text{tens,k}}$	[kN]	15,4	25,4	38,0
Fließgrenze	$f_{y,k}$	[N/mm ²]	1000	1000	1000
Fließmoment	$M_{y,k}$	[Nm]	14,2	27,2	45,9

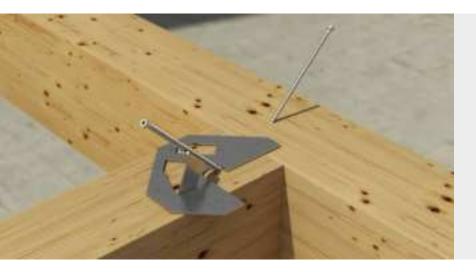
			Nadelholz (Softwood)	LVL aus Nadelholz (LVL Softwood)	LVL aus Buche, vorgebohrt (Beech LVL predrilled)
Charakteristischer Wert der Ausziehfestigkeit	$f_{ax,k}$	[N/mm²]	11,7	15,0	29,0
Assoziierte Dichte	ρ_{a}	[kg/m ³]	350	500	730
Rohdichte	$ ho_k$	[kg/m ³]	≤ 440	410 ÷ 550	590 ÷ 750

Für Anwendungen mit anderen Materialien siehe ETA-11/0030.

⁽¹⁾ Vorbohrung gültig für Nadelholz (Softwood).
(2) Vorbohrung gültig für Harthölzer (Hardwood) und für LVL aus Buchenholz.

ARTIKELNUMMERN UND ABMESSUNGEN

	d_1	ARTNR.	L	b	Stk.	
VGZ7100 100 90 25 VGZ7120 120 110 25 VGZ7140 140 130 25 VGZ7160 160 150 25 VGZ7180 180 170 25 VGZ7200 200 190 25 VGZ7220 220 210 25 VGZ7240 240 230 25 VGZ7280 280 270 25 VGZ7300 300 290 25 VGZ7320 320 310 25 VGZ7340 340 330 25 VGZ7360 360 350 25 VGZ7380 380 370 25 VGZ7400 400 390 25 VGZ9180 180 170 25 VGZ9200 200 190 25 VGZ9240 240 230 25 VGZ9260 260 250 25 VGZ9300 </th <th>[mm]</th> <th></th> <th>[mm]</th> <th>[mm]</th> <th></th> <th></th>	[mm]		[mm]	[mm]		
VGZ7120 120 110 25 VGZ7140 140 130 25 VGZ7160 160 150 25 VGZ7180 180 170 25 VGZ7200 200 190 25 VGZ7220 220 210 25 VGZ7240 240 230 25 VGZ7280 280 270 25 VGZ7300 300 290 25 VGZ7340 340 330 25 VGZ7340 340 330 25 VGZ7360 360 350 25 VGZ7380 380 370 25 VGZ7380 380 370 25 VGZ9160 160 150 25 VGZ9180 180 170 25 VGZ9200 200 190 25 VGZ9240 240 230 25 VGZ9260 260 250 25 VGZ9300<		VGZ780	80	70	25	
VGZ7140 140 130 25 VGZ7160 160 150 25 VGZ7180 180 170 25 VGZ7200 200 190 25 VGZ7220 220 210 25 VGZ7240 240 230 25 VGZ7280 280 270 25 VGZ7300 300 290 25 VGZ7340 340 330 25 VGZ7340 340 330 25 VGZ7340 340 330 25 VGZ7360 360 350 25 VGZ7380 380 370 25 VGZ7380 380 370 25 VGZ9180 180 170 25 VGZ9180 180 170 25 VGZ9200 200 190 25 VGZ9240 240 230 25 VGZ9380 380 370 25 VGZ9340<		VGZ7100	100	90	25	
VGZ7160 160 150 25 VGZ7180 180 170 25 VGZ7200 200 190 25 VGZ7220 220 210 25 VGZ7240 240 230 25 VGZ7260 260 250 25 VGZ7300 300 290 25 VGZ7320 320 310 25 VGZ7340 340 330 25 VGZ7340 340 330 25 VGZ7380 380 370 25 VGZ7380 380 370 25 VGZ7400 400 390 25 VGZ9160 160 150 25 VGZ9180 180 170 25 VGZ9200 200 190 25 VGZ9200 200 190 25 VGZ9220 220 210 25 VGZ9240 240 230 25 VGZ9240 240 230 25 VGZ9280 280 270 25 VGZ9280 280 270 25 VGZ9300 300 290 25 VGZ9300 300 290 25 VGZ9300 300 290 25 VGZ9380 380 370 25 VGZ9440 440 430 25 VGZ9440 440 430 25 VGZ9480 480 470 25 VGZ9520 520 510 25		VGZ7120	120	110	25	
VGZ7180 180 170 25 VGZ7200 200 190 25 VGZ7220 220 210 25 VGZ7240 240 230 25 VGZ7280 280 270 25 VGZ7300 300 290 25 VGZ7320 320 310 25 VGZ7340 340 330 25 VGZ7360 360 350 25 VGZ7380 380 370 25 VGZ7400 400 390 25 VGZ9180 180 170 25 VGZ9200 200 190 25 VGZ9200 200 190 25 VGZ9220 220 210 25 VGZ9240 240 230 25 VGZ9240 240 230 25 VGZ9280 280 270 25 VGZ9280 280 270 25 VGZ9280 280 270 25 VGZ9300 300 290 25 VGZ9300 300 290 25 VGZ9300 300 290 25 VGZ9380 380 370 25 VGZ9340 440 430 25 VGZ9440 440 430 25 VGZ9440 440 430 25 VGZ9480 480 470 25 VGZ9520 520 510 25		VGZ7140	140	130	25	
7TX 30 VGZ7220 220 210 25 VGZ7220 220 210 25 VGZ7240 240 230 25 VGZ7260 260 250 25 VGZ7300 300 290 25 VGZ7320 320 310 25 VGZ7340 340 330 25 VGZ7360 360 350 25 VGZ7380 380 370 25 VGZ7400 400 390 25 VGZ9160 160 150 25 VGZ9180 180 170 25 VGZ9200 200 190 25 VGZ9240 240 230 25 VGZ9260 260 250 25 VGZ9300 300 290 25 VGZ9300 300 290 25 VGZ9360 360 350 25 VGZ9380 380 370 25 VGZ9380 380 370 25 VGZ9400 400		VGZ7160	160	150	25	
7 TX 30 VGZ7220 220 210 25 VGZ7240 240 230 25 VGZ7260 260 250 25 VGZ7300 300 290 25 VGZ7320 320 310 25 VGZ7340 340 330 25 VGZ7360 360 350 25 VGZ7380 380 370 25 VGZ7400 400 390 25 VGZ9180 180 170 25 VGZ9200 200 190 25 VGZ9220 220 210 25 VGZ9240 240 230 25 VGZ9280 280 270 25 VGZ9300 300 290 25 VGZ9340 340 330 25 VGZ9380 380 370 25 VGZ9380 380 370 25 VGZ9440 40 330 25 VGZ9440 40 430 25 VGZ9480 480		VGZ7180	180	170	25	
7 YGZ7240 240 230 25 VGZ7260 260 250 25 VGZ7300 300 290 25 VGZ7320 320 310 25 VGZ7340 340 330 25 VGZ7360 360 350 25 VGZ7380 380 370 25 VGZ7400 400 390 25 VGZ9160 160 150 25 VGZ9180 180 170 25 VGZ9200 200 190 25 VGZ9240 240 230 25 VGZ9260 260 250 25 VGZ9300 300 290 25 VGZ9300 300 290 25 VGZ9340 340 330 25 VGZ9380 380 370 25 VGZ9380 380 370 25 VGZ9440 400 390 25 VGZ9440 440 430 25 VGZ9480 480		VGZ7200	200	190	25	
TX 30 VGZ7260 VGZ7280 280 270 25 VGZ7300 300 290 25 VGZ7320 320 310 25 VGZ7340 340 330 25 VGZ7380 380 370 25 VGZ7380 380 370 25 VGZ7400 400 390 25 VGZ9160 160 150 25 VGZ9180 180 170 25 VGZ9200 200 190 25 VGZ9220 200 210 25 VGZ9240 240 230 25 VGZ9260 260 250 VGZ9280 280 270 25 VGZ9380 380 370 25 VGZ9440 440 430 25 VGZ9440 440 430 25 VGZ9480 480 470 25 VGZ9520 520 510 25	7	VGZ7220	220	210	25	-
VGZ7280 280 270 25 VGZ7300 300 290 25 VGZ7320 320 310 25 VGZ7340 340 330 25 VGZ7360 360 350 25 VGZ7380 380 370 25 VGZ7400 400 390 25 VGZ9160 160 150 25 VGZ9200 200 190 25 VGZ9220 220 210 25 VGZ9240 240 230 25 VGZ9280 280 270 25 VGZ9300 300 290 25 VGZ9340 340 330 25 VGZ9380 380 370 25 VGZ9380 380 370 25 VGZ9400 400 390 25 VGZ9440 440 430 25 VGZ9480 480 470 25 VGZ9480 480 470 25 VGZ9560 560 550	-	VGZ7240	240	230	25	
VGZ7300 300 290 25 VGZ7320 320 310 25 VGZ7340 340 330 25 VGZ7360 360 350 25 VGZ7380 380 370 25 VGZ7400 400 390 25 VGZ9160 160 150 25 VGZ9200 200 190 25 VGZ9220 220 210 25 VGZ9240 240 230 25 VGZ9260 260 250 25 VGZ9300 300 290 25 VGZ9300 300 290 25 VGZ9340 340 330 25 VGZ9360 360 350 25 VGZ9380 380 370 25 VGZ9400 400 390 25 VGZ9440 440 430 25 VGZ9480 480 470 25 VGZ9520 520 510 25 VGZ9560 560 550		VGZ7260	260	250	25	
VGZ7320 320 310 25 VGZ7340 340 330 25 VGZ7360 360 350 25 VGZ7380 380 370 25 VGZ7400 400 390 25 VGZ9160 160 150 25 VGZ9180 180 170 25 VGZ9200 200 190 25 VGZ9240 240 230 25 VGZ9260 260 250 25 VGZ9280 280 270 25 VGZ9300 300 290 25 VGZ9340 340 330 25 VGZ9340 340 330 25 VGZ9380 380 370 25 VGZ9400 400 390 25 VGZ9440 440 430 25 VGZ9480 480 470 25 VGZ9520 520 510 25 VGZ9560 560 550 25		VGZ7280	280	270	25	
VGZ7340 340 330 25 VGZ7360 360 350 25 VGZ7380 380 370 25 VGZ7400 400 390 25 VGZ9160 160 150 25 VGZ9180 180 170 25 VGZ9200 200 190 25 VGZ9220 220 210 25 VGZ9240 240 230 25 VGZ9280 280 270 25 VGZ9300 300 290 25 VGZ9340 340 330 25 VGZ9340 340 330 25 VGZ9380 380 370 25 VGZ9380 380 370 25 VGZ9440 440 430 25 VGZ9440 440 430 25 VGZ9480 480 470 25 VGZ9520 520 510 25 VGZ9560 560 550 25		VGZ7300	300	290	25	
VGZ7360 360 350 25 VGZ7380 380 370 25 VGZ7400 400 390 25 VGZ9160 160 150 25 VGZ9180 180 170 25 VGZ9200 200 190 25 VGZ9220 220 210 25 VGZ9240 240 230 25 VGZ9280 280 270 25 VGZ9300 300 290 25 VGZ9340 340 330 25 VGZ9340 340 330 25 VGZ9380 380 370 25 VGZ9380 380 370 25 VGZ9440 440 430 25 VGZ9440 440 430 25 VGZ9480 480 470 25 VGZ9520 520 510 25 VGZ9560 560 550 25		VGZ7320	320	310	25	
VGZ7380 380 370 25 VGZ7400 400 390 25 VGZ9160 160 150 25 VGZ9180 180 170 25 VGZ9200 200 190 25 VGZ9220 220 210 25 VGZ9240 240 230 25 VGZ9260 260 250 25 VGZ9380 280 270 25 VGZ9320 320 310 25 VGZ9340 340 330 25 VGZ9380 380 370 25 VGZ9380 380 370 25 VGZ9440 440 430 25 VGZ9440 440 430 25 VGZ9480 480 470 25 VGZ9520 520 510 25 VGZ9560 560 550 25		VGZ7340	340	330	25	
VGZ7400 400 390 25 VGZ9160 160 150 25 VGZ9180 180 170 25 VGZ9200 200 190 25 VGZ9220 220 210 25 VGZ9240 240 230 25 VGZ9260 260 250 25 VGZ9380 280 270 25 VGZ9320 320 310 25 TX 40 VGZ9340 340 330 25 VGZ9360 360 350 25 VGZ9380 380 370 25 VGZ9400 400 390 25 VGZ9440 440 430 25 VGZ9480 480 470 25 VGZ9520 520 510 25 VGZ9560 560 550 25		VGZ7360	360	350	25	
VGZ9160 160 150 25 VGZ9180 180 170 25 VGZ9200 200 190 25 VGZ9220 220 210 25 VGZ9240 240 230 25 VGZ9260 260 250 25 VGZ9280 280 270 25 VGZ9300 300 290 25 VGZ9340 340 330 25 VGZ9360 360 350 25 VGZ9380 380 370 25 VGZ9400 400 390 25 VGZ9440 440 430 25 VGZ9480 480 470 25 VGZ9520 520 510 25 VGZ9560 560 550 25		VGZ7380	380	370	25	
VGZ9180 180 170 25 VGZ9200 200 190 25 VGZ9220 220 210 25 VGZ9240 240 230 25 VGZ9260 260 250 25 VGZ9380 280 270 25 VGZ9320 320 310 25 VGZ9340 340 330 25 VGZ9380 380 370 25 VGZ9400 400 390 25 VGZ9440 440 430 25 VGZ9480 480 470 25 VGZ9520 520 510 25 VGZ9560 560 550 25		VGZ7400	400	390	25	
VGZ9200 200 190 25 VGZ9220 220 210 25 VGZ9240 240 230 25 VGZ9260 260 250 25 VGZ9280 280 270 25 VGZ9300 300 290 25 VGZ9320 320 310 25 VGZ9340 340 330 25 VGZ9380 380 370 25 VGZ9400 400 390 25 VGZ9440 440 430 25 VGZ9480 480 470 25 VGZ9520 520 510 25 VGZ9560 560 550 25		VGZ9160	160	150	25	
VGZ9220 220 210 25 VGZ9240 240 230 25 VGZ9260 260 250 25 VGZ9280 280 270 25 VGZ9300 300 290 25 VGZ9320 320 310 25 VGZ9340 340 330 25 VGZ9380 380 370 25 VGZ9400 400 390 25 VGZ9440 440 430 25 VGZ9480 480 470 25 VGZ9520 520 510 25 VGZ9560 560 550 25		VGZ9180	180	170	25	
VGZ9240 240 230 25 VGZ9260 260 250 25 VGZ9280 280 270 25 VGZ9300 300 290 25 VGZ9320 320 310 25 VGZ9340 340 330 25 VGZ9360 360 350 25 VGZ9380 380 370 25 VGZ9400 400 390 25 VGZ9440 440 430 25 VGZ9480 480 470 25 VGZ9520 520 510 25 VGZ9560 560 550 25		VGZ9200	200	190	25	
VGZ9260 260 250 25 VGZ9280 280 270 25 VGZ9300 300 290 25 VGZ9320 320 310 25 VGZ9340 340 330 25 VGZ9360 360 350 25 VGZ9380 380 370 25 VGZ9400 400 390 25 VGZ9440 440 430 25 VGZ9480 480 470 25 VGZ9520 520 510 25 VGZ9560 560 550 25		VGZ9220	220	210	25	
VGZ9280 280 270 25 VGZ9300 300 290 25 VGZ9320 320 310 25 TX 40 VGZ9340 340 330 25 VGZ9360 360 350 25 VGZ9380 380 370 25 VGZ9400 400 390 25 VGZ9440 440 430 25 VGZ9480 480 470 25 VGZ9520 520 510 25 VGZ9560 560 550 25		VGZ9240	240	230	25	
VGZ9300 300 290 25 9 VGZ9320 320 310 25 TX 40 VGZ9340 340 330 25 VGZ9360 360 350 25 VGZ9380 380 370 25 VGZ9400 400 390 25 VGZ9440 440 430 25 VGZ9480 480 470 25 VGZ9520 520 510 25 VGZ9560 560 550 25		VGZ9260	260	250	25	
9 VGZ9320 320 310 25 TX 40 VGZ9340 340 330 25 VGZ9360 360 350 25 VGZ9380 380 370 25 VGZ9400 400 390 25 VGZ9440 440 430 25 VGZ9480 480 470 25 VGZ9520 520 510 25 VGZ9560 560 550 25		VGZ9280	280	270	25	
9 VGZ9320 320 310 25 TX 40 VGZ9340 340 330 25 VGZ9360 360 350 25 VGZ9380 380 370 25 VGZ9400 400 390 25 VGZ9440 440 430 25 VGZ9480 480 470 25 VGZ9520 520 510 25 VGZ9560 560 550 25		VGZ9300	300	290	25	
VGZ9360 360 350 25 VGZ9380 380 370 25 VGZ9400 400 390 25 VGZ9440 440 430 25 VGZ9480 480 470 25 VGZ9520 520 510 25 VGZ9560 560 550 25	9	VGZ9320	320	310	25	- U Barr
VGZ9380 380 370 25 VGZ9400 400 390 25 VGZ9440 440 430 25 VGZ9480 480 470 25 VGZ9520 520 510 25 VGZ9560 560 550 25	TX 40	VGZ9340	340	330	25	
VGZ9400 400 390 25 VGZ9440 440 430 25 VGZ9480 480 470 25 VGZ9520 520 510 25 VGZ9560 560 550 25		VGZ9360	360	350	25	
VGZ9440 440 430 25 VGZ9480 480 470 25 VGZ9520 520 510 25 VGZ9560 560 550 25		VGZ9380	380	370	25	
VGZ9480 480 470 25 VGZ9520 520 510 25 VGZ9560 560 550 25		VGZ9400	400	390	25	
VGZ9520 520 510 25 VGZ9560 560 550 25		VGZ9440	440	430	25	
VGZ9560 560 550 25		VGZ9480	480	470	25	
		VGZ9520	520	510	25	
VGZ9600 600 590 25		VGZ9560	560	550	25	
		VGZ9600	600	590	25	-V-V-7


d_1	ARTNR.	L	b	Stk.	
[mm]		[mm]	[mm]		
	VGZ11150	150	140	25	
	VGZ11200	200	190	25	
	VGZ11250	250	240	25	
	VGZ11275	275	265	25	
	VGZ11300	300	290	25	
	VGZ11325	325	315	25	
	VGZ11350	350	340	25	
	VGZ11375	375	365	25	
	VGZ11400	400	390	25	
	VGZ11425	425	415	25	
	VGZ11450	450	440	25	
4.4	VGZ11475	475	465	25	
11 TX 50	VGZ11500	500	490	25	
	VGZ11525	525	515	25	
	VGZ11550	550	540	25	
	VGZ11575	575	565	25	
	VGZ11600	600	590	25	
	VGZ11650	650	640	25	
	VGZ11700	700	690	25	
	VGZ11750	750	740	25	
	VGZ11800	800	790	25	
	VGZ11850	850	840	25	
	VGZ11900	900	890	25	
	VGZ11950	950	940	25	
	VGZ111000	1000	990	25	

■ ZUGEHÖRIGE PRODUKTE

JIG VGZ 45° SCHABLONEN FÜR 45° KANTEN

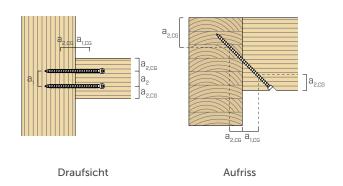
Seite 409

MONTAGELEHRE JIG VGZ 45°

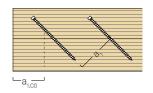
Erleichterter 45°-Einbau durch die Benutzung der Stahl-Montagelehre JIG VGZ.

■ MINDESTABSTÄNDE DER SCHRAUBEN BEI AXIALER BEANSPRUCHUNG | HOLZ

Einsatz der Schrauben MIT und OHNE Vorbohrung

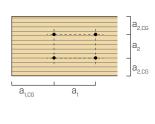


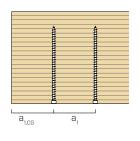
d_1	[mm]		7	9	11
a ₁	[mm]	5·d	35	45	55
a ₂	[mm]	5·d	35	45	55
a _{2,LIM}	[mm]	2,5·d	18	23	28
a _{1,CG}	[mm]	8∙d	56	72	88
a _{2,CG}	[mm]	3·d	21	27	33
a _{CROSS}	[mm]	1,5·d	11	14	17



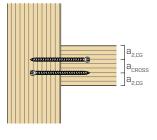
d_1	[mm]		9	11
a ₁	[mm]	5·d	45	55
a ₂	[mm]	5·d	45	55
a _{2,LIM}	[mm]	2,5·d	23	28
a _{1,CG}	[mm]	5·d	45	55
a _{2,CG}	[mm]	3·d	27	33
a _{CROSS}	[mm]	1,5·d	14	17

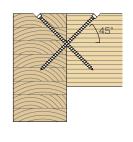
MIT EINEM WINKEL a ZUR FASER EINGEDREHTE SCHRAUBEN UNTER ZUG


a_{2,CB}



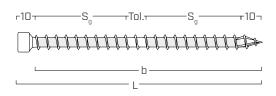
Draufsicht


Aufriss


MIT EINEM WINKEL α = 90° ZUR FASER EINGEDREHTE SCHRAUBEN

MIT EINEM WINKEL α ZUR FASER GEKREUZT EINGEDREHTE SCHRAUBEN

Draufsicht


Aufriss

Draufsicht Aufriss

ANMERKUNGEN

- Die Mindestabstände entsprechen ETA-11/0030.
- Die Mindestabstände sind unabhängig vom Eindrehwinkel des Verbinders und vom Kraftwinkel zu den Fasern.
- Der axiale Abstand a $_2$ kann bis auf a $_{2,LIM}$ reduziert werden, wenn bei jedem Verbinder eine "Verbindungsfläche" von a $_1$ -a $_2$ = $25 \cdot d_1^{\ 2}$ beibehalten wird.
- Zur Verbindung Nebenträger-Hauptträger mit geneigten oder gekreuzten VGZ Schrauben d = 7 mm, die im 45°-Winkel zur Kopfseite des Nebenträ-
- gers eingesetzt werden. Bei Mindesthöhe des Nebenträgers von 18·d kann der Mindestabstand a $_{1,CG}$ gleich $8\cdot d_1$ und der Mindestabstand a $_{2,CG}$ gleich $3\cdot d_1$ betragen.
- Für Schrauben mit Spitze 3 THORNS und mit Self-drilling-Spitze wurden die angegebenen Mindestabstände aus experimentellen Untersuchungen ermittelt; wahlweise a_{1,CG} = 10·d und a_{2,CG} = 4·d gemäß EN 1995:2014 anwenden.

NUTZGEWINDEBERECHNUNG

$$\mathbf{b} = \mathbf{S}_{g,tot} = L - 10 \text{ mm}$$

verweist auf die gesamte Länge des Gewindeteils

$$\mathbf{S_g} = (L - 10 \text{ mm} - 10 \text{ mm} - \text{Tol.})/2$$
 verweist auf die halbe Gewinde-

verweist auf die halbe Gewindelänge abzgl. einer Verlegungstoleranz (Tol.) von 10 mm

■ MINDESTABSTÄNDE DER SCHRAUBEN BEI ABSCHERBEANSPRUCHUNG | HOLZ

Schraubenabstände OHNE Vorbohrung

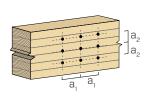
 $\rho_k \leq 420 \; kg/m^3$

d_1	[mm]		7	9	11
a ₁	[mm]	10 ⋅d	70	90	110
a ₂	[mm]	5·d	35	45	55
a _{3,t}	[mm]	15 ⋅d	105	135	165
a _{3,c}	[mm]	10 ⋅d	70	90	110
a _{4,t}	[mm]	5·d	35	45	55
a _{4,c}	[mm]	5·d	35	45	55

d_1	[mm]		7	9	11
a ₁	[mm]	5·d	35	45	55
a ₂	[mm]	5·d	35	45	55
a _{3,t}	[mm]	10 ⋅d	70	90	110
a _{3,c}	[mm]	10 ⋅d	70	90	110
a _{4,t}	[mm]	10 ⋅d	70	90	110
a _{4,c}	[mm]	5·d	35	45	55

 $d = d_1 = Nenndurchmesser Schraube$

Schraubenabstände VORGEBOHRT

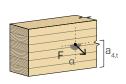


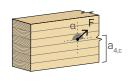
a=90°

d_1	[mm]		7	9	11
a ₁	[mm]	5·d	35	45	55
a ₂	[mm]	3·d	21	27	33
a _{3,t}	[mm]	12·d	84	108	132
a _{3,c}	[mm]	7·d	49	63	77
a _{4,t}	[mm]	3·d	21	27	33
a _{4,c}	[mm]	3·d	21	27	33

d_1	[mm]		7	9	11
a ₁	[mm]	4·d	28	36	44
a ₂	[mm]	4·d	28	36	44
a _{3,t}	[mm]	7·d	49	63	77
a _{3,c}	[mm]	7·d	49	63	77
a _{4,t}	[mm]	7·d	49	63	77
a _{4,c}	[mm]	3·d	21	27	33

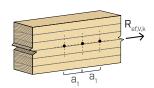
 $d = d_1 = Nenndurchmesser Schraube$


beanspruchtes Hirnholzende $-90^{\circ} < \alpha < 90^{\circ}$


unbeanspruchtes Hirnholzende 90° < α < 270°

beanspruchter Rand 0° < α < 180°

unbeanspruchter Rand $180^{\circ} < \alpha < 360^{\circ}$


ANMERKUNGEN

- Die Mindestabstände werden gemäß der Normen EN 1995:2014 und in Übereinstimmung mit ETA-11/0030 berechnet.
- Bei Holzwerkstoffplatten-Verbindungen können die Mindestabstände (a₁, a₂) mit einem Koeffizienten von 0,85 multipliziert werden.
- Der Abstand a_1 , aufgelistet für Schrauben mit Spitze 3 THORNS, eingeschraubt ohne Vorbohrung in Holzelemente mit Dichte $\rho_k \leq 420$ kg/m³ und Winkel zwischen Kraft- und Faserrichtung $\alpha=0^\circ$, wurde auf der Grundlage experimenteller Untersuchungen mit 10-d angenommen; wahlweise können 12-d gemäß EN 1995:2014 übernommen werden.

■ WIRKSAME SCHRAUBENANZAHL BEI ABSCHERBEANSPRUCHUNG

Die Tragfähigkeit einer Verbindung mit mehreren Schrauben vom gleichen Typ und mit gleicher Größe kann kleiner sein als die Summe der Tragfähigkeiten des einzelnen Verbindungsmittels.

Für eine Reihe von n parallel zur Faserrichtung des Holzes in einem Abstand a_1 angeordnete Schrauben kann die effektive charakteristische Tragfähigkeit $R_{ef,V,k}$ mittels der wirksamen Anzahl n_{ef} berechnet werden (siehe S. 169).

 $[\]alpha$ = Winkel zwischen Kraft- und Faserrichtung

α = Winkel zwischen Kraft- und Faserrichtung

■ STATISCHE WERTE | HOLZ

			ZUGKRAFT / DRUCK										
		\	/ollständig	jer Gewindea	uszug		Partielle	r Gewindeaus	szug	Zugtragfähigkeit	Instabilität		
Geon	netrie		ε	=90°	ε=0°		ε	=90°	ε= 0 °	Stahl	ε=90°		
Outmunumunumun d.		S _{girot}			Сиппинининининининин — — — — — — — — — — — —	Solution				←			
d_1	L	$S_{g,tot}$	A _{min}	R _{ax,90,k}	R _{ax,0,k}	S_{g}	A _{min}	R _{ax,90,k}	R _{ax,0,k}	R _{tens,k}	R _{ki,90,k}		
[mm]	[mm]	[mm]	[mm]	[kN]	[kN]	[mm]	[mm]	[kN]	[kN]	[kN]	[kN]		
	80	70	90	6,19	1,86	-	-	-	-				
	100	90	110	7,96	2,39	35	55	3,09	0,93				
	120	110	130	9,72	2,92	45	65	3,98	1,19				
	140	130	150	11,49	3,45	55	75	4,86	1,46				
	160 180	150 170	170	13,26	3,98	65 75	85	5,75	1,72				
	200	190	190 210	15,03 16,79	4,51 5,04	75 85	95 105	6,63 7,51	1,99 2,25				
	220	210	230	18,56	5,57	95	115	8,40	2,23				
7	240	230	250	20,33	6,10	105	125	9,28	2,78	15,40	10,30		
,	260	250	270	22,10	6,63	115	135	10,16	3,05		20,000		
	280	270	290	23,87	7,16	125	145	11,05	3,31				
	300	290	310	25,63	7,69	135	155	11,93	3,58				
	320	310	330	27,40	8,22	145	165	12,82	3,84				
	340	330	350	29,17	8,75	155	175	13,70	4,11				
	360	350	370	30,94	9,28	165	185	14,58	4,38				
	380	370	390	32,70	9,81	175	195	15,47	4,64				
	400	390	410	34,47	10,34	185	205	16,35	4,91				
	160	150	170	17,05	5,11	65	85	7,39	2,22				
	180	170	190	19,32	5,80	75	95	8,52	2,56				
	200	190	210	21,59	6,48	85	105	9,66	2,90				
	220	210	230	23,87	7,16	95	115	10,80	3,24				
	240	230	250	26,14	7,84	105	125	11,93	3,58				
	260	250	270	28,41	8,52	115	135	13,07	3,92				
	280 300	270 290	290 310	30,68 32,96	9,21 9,89	125 135	145 155	14,21 15,34	4,26 4,60				
	320	310	330	35,23	10,57	145	165	16,48	4,94				
9	340	330	350	37,50	11,25	155	175	17,61	5,28	25,40	17,25		
	360	350	370	39,78	11,93	165	185	18,75	5,63				
	380	370	390	42,05	12,61	175	195	19,89	5,97				
	400	390	410	44,32	13,30	185	205	21,02	6,31				
	440	430	450	48,87	14,66	205	225	23,30	6,99				
	480	470	490	53,41	16,02	225	245	25,57	7,67				
	520	510	530	57,96	17,39	245	265	27,84	8,35				
	560	550	570	62,50	18,75	265	285	30,12	9,03				
	600	590	610	67,05	20,11	285	305	32,39	9,72				

 $[\]epsilon$ = Winkel zwischen Schraube und Faserrichtung

■ STATISCHE WERTE | HOLZ

			ZUGKRAFT / DRUCK									
		\	/ollständi	ger Gewindea	uszug		Partielle	r Gewindeaus	szug	Zugtragfähigkeit	Instabilität	
Geon	netrie		8	=90°	ε=0°		3	=90°	ε=0°	Stahl	ε=90°	
Dumummummum d.		Source	A				A			↑		
d ₁	L	$S_{g,tot}$	A _{min}	$R_{ax,90,k}$	R _{ax,0,k}	S_g	A _{min}	$R_{ax,90,k}$	R _{ax,0,k}	R _{tens,k}	$R_{ki,90,k}$	
[mm]	[mm]	[mm]	[mm]	[kN]	[kN]	[mm]	[mm]	[kN]	[kN]	[kN]	[kN]	
	150	140	160	19,45	5,83	60	80	8,33	2,50			
	200	190	210	26,39	7,92	85	105	11,81	3,54			
	250	240	260	33,34	10,00	110	130	15,28	4,58			
	275	265	285	36,81	11,04	123	143	17,01	5,10			
	300	290	310	40,28	12,08	135	155	18,75	5,63			
	325	315	335	43,75	13,13	148	168	20,49	6,15			
	350	340	360	47,22	14,17	160	180	22,22	6,67			
	375	365	385	50,70	15,21	173	193	23,96	7,19			
	400	390	410	54,17	16,25	185	205	25,70	7,71			
	425	415	435	57,64	17,29	198	218	27,43	8,23			
	450	440	460	61,11	18,33	210	230	29,17	8,75			
	475	465	485	64,59	19,38	223	243	30,90	9,27			
11	500	490	510	68,06	20,42	235	255	32,64	9,79	38,00	21,93	
	525	515	535	71,53	21,46	248	268	34,38	10,31			
	550	540	560	75,00	22,50	260	280	36,11	10,83			
	575	565	585	78,48	23,54	273	293	37,85	11,35			
	600	590	610	81,95	24,58	285	305	39,59	11,88			
	650	640	660	88,89	26,67	310	330	43,06	12,92			
	700	690	710	95,84	28,75	335	355	46,53	13,96			
	750	740	760	102,78	30,84	360	380	50,00	15,00			
	800	790	810	109,73	32,92	385	405	53,48	16,04			
	850	840	860	116,67	35,00	410	430	56,95	17,08			
	900	890	910	123,62	37,09	435	455	60,42	18,13			
	950	940	960	130,56	39,17	460	480	63,89	19,17			
	1000	990	1010	137,51	41,25	485	505	67,37	20,21			

 $[\]epsilon$ = Winkel zwischen Schraube und Faserrichtung

ANMERKUNGEN

- Die charakteristischen Gewindeauszugswerte wurden unter Berücksichtigung eines Winkels ϵ sowohl von 90° ($R_{ax,90,k}$) als auch 0° ($R_{ax,0,k}$) zwischen den Fasern des Holzelements und dem Verbinder berechnet.
- Bei der Berechnung wurde eine Rohdichte der Holzelemente von ρ_k = 385 kg/m³ berücksichtigt. Für andere ρ_k -Werte können die aufgelisteten Festigkeiten mithilfe des k_{dens} -Beiwerts umgerechnet werden.

$$R'_{ax,k} = K_{dens,ax} \cdot R_{ax,k}$$

 $R'_{ki,k} = k_{dens,ki} \cdot R_{ki,k}$

ρ _k [kg/m ³]	350	380	380 385		425	430	440
C-GL	C24	C30	GL24h	GL26h	GL28h	GL30h	GL32h
k _{dens,ax}	0,92	0,98	1,00	1,04	1,08	1,09	1,11
k _{dens,ki}	0,97	0,99	1,00	1,00	1,01	1,02	1,02

Die so ermittelten Festigkeitswerte können zugunsten der Sicherheit von denen abweichen, die sich aus einer genauen Berechnung ergeben.

ALLGEMEINE GRUNDLAGEN auf Seite 143.

■ STATISCHE WERTE | HOLZ

				KRIECH	BELASTUNG		SCHERWERT					
Geon	netrie		Н	olz-Holz		Zugtragfähigkeit Stahl	Holz	-Holz	Holz-Holz ε=90°	Holz-Holz ε=0°		
			A A		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Appendix April Apr	S _g	A				
d_1	L	Sg	Α	B_{min}	$R_{V,k}$	R _{tens,45,k}	Α	S _g	R _{V,90,k}	R _{V,0,k}		
[mm]	[mm]	[mm]	[mm]	[mm]	[kN]	[kN]	[mm]	[mm]	[mm]	[kN]		
	80	-	-	-	-		40	25	2,59	1,34		
	100	35	40	55	2,19		50	35	2,93	1,53		
	120	45	45	60	2,81		60	45	3,15	1,74		
	140	55 55 70 3,44 65 60 75 4,06				70	55	3,37	1,97			
	160						80	65	3,59	2,06		
	180	75 70 85 4,69				90	75	3,81	2,12			
	200	85	75	90	5,31		100	85	4,03	2,19		
7	220	·			10.80	110	95	4,25	2,26			
/	260	240 105 90 105 260 115 95 110		110	6,56 7,19	10,89	120 130	105 115	4,30 4,30	2,32 2,39		
	280	125	105	120	7,19		140	125	4,30	2,39		
	300	135	110	125	8,44		150	135	4,30	2,52		
	320	145	120	135	9,06		160	145	4,30	2,59		
	340	155	125	140	9,69		170	155	4,30	2,65		
	360	165	130	145	10,31		180	165	4,30	2,72		
	380	175	140	155	10,94		190	175	4,30	2,79		
	400	185	145	160	11,56		200	185	4,30	2,85		
	160	65	60	75	5,22		80	65	5,10	2,81		
	180	75	70	85	6,03		90	75	5,38	3,08		
	200	85	75	90	6,83		100	85	5,67	3,18		
	220	95	85	100	7,63		110	95	5,95	3,27		
	240	105	90	105	8,44		120	105	6,23	3,35		
	260	115	95	110	9,24		130	115	6,50	3,44		
	280	125	105	120	10,04		140	125	6,50	3,52		
	300	135	110	125	10,85		150	135	6,50	3,61		
9	320	145	120	135	11,65	17,96	160	145	6,50	3,69		
,	340	155	125	140	12,46	17,50	170	155	6,50	3,78		
	360	165	130	145	13,26		180	165	6,50	3,86		
	380	175	140	155	14,06		190	175	6,50	3,95		
	400	185	145	160	14,87		200	185	6,50	4,03		
	440	205	160	175	16,47		220	205	6,50	4,21		
	480	225	175	190	18,08		240	225	6,50	4,38		
	520	245	190	205	19,69		260	245	6,50	4,55		
				220	21,29		280	265	6,50	4,72		
	600	285	215	230	22,90		300	285	6,50	4,89		

 $[\]epsilon$ = Winkel zwischen Schraube und Faserrichtung

				KRIECH	IBELASTUNG		SCHERWERT					
Geon	netrie		Н	lolz-Holz		Zugtragfähigkeit Stahl	Hol	z-Holz	Holz-Holz ε=90°	Holz-Holz ε=0°		
			A →		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	7 Market 45°		A —				
d ₁	L	S _g	Α	B _{min}	$R_{V,k}$	R _{tens,45,k}	Α	S _g	R _{V,90,k}	R _{V,0,k}		
[mm]	[mm]	[mm]	[mm]	[mm]	[kN]	[kN]	[mm]	[mm]	[mm]	[kN]		
	150	60	60	75	5,89		75	60 85	6,61	3,33		
	200	85 75 90 8,35 110 95 110 10,80 123 100 115 12,03			100 125	110	7,48 8,35	4,10 4,57				
	275				138	123	8,35 8,79	4,57				
	300	135	110	125	13,26		150	135	9,06	4,83		
	325	148	120	135	14,49		163	148	9,06	4,96		
	350	160	130	145	15,71		175	160	9,06	5,09		
	375	173	140	155	16,94		188	173	9,06	5,22		
	400	185	145	160	18,17		200	185	9,06	5,35		
	425	198	155	170	19,40		213	198	9,06	5,48		
	450	210	165	180	20,63		225	210	9,06	5,61		
	475	223	175	190	21,85		238	223	9,06	5,74		
11	500	235	180	195	23,08	26,87	250	235	9,06	5,87		
	525	248	190	205	24,31		263	248	9,06	6,00		
	550	260	200	215	25,54		275	260	9,06	6,13		
	575	273	210	225	26,76		288	273	9,06	6,26		
	600	285	215	230	27,99		300	285	9,06	6,39		
	650	310	235	250	30,45		325	310	9,06	6,65		
	700	335	250	265	32,90		350	335	9,06	6,85		
	750		35,36		375	360	9,06	6,85				
	800	385	290	305	37,81		400	385	9,06	6,85		
	850	410	305	320	40,27		425	410	9,06	6,85		
	900	435	325	340	42,72		450	435	9,06	6,85		
	950	460	340	355	45,18		475	460	9,06	6,85		
	1000	485	360	375	47,63		500	485	9,06	6,85		

 $[\]varepsilon$ = Winkel zwischen Schraube und Faserrichtung

ANMERKUNGEN

- Die charakteristischen Kriechwerte wurden unter Berücksichtigung eines Winkels ϵ von 45° zwischen Fasern des Holzelements und dem Verbinder berechnet.
- Die charakteristischen Holz-Holz-Scherfestigkeitswerte wurden unter Berücksichtigung eines Winkels ε sowohl von 90° (R_{V,90,k}) als auch 0° (R_{V,0,k}) zwischen den Fasern des zweiten Elements und dem Verbinder berechnet.
- Bei der Berechnung wurde eine Rohdichte der Holzelemente von ρ_k = 385 kg/m³ berücksichtigt. Für andere ρ_k -Werte können die aufgelisteten Festigkeiten mithilfe des k_{dens}-Beiwerts umgerechnet werden.

$$\begin{aligned} R^{'}_{V,k} &= k_{dens,ax} \cdot R_{V,k} \\ R^{'}_{V,90,k} &= k_{dens,V} \cdot R_{V,90,k} \\ R^{'}_{V,0,k} &= k_{dens,V} \cdot R_{V,0,k} \end{aligned}$$

ρ _k [kg/m³]	350	380	385	405	425	430	440
C-GL	C24	C30	GL24h	GL26h	GL28h	GL30h	GL32h
k _{dens,ax}	0,92	0,98	1,00	1,04	1,08	1,09	1,11
k.	0.90	0.98	1.00	1.02	1.05	1.05	1.07

Die so ermittelten Festigkeitswerte können zugunsten der Sicherheit von denen abweichen, die sich aus einer genauen Berechnung ergeben.

ALLGEMEINE GRUNDLAGEN auf Seite 143.

■ STATISCHE WERTE | GEKREUZTE VERBINDER

						SCHERVERBINDUNG HAUPTTRÄGER - NEBENTRÄGER									
Geor	netrie		Hauptträ Nebenträ				1 Paar			2 Paare		3 Paare			
L		H _{NT}	B _{HT}	m ¬	$\left.\rule{0mm}{2mm}\right]_{NT}$	€725 €725	7 ₉₀ ,	$\Bigg] b_{\rm NT}$	@2 400	290°	b _{NT}	6)181 6)181	2 90°	b _{NT}	
d_1	L	B _{HT,min}	H _{HT,min} h _{NT,min}	S_g	m	b _{NT,min}	R _{V1,k}	$R_{V2,k}$	b _{NT,min}	R _{V1,k}	$R_{V2,k}$	b _{NT,min}	R _{V1,k}	$R_{V2,k}$	
[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[kN]	[kN]	[mm]	[kN]	[kN]	[mm]	[kN]	[kN]	
	160	75	130	65	60	53	8,13		88	15,16		123	21,84		
	180	80	140	75	67	53	9,38		88	17,49		123	25,20		
	200	90	155	85	74	53	10,63		88	19,83		123	28,56		
	220	95	170	95	81	53	11,88		88	22,16		123	31,92		
	240	100	185	105	88	53	13,13		88	24,49		123	35,28		
	260	110	200	115	95	53	14,38		88	26,82		123	38,64		
7	280	115	210	125	102	53	15,63	13,63	88	29,16	25,44	123	42,00	36,64	
	300	125	225	135	109	53	16,88		88	31,49		123	45,36		
	320	130	240	145	116	53	18,13		88	33,82		123	48,72		
	340	140	255	155	123	53	19,38		88	36,16		123	52,08		
	360	145	270	165	130	53	20,63		88	38,49		123	55,44		
	380	150	285	175	137	53	21,78		88	40,64		123	58,54		
	400	160	295	185	144	53	21,78		88	40,64		123	58,54		
	200	90	155	85	74	68	13,66		113	25,49		158	36,72		
	220	95	170	95	81	68	15,27		113	28,49		158	41,04		
	240	100	185	105	88	68	16,88		113	31,49		158	45,36		
	260	110	200	115	95	68	18,48		113	34,49		158	49,68		
	280	115	210	125	102	68	20,09		113	37,49		158	54,00		
	300	125	225	135	109	68	21,70		113	40,49		158	58,32		
	320	130	240	145	116	68	23,30		113	43,49		158	62,64		
	340	140	255	155	123	68	24,91		113	46,49		158	66,96		
9	360	145	270	165	130	68	26,52	22,88	113	49,48	42,69	158	71,28	61,50	
	380	150	285	175	137	68	28,13		113	52,48		158	75,60		
	400	160	295	185	144	68	29,73		113	55,48		158	79,92		
	440	175	325	205	159	68	32,95		113	61,48		158	88,56		
	480	185	355	225	173	68	35,92		113	67,03		158	96,55		
	520	200	380	245	187	68	35,92		113	67,03		158	96,55		
	560	215	410	265	201	68	35,92		113	67,03		158	96,55		
	600	230	440	285	215	68	35,92		113	67,03		158	96,55		

STATISCHE WERTE | GEKREUZTE VERBINDER

						SCHERVERBINDUNG HAUPTTRÄGER - NEBENTRÄGER								
Geon	netrie		Hauptträ Nebenträ			1 Paar			2 Paare			3 Paare		
		H _{NT}	B _{iet}	45°	h _{NT}	≪ 2700	790°	b _{NT}		280°	b _{NT}	(a)		b _{NT}
d ₁	L	B _{HT,min}	$H_{HT,min}$ $h_{NT,min}$	Sg	m	b _{NT,min}	R _{V1,k}	$R_{V2,k}$	b _{NT,min}	R _{V1,k}	R _{V2,k}	b _{NT,min}	R _{V1,k}	$R_{V2,k}$
[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[kN]	[kN]	[mm]	[kN]	[kN]	[mm]	[kN]	[kN]
	250	105	190	110	91	83	21,61		138	40,32		193	58,08	
	275	115	210	125	102	83	24,55		138	45,82		193	66,00	
	300	125	225	135	109	83	26,52		138	49,48		193	71,28	
	325	135	250	150	120	83	29,46		138	54,98		193	79,20	
	350	140	260	160	127	83	31,43		138	58,65		193	84,48	
	375	150	285	175	137	83	34,38		138	64,15		193	92,40	
	400	160	295	185	144	83	36,34		138	67,81		193	97,68	
	425	170	320	200	155	83	39,29		138	73,31		193	105,60	
	450	175	335	210	162	83	41,25		138	76,98		193	110,88	
	475	185	355	225	173	83	44,20		138	82,47		193	118,80	
	500	195	370	235	180	83	46,16		138	86,14		193	124,08	
11	525	205	390	250	190	83	49,11	29,15	138	91,64	54,40	193	131,99	78,35
	550	210	405	260	197	83	51,07		138	95,30		193	137,27	
	575	225	425	275	208	83	53,74		138	100,28		193	144,45	
	600	230	440	285	215	83	53,74		138	100,28		193	144,45	
	650	245	475	310	233	83	53,74		138	100,28		193	144,45	
	700	265	510	335	251	83	53,74		138	100,28		193	144,45	
	750	285	545	360	268	83	53,74		138	100,28		193	144,45	
	800	300	580	385	286	83	53,74		138	100,28		193	144,45	
	850	320	615	410	304	83	53,74		138	100,28		193	144,45	
	900	335	650	435	321	83	53,74		138	100,28		193	144,45	
	950	355	685	460	339	83	53,74		138	100,28		193	144,45	
	1000	370	720	485	357	83	53,74		138	100,28		193	144,45	

ANMERKUNGEN

• Die bei der Planung berücksichtigte Festigkeit der Verbinder entspricht dem kleineren Wert zwischen der Ausziehfestigkeit ($R_{V1,d}$) und der Knickfestigkeit (R_{V2,d}).

$$R_{V,d} = min \begin{cases} \frac{R_{V1,k} \cdot k_{moo}}{\gamma_{M}} \\ \frac{R_{V2,k}}{\gamma_{M1}} \end{cases}$$

- Bei der Berechnung der angegebenen Werte wurde eine Anordnung der Verbinder mit einem Abstand von a $_{1,CG} \ge 5$ d gewählt.
- Bei der Berechnung wurde eine Rohdichte der Holzelemente von ρ_k = 385 kg/m³ berücksichtigt. Für andere ρ_k -Werte können die aufgelisteten Festigkeiten mithilfe der zuvor angegebenen k_{dens}-Beiwerte umgerechnet werden:

$$R'_{V1,k} = k_{dens,ax} \cdot R_{V1,k}$$

 $R'_{V2,k} = k_{dens,ki} \cdot R_{V2,k}$

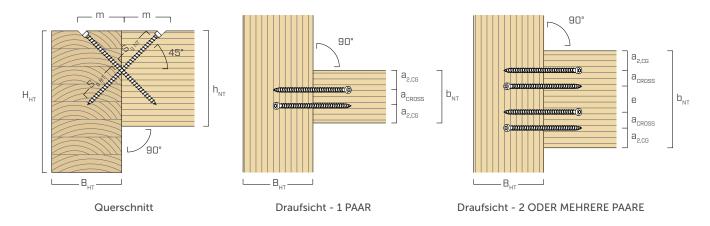
Die so ermittelten Festigkeitswerte können zugunsten der Sicherheit von denen abweichen, die sich aus einer genauen Berechnung ergeben.

- Das Einbaumaß (m) gilt für die symmetrische Verlegung von Verbindern an der Oberkante der Elemente.
- Die Verbinder müssen mit einem Winkel von 45° zur Scherfläche eingesetzt
- Die aufgelisteten Festigkeitswerte für Verbindungen mit mehreren Paaren gekreuzter Schrauben enthalten bereits n_{ef,ax}.

ALLGEMEINE GRUNDLAGEN auf Seite 143.

■ MINDESTABSTÄNDE BEI GEKREUZTEN SCHRAUBEN

Einsatz der Schrauben MIT und OHNE Vorbohrung

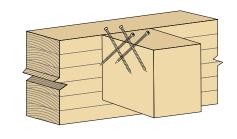


d ₁	[mm]		7	9	11
a _{2,CG}	[mm]	3·d	21	27	33
a _{CROSS}	[mm]	1,5·d	11	14	17
е	[mm]	3,5·d	25	32	39

d_1	[mm]		9	11
a _{2,CG}	[mm]	3·d	27	33
a_{CROSS}	[mm]	1,5·d	14	17
е	[mm]	3,5·d	32	39

 $d = d_1 = Nenndurchmesser Schraube$

ANMERKUNGEN


- Zur Verbindung Nebenträger-Hauptträger mit geneigten oder gekreuzten VGZ Schrauben d = 7 mm, die im 45°-Winkel zur Kopfseite des Nebenträgers eingesetzt werden. Bei Mindesthöhe des Nebenträgers von 18·d kann der Mindestabstand $a_{1,CG}$ gleich $8\cdot d_1$ und der Mindestabstand $a_{2,CG}$ gleich $3\cdot d_1$ betragen.
- Für Schrauben mit Spitze 3 THORNS und mit Self-drilling-Spitze sind die angegebenen Mindestabstände aus experimentellen Untersuchungen ermittelt; wahlweise a_{1,CG} = 10·d und a_{2,CG} = 4·d gemäß EN1995:2014 anwenden.

■ WIRKSAME ANZAHL FÜR AXIAL BEANSPRUCHTE VERBINDERPAARE

Die Tragfähigkeit einer Verbindung mit mehreren Schrauben vom gleichen Typ und mit gleicher Größe kann kleiner sein als die Summe der Tragfähigkeiten des einzelnen Verbindungsmittels.

Für eine Verbindung mit n Paaren gekreuzter Schrauben entspricht die effektive charakteristische Tragfähigkeit:

$$R_{ef,V,k} = n_{ef,ax} \cdot R_{V,k}$$

Der Wert von ner ist in der folgenden Tabelle abhängig von n (Anzahl der Paare) aufgeführt.

n _{PAARE}	2	3	4	5	6	7	8	9	10
n _{ef,ax}	1,87	2,70	3,60	4,50	5,40	6,30	7,20	8,10	9,00

MONTAGEANLEITUNGEN

HOLZ-HOLZ-VERBINDUNGEN MIT GEKREUZTEN SCHRAUBEN

KLEMMUNG DER VERBINDUNG

Für eine korrekte Montage der Verbindung sollten die Elemente vor dem Einsetzen der Verbinder eingespannt werden.

EINSCHRAUBEN DER VERBINDER

Eine Schraube mit Teilgewinde (z. B. HBS680) einschrauben, um die Elemente näher zusammenzubringen.

Die HBS-Schraube hat den anfänglich vorhandenen Abstand zwischen den Elementen beseitigt.

Nach dem Positionieren können die VGZ-Verbinder entfernt werden.

Für die korrekte Positionierung und Neigung der VGZ-Schrauben empfiehlt sich die Verwendung der JIGVGZ45-Montagelehre.

Nachdem etwa ein Drittel der Schraube eingedreht wurde, die Montagelehre JIGVGZ45 entfernen und die Montage fortsetzen.

Den Vorgang wiederholen, um die eingesetzte Schraube vom Hauptträger in den Nebenträger zu montieren.

VERWENDUNG VON BSP-PLATTEN MIT IN BEIDE RICHTUNGEN GENEIGTEN VERBINDERN (45° - 45°)

Für die korrekte Positionierung und Neigung der VGZ-Schrauben empfiehlt sich die Verwendung der JIGVGZ45-Montagelehre, die bei 45° im Verhältnis zur Kopfseite der Platte angebracht wird.

Nachdem etwa ein Drittel der Schraube eingedreht wurde, die Montagelehre JIGVGZ45 entfernen und die Montage fortsetzen.

Den Vorgang wiederholen, um die eingesetzte Schraube in die angrenzende Platte einzusetzen; diese abwechselnde Reihenfolge entsprechend den im Entwurf vorgesehenen Abständen fortsetzen.

■ ZUGEHÖRIGE PRODUKTE

HBS Seite 30

CATCH Seite 408

BIT Seite 417

JIG VGZ 45° Seite 409

■ STATISCHE WERTE | BSP

						ZUGKRÄFTE					
			Vollständi	iger Gewindeausz	rug		9	Zugtragfähigkeit			
Geon	netrie			lateral	narrow			lateral	narrow	Stahl	
L		S _{g,tot}	[<u>%///</u> A							☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐	
d_1	L	$S_{g,tot}$	A _{min}	R _{ax,90,k}	R _{ax,0,k}	Sg	A _{min}	R _{ax,90,k}	R _{ax,0,k}	R _{tens,k}	
[mm]	[mm]	[mm]	[mm]	[kN]	[kN]	[mm]	[mm]	[kN]	[kN]	[kN]	
	80	70	90	5,73	4,34	-	-	-	-		
	100	90	110	7,37	5,44	35	55	2,87	2,33		
	120	110	130	9,01	6,52	45	65	3,69	2,92		
	140	130	150	10,65	7,58	55	75	4,50	3,49		
	160	150	170	12,29	8,62	65	85	5,32	4,06		
	180	170	190	13,92	9,65	75	95	6,14	4,62		
	200	190	210	15,56	10,67	85	105	6,96	5,17		
	220	210	230	17,20	11,67	95	115	7,78	5,72		
7	240	230	250	18,84	12,67	105	125	8,60	6,25	15,40	
	260	250	270	20,48	13,65	115	135	9,42	6,79		
	280	270	290	22,11	14,63	125	145	10,24	7,32		
	300	290	310	23,75	15,61	135	155	11,06	7,84		
	320	310	330	25,39	16,57	145	165	11,88	8,36		
	340	330	350	27,03	17,53	155	175	12,69	8,88		
	360	350	370	28,67	18,48	165	185	13,51	9,39		
	380	370	390	30,30	19,43	175	195	14,33	9,90		
	400	390	410	31,94	20,37	185	205	15,15	10,41		
	160	150	170	15,80	10,54	65	85	6,84	4,97		
	180	170	190	17,90	11,80	75	95	7,90	5,65		
	200	190	210	20,01	13,04	85	105	8,95	6,32		
	220	210	230	22,11	14,27	95	115	10,00	6,99		
	240	230	250	24,22	15,49	105	125	11,06	7,65		
	260	250	270	26,33	16,69	115	135	12,11	8,30		
	280	270	290	28,43	17,89	125	145	13,16	8,95		
	300	290	310	30,54	19,08	135	155	14,22	9,59		
9	320	310	330	32,64	20,26	145	165	15,27	10,22	25,40	
9	340	330	350	34,75	21,43	155	175	16,32	10,86	25,40	
	360	350	370	36,86	22,60	165	185	17,37	11,49		
	380	370	390	38,96	23,76	175	195	18,43	12,11		
	400	390	410	41,07	24,91	185	205	19,48	12,73		
	440	430	450	45,28	27,20	205	225	21,59	13,96		
	480	470	490	49,49	29,47	225	245	23,69	15,18		
	520	510	530	53,70	31,71	245	265	25,80	16,39		
	560	550	570	57,92	33,94	265	285	27,90	17,59		
	600	590	610	62,13	36,16	285	305	30,01	18,78		

■ STATISCHE WERTE | BSP

						ZUGKRÄF				
			Vollständ	iger Gewindeaus	zug		Partiell	er Gewindeauszu	ıg	Zugtragfähigkeit
Geon	netrie			lateral	narrow			lateral	narrow	Stahl
L	Dammannannan d	$S_{g,tot}$	A A							☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐
d_1	L	$S_{g,tot}$	A _{min}	$R_{ax,90,k}$	R _{ax,0,k}	Sg	A _{min}	$R_{ax,90,k}$	R _{ax,0,k}	R _{tens,k}
[mm]	[mm]	[mm]	[mm]	[kN]	[kN]	[mm]	[mm]	[kN]	[kN]	[kN]
	150	140	160	18,02	11,63	60	80	7,72	5,43	
	200	190	210	24,45	15,31	85	105	10,94	7,42	
	250	240	260	30,89	18,89	110	130	14,16	9,36	
	275	265	285	34,11	20,66	123	143	15,77	10,31	
	300	290	310	37,32	22,40	135	155	17,37	11,26	
	325	315	335	40,54	24,13	148	168	18,98	12,19	
	350	340	360	43,76	25,85	160	180	20,59	13,12	
	375	365	385	46,98	27,56	173	193	22,20	14,04	
	400	390	410	50,19	29,25	185	205	23,81	14,95	
	425	415	435	53,41	30,93	198	218	25,42	15,85	
	450	440	460	56,63	32,60	210	230	27,03	16,75	
	475	465	485	59,85	34,27	223	243	28,64	17,65	
11	500	490	510	63,06	35,92	235	255	30,24	18,54	38,00
	525	515	535	66,28	37,56	248	268	31,85	19,43	
	550	540	560	69,50	39,20	260	280	33,46	20,31	
	575	565	585	72,72	40,83	273	293	35,07	21,18	
	600	590	610	75,93	42,45	285	305	36,68	22,05	
	650	640	660	82,37	45,68	310	330	39,90	23,79	
	700	690	710	88,80	48,88	335	355	43,11	25,51	
	750	740	760	95,24	52,05	360	380	46,33	27,22	
	800	790	810	101,67	55,21	385	405	49,55	28,91	
	850	840	860	108,11	58,34	410	430	52,77	30,59	
	900	890	910	114,54	61,46	435	455	55,98	32,27	
	950	940	960	120,98	64,56	460	480	59,20	33,93	
	1000	990	1010	127,41	67,64	485	505	62,42	35,59	

■ STATISCHE WERTE | BSP

						KRIECHBELASTUNG						
G	eometri	ie	В	SSP - BSP 45° +	45°		BSP - BSP		BSP - Holz			
			A	45		A		45	A S S A A B S S A A B S A A B S A A B S A A B S A A B S A A B S A A B S A A B S A A B S A			
d ₁	L	Sg	A _{min}	R _{V,k}	R _{tens,45+45,k}	Α	R _{V,k}	R _{tens,45,k}	Α	H _{min}	R _{V,k}	R _{tens,45,k}
[mm]	[mm]		[mm]	[kN]	[kN]	[mm]	[kN]	[kN]	[mm]	[mm]	[kN]	[kN]
	80	25	65	0,86		35	1,22		35	50	1,45	
	100	35	80	1,16		40	1,65		40	55	2,03	
	120	45	95	1,46		45	2,06		45	60	2,61	
	140	55	110	1,75		55	2,47		55	70	3,19	
	160	65	125	2,03		60	2,87		60	75	3,76	
	180	75	135	2,31		70	3,27		70	85	4,34	
	200	85	150 165	2,59		75	3,66		75	90	4,92	
7	220 240	95 105		2,86	7.70	85	4,04	10.00	85	100	5,50	10.00
,	260		180	3,13	7,70	90	4,42	10,89	90	105	6,08	10,89
		115	195	3,39		95	4,80		95	110	6,66	
	280 300	125	210	3,66		105	5,17		105	120	7,24	
		135	220	3,92		110	5,54		110	125	7,82	
	320 340	145	235 250	4,18		120	5,91 6,28		120	135	8,40	
	360	155		4,44		125	6,64		125	140	8,98 9,56	
	380	165 175	265 280	4,70 4,95		130 140	7,00		130 140	145 155	10,13	
		185										
	400		295	5,21		145	7,36		145	160	10,71	
	160 180	65 75	125	2,48		60	3,51		60	75	4,84	
			135	2,82		70	3,99		70 75	85	5,58	
	200		150	3,16		75	4,47		75	90	6,33	
	220 240	95	165	3,49		85	4,94 5,41		85	100	7,07 7,82	
	260		180	3,82		90			90	105		
	280		195	4,15 4,47		95	5,87 6,33		95	110	8,56 9,31	
	300		210 220	4,47		105 110	6,78		105 110	120 125	10,05	
	320		235	5,11		120	7,23		120	135	10,80	
9	340		250	5,43	12,70	125	7,23	17,96	125	140	11,54	17,96
	360		265	5,74		130	8,12		130	145	12,29	
	380			6,06			8,56					
	400		280 295	6,06		140 145	9,00		140 145	155 160	13,03 13,77	
	440		320	6,98		160	9,00		160	175	15,77	
	480		350	7,59			10,74		175	190	16,75	
	520		380	8,20		175 190	11,59		190	205	18,24	ŀ
	560											
			405	8,80		205	12,44		205	220	19,73	
	600	285	435	435 9,39		215	13,28		215	230	21,22	

						KR	IECHBELAS	STUNG				
G	Geometrie		BSP - BSP 45° + 45°			BSP - BSP			BSP - Holz			
			A 45			A	A H					
d ₁	L	S_g	A _{min}	$R_{V,k}$	R _{tens,45+45,k}	Α	$R_{V,k}$	$R_{tens,45,k}$	Α	H_{min}	$R_{V,k}$	R _{tens,45,k}
[mm]	[mm]	[mm]	[mm]	[kN]	[kN]	[mm]	[kN]	[kN]	[mm]	[mm]	[kN]	[kN]
	150	60	115	2,71		60	3,84		60	75	5,46	
	200	85	150	3,71		75	5,25		75	90	7,74	
	250	110	185	4,68		95	6,62		95	110	10,01	
	275	123	205	5,16		100	7,29		100	115	11,15	
	300	135	220	5,63		110	7,96		110	125	12,29	
	325	148	240	6,10		120	8,62		120	135	13,42	
	350	160	255	6,56		130	9,28		130	145	14,56	
	375	173	275	7,02		140	9,93		140	155	15,70	
	400	185	295	7,47		145	10,57		145	160	16,84	
	425	198	310	7,93		155	11,21		155	170	17,97	
	450	210	330	8,38		165	11,85		165	180	19,11	
	475	223	345	8,82		175	12,48		175	190	20,25	
11	500	235	365	9,27	19,00	180	13,11	26,87	180	195	21,39	26,87
	525	248	380	9,71		190	13,74		190	205	22,52	
	550	260	400	10,15		200	14,36		200	215	23,66	
	575	273	415	10,59		210	14,98		210	225	24,80	
	600	285	435	11,03		215	15,60		215	230	25,94	
	650	310	470	11,89		235	16,82		235	250	28,21	
	700	335	505	12,75		250	18,04		250	265	30,49	
	750	50 360 540 13,61		270	19,24		270	285	32,76			
	800	385	575	14,46		290	20,44		290	305	35,04	
	850	410	610	15,30		305	21,63		305	320	37,31	
	900	435	645	16,13		325	22,82		325	340	39,59	
	950	460	680	16,97		340	23,99		340	355	41,86	
	1000	485	715	17,79		360	25,16		360	375	44,14	

ANMERKUNGEN | BSP

- Die charakteristischen Werte entsprechen den nationalen Spezifikationen ÖNORM EN 1995 - Annex K.
- Bei der Berechnung wurde eine Rohdichte für die BSP-Elemente von ρ_k = 350 kg/m 3 und für Holzelemente mit ρ_k = 385 kg/m 3 bedacht.
- Die axiale Auszugsfestigkeit des "narrow-face"-Gewindes gilt unter Einhaltung der BSP-Mindeststärke von $t_{CLT,min}=10\cdot d_1$ und einer Mindestdurchzugstiefe der Schraube von $t_{pen}=10\cdot d_1$.
- Für die Berechnung der charakteristischen Kriechwerte der in die Seitenfläche der BSP-Platte eingesetzten Verbinder wurde ein Winkel ϵ von 45° zwischen Fasern und Verbinder berücksichtigt, da die Stärke und Ausrichtung der einzelnen Schichten nicht im Vorfeld festgelegt werden konnte.
- Für die Berechnung der charakteristischen Kriechwerte der mit doppelter

Neigung (45°-45°) eingesetzten Verbinder wurde ein Winkel ε von 60° zwischen den Fasern und dem Verbinder berücksichtigt. Die Geometrie der Verbindung sieht vor, dass die Verbinder mit einem 45°-Winkel im Verhältnis zur Seite der BSP-Platte und in einem Winkel von 45° zur Scherfläche zwischen den beiden Platten eingesetzt werden. Für eine fachgerechte Montage der Verbinder in dieser Anwendung wird die

Verwendung der Montagelehre JIG VGZ 45 empfohlen.

• Die Knickfestigkeitsprüfung der Verbinder muss getrennt durchgeführt

ALLGEMEINE GRUNDLAGEN auf Seite 143.

■ STATISCHE WERTE | LVL

						ZUGKRÄF	TE			
Geometrie			Vollständi	iger Gewindeausz	rug		Partiell	er Gewindeauszu		Zugtragfähigkeit
Geon	netrie			wide	edge			wide	edge	Stahl
L	Diminishman d	S _g	A					\uparrow		☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐
d_1	L	$S_{g,tot}$	A _{min}	$R_{ax,90,k}$	R _{ax,0,k}	S _g	A _{min}	$R_{ax,90,k}$	R _{ax,0,k}	R _{tens,k}
[mm]	[mm]	[mm]	[mm]	[kN]	[kN]	[mm]	[mm]	[kN]	[kN]	[kN]
	80	70	90	7,11	4,74	-	-	-	-	
	100	90	110	9,15	5,44	35	55	3,56	2,37	
	120	110	130	11,18	6,52	45	65	4,57	3,05	
	140	130	150	13,21	7,58	55	75	5,59	3,73	
	160	150	170	15,24	8,62	65	85	6,61	4,40	
	180	170	190	17,28	9,65	75	95	7,62	5,08	
	200	190	210	19,31	10,67	85	105	8,64	5,76	
	220	210	230	21,34	11,67	95	115	9,65	6,44	
7	240	230	250	23,37	12,67	105	125	10,67	7,11	15,40
	260	250	270	25,41	13,65	115	135	11,69	7,79	
	280	270	290	27,44	14,63	125	145	12,70	8,47	
	300	290	310	29,47	15,61	135	155	13,72	9,15	
	320	310	330	31,50	16,57	145	165	14,74	9,82	
	340	330	350	33,54	17,53	155	175	15,75	10,50	
	360	350	370	35,57	18,48	165	185	16,77	11,18	
	380	370	390	37,60	19,43	175	195	17,78	11,86	
	400	390	410	39,63	20,37	185	205	18,80	12,53	
	160	150	170	19,60	10,54	65	85	8,49	5,66	
	180	170	190	22,21	11,80	75	95	9,80	6,53	
	200	190	210	24,83	13,04	85	105	11,11	7,40	
	220	210	230	27,44	14,27	95	115	12,41	8,28	
	240	230	250	30,05	15,49	105	125	13,72	9,15	
	260	250	270	32,67	16,69	115	135	15,03	10,02	
	280	270	290	35,28	17,89	125	145	16,33	10,89	
	300	290	310	37,89	19,08	135	155	17,64	11,76	
9	320	310	330	40,51	20,26	145	165	18,95	12,63	25,40
	340	330	350	43,12	21,43	155	175	20,25	13,50	20,.0
	360	350	370	45,73	22,60	165	185	21,56	14,37	
	380	370	390	48,35	23,76	175	195	22,87	15,24	
	400	390	410	50,96	24,91	185	205	24,17	16,12	
	440	430	450	56,18	27,20	205	225	26,79	17,86	
	480	470	490	61,41	29,47	225	245	29,40	19,60	
	520	510	530	66,64	31,71	245	265	32,01	21,34	
	560	550	570	71,86	33,94	265	285	34,63	23,08	
	600	590	610	77,09	36,16	285	305	37,24	24,83	

■ STATISCHE WERTE | LVL

						ZUGKRÄF	TE			
			Vollständ	iger Gewindeausz	ug		Partiell	er Gewindeauszu	g	Zugtragfähigkeit
Geon	netrie			wide	edge			wide	edge	Stahl
L	Dunnunununununun d	So	A			S		$\uparrow \downarrow \uparrow$		← → Диниципининини → ← →
d ₁	L	$S_{g,tot}$	A _{min}	R _{ax,90,k}	R _{ax,0,k}	S _g	A _{min}	R _{ax,90,k}	R _{ax,0,k}	R _{tens,k}
[mm]	[mm]	[mm]	[mm]	[kN]	[kN]	[mm]	[mm]	[kN]	[kN]	[kN]
	150	140	160	22,36	11,63	60	80	9,58	6,39	
	200	190	210	30,34	15,31	85	105	13,57	9,05	
	250	240	260	38,33	18,89	110	130	17,57	11,71	
	275	265	285	42,32	20,66	123	143	19,56	13,04	
	300	290	310	46,31	22,40	135	155	21,56	14,37	
	325	315	335	50,31	24,13	148	168	23,56	15,70	
	350	340	360	54,30	25,85	160	180	25,55	17,03	
	375	365	385	58,29	27,56	173	193	27,55	18,37	
	400	390	410	62,28	29,25	185	205	29,54	19,70	
	425	415	435	66,27	30,93	198	218	31,54	21,03	
	450	440	460	70,27	32,60	210	230	33,54	22,36	
	475	465	485	74,26	34,27	223	243	35,53	23,69	
11	500	490	510	78,25	35,92	235	255	37,53	25,02	38,00
	525	515	535	82,24	37,56	248	268	39,53	26,35	
	550	540	560	86,24	39,20	260	280	41,52	27,68	
	575	565	585	90,23	40,83	273	293	43,52	29,01	
	600	590	610	94,22	42,45	285	305	45,51	30,34	
	650	640	660	102,21	45,68	310	330	49,51	33,00	
	700	690	710	110,19	48,88	335	355	53,50	35,67	
	750	740	760	118,18	52,05	360	380	57,49	38,33	
	800	790	810	126,16	55,21	385	405	61,48	40,99	
	850	840	860	134,15	58,34	410	430	65,48	43,65	
	900	890	910	142,13	61,46	435	455	69,47	46,31	
	950	940	960	150,12	64,56	460	480	73,46	48,97	
	1000	990	1010	158,10	67,64	485	505	77,45	51,64	

■ STATISCHE WERTE | LVL

	KRIECHBELASTUNG									SCH	IERWERT		
G	Geometrie				LVL-LVL				LVL-Holz		ı	LVL-LVL wide	
											WIGC		
			$A = \begin{bmatrix} & & & & \\ & & & & \\ & & & & \\ & & & &$			45*	$\begin{array}{c} A \\ \longrightarrow \\ S_0 \\ \longrightarrow \\ H \end{array}$			45°	$A \left[\begin{array}{c} \longrightarrow \\ S_{g} \end{array} \right] S_{g}$		
d ₁	L	S_g	Α	B_{min}	$R_{V,k}$	$R_{\text{tens,45,k}}$	Α	H_{\min}	$R_{V,k}$	$R_{\text{tens,45,k}}$	Α	R _{V,90,k}	
[mm]	[mm]	[mm]	[mm]	[mm]	[kN]	[kN]	[mm]	[mm]	[kN]	[kN]	[mm]	[kN]	
	100	35	40	55	2,01		40	45	2,01		50	3,29	
	120	45	45	60	2,59		45	50	2,59		60	3,55	
	140	55	55	70	3,16		55	60	3,16		70	3,80	
	160	65	60	75	3,74		60	65	3,74		80	4,05	
	180	75	70	85	4,31		70	75	4,31		90	4,31	
	200	85	75	90	4,89		75	80	4,89		100	4,56	
	220	95	85	100	5,46		85	90	5,46		110	4,81	
7	240	105	90	105	6,04	10,89	90	95	6,04	10,89	120	4,81	
	260	115	95	110	6,61		95	100	6,61		130	4,81	
	280	125	105	120	7,19		105	110	7,19		140	4,81	
	300	135	110	125	7,76		110	115	7,76		150	4,81	
	320	145	120	135	8,34		120	125	8,34		160	4,81	
	340	155	125	140	8,91		125	130	8,91		170	4,81	
	360	165	130	145	9,49		130	135	9,49		180	4,81	
	380	175	140	155	10,06		140	145	10,06		190	4,81	
	400	185	145	160	10,64		145	150	10,64		200	4,81	
	160	65	60	75	4,80		60	65	4,80		80	5,75	
	180	75	70	85	5,54		70	75	5,54		90	6,08	
	200	85	75	90	6,28		75	80	6,28		100	6,41	
		95	85	100	7,02		85	90	7,02		110	6,73	
	240	105	90	105	7,76		90	95	7,76		120	7,06	
		115	95	110	8,50		95	100	8,50		130	7,26	
	300	125	105	120	9,24		105	110	9,24		140	7,26	
			110	125	9,98		110	115	9,98		150	7,26	
9		145	120	135	10,72	17,96	120	125	10,72	17,96	160	7,26	
		155	125	140	11,46		125	130	11,46 12,20		170	7,26	
	360 380	165	130	145 155	12,20 12,93		130 140	135 145			180 190	7,26 7,26	
	400		140 145	160	12,93		140	150	12,93 13,67		200	7,26	
	440	205	160	175	15,15		160	165	15,15		220	7,26	
	480	205	175	190	16,63		175	180	16,63		240	7,26	
	520	245	190	205	18,11		190	195	18,11		260	7,26	
	560	265	205	220	19,59		205	210	19,59		280	7,26	
	600		215	230	21,07		215	220	21,07			7,26	
	000	200	215	230	21,07		215	220	21,0/		300	7,20	

						KRIECHBE	LASTU	NG			SCH	IERWERT	
G	Geometrie				LVL-LVL				LVL-Holz		I	LVL-LVL wide	
		1	A So				$\begin{array}{c} A \\ \longrightarrow \\ S_0 \\ \longrightarrow \\ H \end{array}$			\	$A \left[\begin{array}{c} \longrightarrow \\ S_q \\ \end{array} \right] S_q$		
d_1	L	Sg	Α	B_{\min}	$R_{V,k}$	R _{tens,45,k}	Α	H_{min}	$R_{V,k}$	$R_{\text{tens,45,k}}$	Α	R _{V,90,k}	
[mm]	[mm]	[mm]	[mm]	[mm]	[kN]	[kN]	[mm]	[mm]	[kN]	[kN]	[mm]	[kN]	
	150	60	60	75	5,42		60	65	5,42		75	7,46	
	200	85	75	90	7,68		75	80	7,68		100	8,45	
	250	110	95	110	9,94		95	100	9,94		125	9,45	
	275	123	100	115	11,07		100	105	11,07		138	9,95	
	300	135	110	125	12,20		110	115	12,20		150	10,12	
	325	148	120	135	13,33		120	125	13,33		163	10,12	
	350	160	130	145	14,45		130	135	14,45		175	10,12	
	375	173	140	155	15,58		140	145	15,58		188	10,12	
	400	185	145	160	16,71		145	150	16,71		200	10,12	
	425	198	155	170	17,84		155	160	17,84		213	10,12	
	450	210	165	180	18,97		165	170	18,97		225	10,12	
	475	223	175	190	20,10		175	180	20,10		238	10,12	
11	500	235	180	195	21,23	26,87	180	185	21,23	26,87	250	10,12	
	525	248	190	205	22,36		190	195	22,36		263	10,12	
	550	260	200	215	23,49		200	205	23,49		275	10,12	
	575	273	210	225	24,62		210	215	24,62		288	10,12	
	600	285	215	230	25,75		215	220	25,75		300	10,12	
	650	310	235	250	28,01		235	240	28,01		325	10,12	
	700	335	250	265	30,26		250	255	30,26		350	10,12	
	750	360	270	285	32,52		270	275	32,52		375	10,12	
	800	385	290	305	34,78		290	295	34,78		400	10,12	
	850	410	305	320	37,04		305	310	37,04		425	10,12	
	900	435	325	340	39,30		325	330	39,30		450	10,12	
	950	460	340	355	41,56		340	345	41,56		475	10,12	
	1000	485	360	375	43,81		360	365	43,81		500	10,12	

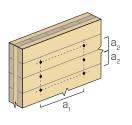
ANMERKUNGEN

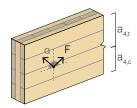
- Bei der Berechnung wurde eine Rohdichte der LVL-Elemente aus Nadelholz (Softwood) von ρ_k = 480 kg/m 3 und für Holzelemente mit ρ_k = 385 kg/m 3 berücksichtigt.
- Die axiale Auszugsfestigkeit des "wide"-Gewindes wurde unter Berücksichtigung eines Winkels von 90° zwischen den Fasern und dem Verbinder berechnet und gilt bei Anwendung mit LVL mit parallelen und überkreuzten Funierblättern.
- Die axiale Auszugsfestigkeit des "edge"-Gewindes wurde unter Berücksichtigung eines Winkels von 90° zwischen den Fasern und dem Verbinder berechnet und gilt bei Anwendung mit LVL mit parallelen Funierblättern.
- Mindesthöhe LVL h_{LVL,min} = 100 mm für Verbinder VGZ Ø7 und h_{LVL,min} = 120 mm für Verbinder VGZ Ø9.
- Für die Berechnung der charakteristischen Kriechwerte wurde für die ein-
- zelnen Holzelemente ein Winkel von 45° zwischen dem Verbinder und der Faser und ein Winkel von 45° zwischen Verbinder und Seitenfläche des LVL-Elements berücksichtigt.
- Für die Berechnung der charakteristischen Scherfestigkeitswerte wurde für die einzelnen Holzelemente ein Winkel von 90° zwischen dem Verbinder und der Faser, ein Winkel von 90° zwischen Verbinder und Seitenfläche des LVL-Elements und ein Winkel von 0° zwischen der Kraft- und Faserrichtung berücksichtigt.
- Die Knickfestigkeitsprüfung der Verbinder muss getrennt durchgeführt werden.

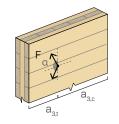
ALLGEMEINE GRUNDLAGEN auf Seite 143.

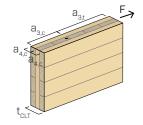
MINDESTABSTÄNDE DER SCHRAUBEN BEI SCHERBEANSPRUCHUNG UND AXIALER BEANSPRUCHUNG | BSP

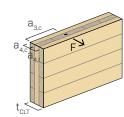
Schraubenabstände OHNE Vorbohrung

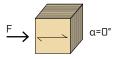

lateral face




d_1	[mm]		7	9	11
a ₁	[mm]	10·d	70	90	110
a ₂	[mm]	4·d	28	36	44
a _{3,t}	[mm]	12·d	84	108	132
a _{3,c}	[mm]	7⋅d	49	63	77
$a_{4,t}$	[mm]	6·d	42	54	66
a _{4,c}	[mm]	3·d	21	27	33

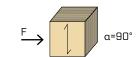

d_1	[mm]		7	9	11
a ₁	[mm]	4·d	28	36	44
a ₂	[mm]	2,5·d	18	23	28
a _{3,t}	[mm]	6·d	42	54	66
a _{3,c}	[mm]	6·d	42	54	66
a _{4.t}	[mm]	6·d	42	54	66
a _{4,c}	[mm]	2,5·d	18	23	28


 $d = d_1 = Nenndurchmesser Schraube$


ANMERKUNGEN

- Die Mindestabstände sind gemäß ETA-11/0030 und sind gültig, falls keine anderen Angaben in den technischen Unterlagen der BSP-Bretter angege-
- Die Mindestabstände gelten für die Mindestdicke BSP $t_{CLT,min} = 10 \cdot d_1$.
- Die auf "narrow face" bezogenen Mindestabstände gelten für die minimale Durchzugtiefe der Schraube $t_{pen} = 10 \cdot d_1$.

MINDESTABSTÄNDE DER SCHRAUBEN BEI ABSCHERBEANSPRUCHUNG | LVL


Schraubenabstände OHNE Vorbohrung

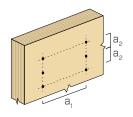
49

<u>F</u>	>		α=0°	

7	9	11
105	135	165
49	63	77
140	180	220
105	135	165
49	63	77

d_1	[mm]		7	9	11
a ₁	[mm]	7·d	49	63	77
a ₂	[mm]	7·d	49	63	77
$a_{3,t}$	[mm]	15·d	105	135	165
a _{3,c}	[mm]	15·d	105	135	165
$a_{4,t}$	[mm]	12·d	84	108	132
$a_{4,c}$	[mm]	7⋅d	49	63	77

 α = Winkel zwischen Kraft- und Faserrichtung


15·d

7∙d

20·d

15·d

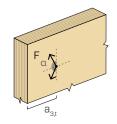
 $d = d_1 = Nenndurchmesser Schraube$

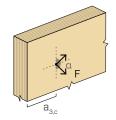
[mm] [mm]

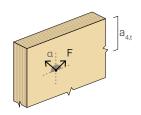
[mm]

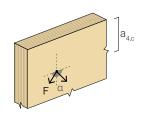
[mm]

[mm]


[mm]


[mm]


 $a_{3,c}$


 $a_{4,t}$

 $a_{4,c}$

ANMERKUNGEN

Die Mindestabstände wurden aus experimentellen Untersuchungen durch Eurofins Expert Services Oy, Espoo, Finland (Report EUFI29-19000819-T1/ T2) abgeleitet.

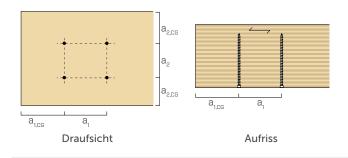
■ MINDESTABSTÄNDE DER SCHRAUBEN BEI AXIALER BEANSPRUCHUNG | LVL

Schraubenabstände OHNE Vorbohrung

wide face

d_1	[mm]		7	9	11
a ₁	[mm]	5·d	35	45	55
a ₂	[mm]	5·d	35	45	55
a _{1,CG}	[mm]	10·d	70	90	110
a _{2,CG}	[mm]	4·d	28	36	44

 $d = d_1 = Nenndurchmesser Schraube$

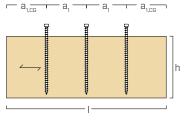


edge face

d_1	[mm]		7	9	11
a ₁	[mm]	10 ⋅d	70	90	110
a ₂	[mm]	5·d	35	45	55
a _{1,CG}	[mm]	12·d	84	108	132
a _{2.CG}	[mm]	3·d	21	27	33

MIT EINEM WINKEL $\alpha = 90^{\circ}$ ZUR FASER EINGEDREHTE SCHRAU-

MIT EINEM WINKEL α = 90° ZUR FASER EINGEDREHTE SCHRAUBEN (wide face)



ANMERKUNGEN

- Die Mindestabstände für Schrauben Ø 7 und Ø 9 mit Spitze 3 THORNS entsprechen der ETA-11/0030 und sind gültig, falls keine anderen Angaben in den technischen Unterlagen der LVL-Bretter angegeben sind.
 - Für Schrauben \emptyset 11 oder Self-drilling-Spitze wurden die Mindestabstände aus experimentellen Untersuchungen durch Eurofins Expert Services Oy, Espoo, Finland (Report EUFl29-19000819-T1/T2) abgeleitet.
- Die auf "edge face" bezogenen Mindestabstände für Schrauben d = 7 mm gelten für eine Mindeststärke LVL t_{LVL,min} = 45 mm und eine Mindesthöhe LVL h_{LVL,min} = 100 mm. Die auf "edge face" bezogenen Mindestabstände für Schrauben d = 9 mm gelten für eine Mindeststärke LVL t_{LVL,min} = 57 mm und eine Mindesthöhe LVL h_{LVL,min} = 120 mm.

Draufsicht

Aufriss

STATISCHE WERTE

ALLGEMEINE GRUNDLAGEN

- Die charakteristischen Werte werden gemäß der Norm EN 1995:2014 und in Übereinstimmung mit ETA-11/0030 berechnet.
- Die bei der Planung berücksichtigte Zugfestigkeit des Verbinders entspricht dem kleineren Wert zwischen dem berücksichtigten Widerstand auf Holzseite (R_{ax,d}) und dem berücksichtigten Widerstand auf Stahlseite (R_{tens,d}).

$$R_{ax,d} = min \begin{cases} \frac{R_{ax,k} \cdot k_{mod}}{\gamma_{M}} \\ \frac{R_{tens,k}}{\gamma_{M2}} \end{cases}$$

 Die bei der Planung berücksichtigte Druckfestigkeit des Verbinders entspricht dem kleineren Wert zwischen dem berücksichtigten Widerstand auf Holzseite (R_{ax,d}) und der berücksichtigten Tragfähigkeit auf Ausknicken (R_{ki,d}):

$$R_{ax,d} = min \begin{cases} \frac{R_{ax,k} \cdot k_{mod}}{\gamma_{M}} \\ \frac{R_{ki,k}}{\gamma_{M}} \end{cases}$$

 Die bei der Planung berücksichtigte Verschiebungsfestigkeit des Verbinders entspricht dem kleineren Wert zwischen der Festigkeit auf Holzseite (R_{V,d}) und der Festigkeit auf Stahlseite projiziert auf 45° (R_{tens,45,d}):

$$R_{V,d} = min \begin{cases} \frac{R_{V,k} \cdot k_{mod}}{\gamma_{M}} \\ \frac{R_{tens,45,k}}{\gamma_{M2}} \end{cases}$$

• Die Scherfestigkeit des Verbinders wird aus dem charakteristischen Wert wie folgt berechnet:

$$R_{V,d} = \frac{R_{V,k} \cdot k_{mod}}{\gamma_M}$$

BEN (edge face)

- Die Beiwerte γ_M und $k_{\mbox{mod}}$ sind aus der entsprechenden geltenden Norm zu übernehmen, die für die Berechnung verwendet wird.
- Bei den Werten für die mechanische Festigkeit und die Geometrie der Schrauben wurde auf die Angaben in der ETA-11/0030 Bezug genommen.
- Die Bemessung und Überprüfung der Holzelemente müssen getrennt durchgeführt werden.
- Für die Positionierung der Schrauben sind die Mindestabstände zu berücksichtigen.
- Die charakteristischen Gewindeauszugswerte wurden unter Berücksichtigung einer Einschraubtiefe S_{g,tot} oder S_g berechnet; siehe Tabelle.
 Für Zwischenwerte S_g ist eine lineare Interpolation möglich. Berücksichtigt wird eine Einschraubtiefe 4·d₁.
- Die Scher- und Kriechwerte wurden mit dem Massenmittelpunkt des Verbinders in Nähe der Scherfläche berechnet.
- Die charakteristischen Scherfestigkeitswerte wurden bei eingeschraubten Schrauben ohne Vorbohrung bewertet. Mit vorgebohrten Schrauben können höhere Festigkeitswerte erreicht werden.
- Für weitere Berechnungen steht die kostenlose Software MyProject zur Verfügung (www.rothoblaas.de).

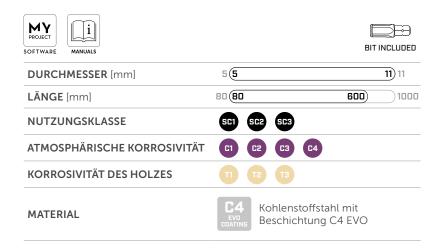
VGZ EVO

VOLLGEWINDESCHRAUBE MIT ZYLINDERKOPF

BESCHICHTUNG C4 EVO

Mehrschichtige Beschichtung mit Oberflächenbehandlung auf Epoxidharzbasis mit Aluminiumflakes. Rostfrei nach einem Test von 1440 Stunden nach Exposition in Salzsprühnebel entsprechend ISO 9227. Zur Verwendung im Außenbereich bei Nutzungsklasse 3 und Korrosionskategorie C4.

AUTOKLAVIERTES HOLZ


Die C4 EVO Beschichtung ist nach dem US-Akzeptanzkriterium AC257 für die Verwendung im Freien mit Holz zertifiziert, das einer Behandlung vom Typ ACQ unterzogen wurde.

EINSATZ IN STATISCH TRAGENDEN VERBINDUNGEN

Tiefes Gewinde und hochresistenter Stahl ($f_{y,k} = 1000 \text{ N/mm}^2$) für höhere Kraftübertragungen. Für die Verwendung bei statisch tragenden Verbindungen zugelassen, bei denen die Schraube in jeder Richtung zur Faser beansprucht wird (0° - 90°). Reduzierte Mindestabstände.

ZYLINDERKOPF

Ermöglicht der Schraube, die Oberfläche des Holzsubstrats zu durchdringen und zu überwinden. Ideal bei verdeckten Verbindungen, Holzverbindungen und konstruktive Verstärkungen. Die richtige Wahl, um das Brandverhalten zu verbessern.

ANWENDUNGSGEBIETE

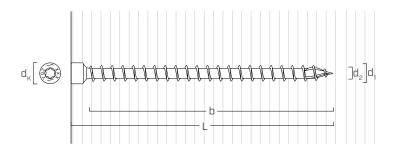
- Holzwerkstoffplatten
- Massiv- und Brettschichtholz
- BSP und LVL
- Harthölzer
- ACQ-, CCA-behandelte Hölzer

TRUSS & RAFTER JOINTS

Ideal zur Verbindung von Holzelementen mit kleinem Querschnitt, wie Querträger und Pfosten leichter Rahmenkonstruktionen. Für Anwendungen zertifiziert, deren Richtung parallel zur Faser liegt und bei geringen Abständen.

TIMBER STUDS

Werte auch für BSP und Harthölzer, sowie Furnierschichtholz (LVL) geprüft, zertifiziert und berechnet. Ideal zur Befestigung von I-Joist Balken.



Befestigung von Pfosten von leichten Rahmenkonstruktionen mit VGZ EVO Ø 5 mm.

GEOMETRIE UND MECHANISCHE EIGENSCHAFTEN

GEOMETRIE

Nenndurchmesser	d_1	[mm]	5,3	5,6	7	9	11
Kopfdurchmesser	d_K	[mm]	8,00	8,00	9,50	11,50	13,50
Kerndurchmesser	d_2	[mm]	3,60	3,80	4,60	5,90	6,60
Vorbohrdurchmesser ⁽¹⁾	$d_{V,S}$	[mm]	3,5	3,5	4,0	5,0	6,0
Vorbohrdurchmesser ⁽²⁾	d _{V.H}	[mm]	4,0	4,0	5,0	6,0	7,0

MECHANISCHE KENNGRÖSSEN

Nenndurchmesser	d_1	[mm]	5,3	5,6	7	9	11
Zugfestigkeit	f _{tens,k}	[kN]	11,0	12,3	15,4	25,4	38,0
Fließgrenze	$f_{y,k}$	[N/mm ²]	1000	1000	1000	1000	1000
Fließmoment	$M_{y,k}$	[Nm]	9,2	10,6	14,2	27,2	45,9

			Nadelholz (Softwood)	LVL aus Nadelholz (LVL Softwood)	LVL aus Buche, vorgebohrt (Beech LVL predrilled)
Charakteristischer Wert der Ausziehfestigkeit	$f_{ax,k}$	[N/mm²]	11,7	15,0	29,0
Assoziierte Dichte	ρ_{a}	[kg/m ³]	350	500	730
Rohdichte	ρ_k	[kg/m³]	≤ 440	410 ÷ 550	590 ÷ 750

Für Anwendungen mit anderen Materialien siehe ETA-11/0030.

⁽¹⁾ Vorbohrung gültig für Nadelholz (Softwood).
(2) Vorbohrung gültig für Harthölzer (Hardwood) und für LVL aus Buchenholz.

ARTIKELNUMMERN UND ABMESSUNGEN

d_1	ARTNR.	L	b	Stk.
[mm]		[mm]	[mm]	
5,3	VGZEVO580	80	70	50
TX 25	VGZEVO5100	100	90	50
	VGZEVO5120	120	110	50
5.6	VGZEVO5140	140	130	50
TX 25	VGZEVO5150	150	140	50
	VGZEVO5160	160	150	50
	VGZEVO780	80	70	25
	VGZEVO7100	100	90	25
	VGZEVO7120	120	110	25
	VGZEVO7140	140	130	25
	VGZEVO7160	160	150	25
	VGZEVO7180	180	170	25
7	VGZEVO7200	200	190	25
TX 30	VGZEVO7220	220	210	25
	VGZEVO7240	240	230	25
	VGZEVO7260	260	250	25
	VGZEVO7280	280	270	25
	VGZEVO7300	300	290	25
	VGZEVO7340	340	330	25
	VGZEVO7380	380	370	25
	VGZEVO9160	160	150	25
	VGZEVO9180	180	170	25
	VGZEVO9200	200	190	25
	VGZEVO9220	220	210	25
	VGZEVO9240	240	230	25
	VGZEVO9260	260	250	25
	VGZEVO9280	280	270	25
9	VGZEVO9300	300	290	25
TX 40	VGZEVO9320	320	310	25
	VGZEVO9340	340	330	25
	VGZEVO9360	360	350	25
	VGZEVO9380	380	370	25
	VGZEVO9400	400	390	25
	VGZEVO9440	440	430	25
	VGZEVO9480	480	470	25
	VGZEVO9520	520	510	25

d_1	ARTNR.	L	b	Stk.
[mm]		[mm]	[mm]	
	VGZEVO11250	250	240	25
	VGZEVO11300	300	290	25
	VGZEVO11350	350	340	25
11	VGZEVO11400	400	390	25
TX 50	VGZEVO11450	450	440	25
	VGZEVO11500	500	490	25
	VGZEVO11550	550	540	25
	VGZEVO11600	600	590	25

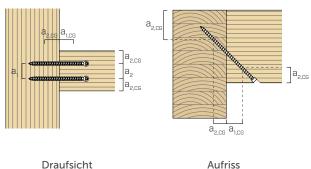
■ ZUGEHÖRIGE PRODUKTE

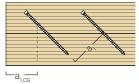
JIG VGZ 45° SCHABLONEN FÜR 45° KANTEN

Seite 409

KONSTRUKTIVE PERFORMANCE AUSSEN

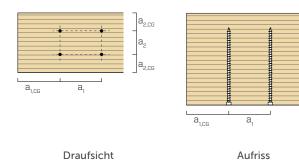
Werte auch für BSP und Harthölzer, sowie Furnierschichtholz (LVL) geprüft, zertifiziert und berechnet. Ideal zur Befestigung von Holzelementen in aggressiven Außenumgebungen (C4).

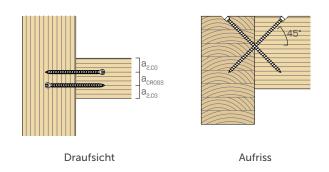

MINDESTABSTÄNDE DER SCHRAUBEN BEI AXIALER BEANSPRUCHUNG


Einsatz der Schrauben MIT und OHNE Vorbohrung

d_1	[mm]		5,3	5,6	7	9	11
a ₁	[mm]	5·d	27	28	35	45	55
a ₂	[mm]	5·d	27	28	35	45	55
a _{2,LIM}	[mm]	2,5·d	13	14	18	23	28
a _{1,CG}	[mm]	8·d	42	45	56	72	88
a _{2,CG}	[mm]	3·d	16	17	21	27	33
a _{CROSS}	[mm]	1,5·d	8	8	11	14	17

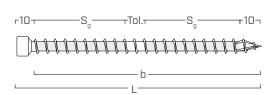
MIT EINEM WINKEL a ZUR FASER EINGEDREHTE SCHRAUBEN UNTER ZUG


∟а,<u>...</u>


Draufsicht

Aufriss

MIT EINEM WINKEL $\alpha = 90^{\circ}$ ZUR FASER EINGEDREHTE **SCHRAUBEN**


MIT EINEM WINKEL a ZUR FASER GEKREUZT EINGEDREHTE **SCHRAUBEN**

ANMERKUNGEN

- Die Mindestabstände entsprechen ETA-11/0030.
- Die Mindestabstände sind unabhängig vom Eindrehwinkel des Verbinders und vom Kraftwinkel zu den Fasern.
- Der axiale Abstand a₂ kann bis auf a_{2,LIM} reduziert werden, wenn bei jedem Verbinder eine "Verbindungsfläche" von a₁·a₂ = 25·d₁² beibehalten wird.
- Zur Verbindung Nebenträger-Hauptträger mit geneigten oder gekreuzten VGZ Schrauben d = 7 mm, die im 45°-Winkel zur Kopfseite des Nebenträgers eingesetzt werden. Bei Mindesthöhe des Nebenträgers von 18·d kann der Mindestabstand $a_{1,CG}$ gleich $8\cdot d_1$ und der Mindestabstand $a_{2,CG}$ gleich $2\cdot d_1$ 3·d₁ betragen.
- Für Schrauben mit Spitze 3 THORNS sind die angegebenen Mindestabstände aus experimentellen Untersuchungen ermittelt; wahlweise a_{1.CG} = 10·d und a_{2,CG} = 4·d gemäß EN 1995:2014 anwenden.

NUTZGEWINDEBERECHNUNG

$$\mathbf{b} = \mathbf{S}_{g,tot} = L - 10 \text{ mm}$$

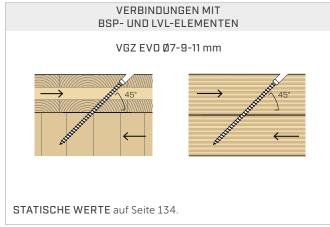
verweist auf die gesamte Länge des Gewindeteils

$$\mathbf{S_g} = (L - 10 \text{ mm} - 10 \text{ mm} - \text{Tol.})/2$$
 verweist auf die halbe Gewinde-

länge abzgl. einer Verlegungstoleranz (Tol.) von 10 mm

STATISCHE WERTE

					ZU	GKRAFT/	DRUCK				
		,	Vollständig	jer Gewindea	uszug		Partielle	r Gewindeaus	szug	Zugtragfähigkeit	Instabilität
Geor	netrie		ε	=90°	ε=0°		ε	=90°	ε=0°	Stahl	ε=90°
L		Squar	A		ф Пинининининининининининининин	S _q	A			← → → → → → → → → → → → → → → → → → → →	
d_1	L	$S_{g,tot}$	A _{min}	R _{ax,90,k}	R _{ax,0,k}	S _g	A _{min}	R _{ax,90,k}	R _{ax,0,k}	R _{tens,k}	R _{ki,90,k}
[mm]	[mm]	[mm]	[mm]	[kN]	[kN]	[mm]	[mm]	[kN]	[kN]	[kN]	[kN]
	80	70	90	4,68	1,41	25	45	1,67	0,50		
5,3	100	90	110	6,02	1,81	35	55	2,34	0,70	11,00	6,20
	120	110	130	7,36	2,21	45	65	3,01	0,90		
	140	130	150	9,19	2,76	55	75	3,89	1,17	12,30	
5,6	150	150	170	10,61	2,97	65	85	4,60	1,27		6,93
	160	150	170	10,61	3,18	65	85	4,60	1,38		
	80	70	90	6,19	1,86	25	45	2,21	0,66		
	100	90	110	7,96	2,39	35	55	3,09	0,93		
	120	110	130	9,72	2,92	45	65	3,98	1,19		
	140	130	150	11,49	3,45	55	75	4,86	1,46		10,30
	160	150	170	13,26	3,98	65	85	5,75	1,72		
	180	170	190	15,03	4,51	75	95	6,63	1,99	15,40	
7	200	190	210	16,79	5,04	85	105	7,51	2,25		
,	220	210	230	18,56	5,57	95	115	8,40	2,52		
	240	230	250	20,33	6,10	105	125	9,28	2,78		
	260	250	270	22,10	6,63	115	135	10,16	3,05		
	280	270	290	23,87	7,16	125	145	11,05	3,31		
	300	290	310	25,63	7,69	135	155	11,93	3,58		
	340	330	350	29,17	8,75	155	175	13,70	4,11		
	380	370	390	32,70	9,81	175	195	15,47	4,64		
	160	150	170	17,05	5,11	65	85	7,39	2,22		
	180	170	190	19,32	5,80	75	95	8,52	2,56		
	200	190	210	21,59	6,48	85	105	9,66	2,90		
	220	210	230	23,87	7,16	95	115	10,80	3,24		
	240	230	250	26,14	7,84	105	125	11,93	3,58		
	260	250	270	28,41	8,52	115	135	13,07	3,92		
	280	270	290	30,68	9,21	125	145	14,21	4,26		
9	300	290	310	32,96	9,89	135	155	15,34	4,60	25,40	17,25
	320	310	330	35,23	10,57	145	165	16,48	4,94	20,10	17,20
	340	330	350	37,50	11,25	155	175	17,61	5,28		
	360	350	370	39,78	11,93	165	185	18,75	5,63		
	380	370	390	42,05	12,61	175	195	19,89	5,97		
	400	390	410	44,32	13,30	185	205	21,02	6,31		
	440	430	450	48,87	14,66	205	225	23,30	6,99		
	480	470	490	53,41	16,02	225	245	25,57	7,67		
	520	510	530	57,96	17,39	245	265	27,84	8,35		
	250	240	260	33,34	10,00	110	130	15,28	4,58		
	300	290	310	40,28	12,08	135	155	18,75	5,63		
	350	340	360	47,22	14,17	160	180	22,22	6,67		
11	400	390	410	54,17	16,25	185	205	25,70	7,71	38,00	21,93
	450	440	460	61,11	18,33	210	230	29,17	8,75		,
	500	490	510	68,06	20,42	235	255	32,64	9,79		
	550	540	560	75,00	22,50	260	280	36,11	10,83		
	600	590	610	81,95	24,58	285	305	39,59	11,88		


 $[\]epsilon$ = Winkel zwischen Schraube und Faserrichtung

	KRIECHBELASTUNG						SCHERWERT			
Geon	netrie		Н	olz-Holz		Zugtragfähigkeit Stahl	Holz	z-Holz	Holz-Holz ε=90°	Holz-Holz ε=0°
			A \rightarrow		\\\d5°	Application of the state of the	S _g	A A		
d ₁	L	S _g	Α	B_{min}	$R_{V,k}$	R _{tens,45,k}	Α	S _g	R _{V,90,k}	R _{V,0,k}
[mm]	[mm]	[mm]	[mm]	[mm]	[kN]	[kN]	[mm]	[mm]	[mm]	[kN]
	80	25	35	50	1,18		40	25	1,99	1,03
5,3	100	35	40	55	1,66	7,78	50	35	2,16	1,19
	120	45	45	60	2,13		60	45	2,32	1,37
5,6	140 150	55 65	55 60	70 75	2,75 3,25	8,70	70 80	55 65	2,69 2,87	1,59 1,62
5,0	160	65	60	75 75	3,25	6,70	80	65	2,87	1,64
	80	25	35	50	1,56		40	25	2,59	1,34
	100	35	40	55	2,19		50	35	2,93	1,53
	120	45	45	60	2,81		60	45	3,15	1,74
	140	55	55	70	3,44	10.00	70	55	3,37	1,97
	160	65	60	75	4,06		80	65	3,59	2,06
	180	75	70	85	4,69		90	75	3,81	2,12
7	200	85	75	90	5,31		100	85	4,03	2,19
7	220	95	85	100	5,94	10,89	110	95	4,25	2,26
	240	105	90	105	6,56		120	105	4,30	2,32
	260	115	95	110	7,19		130	115	4,30	2,39
	280	125	105	120	7,81		140	125	4,30	2,46
	300	135	110	125	8,44		150	135	4,30	2,52
	340	155	125	140	9,69		170	155	4,30	2,65
	380	175	140	155	10,94		190	175	4,30	2,79
	160	65	60	75	5,22		80 90	65	5,10	2,81
	180 200	75 85	70 75	85 90	6,03 6,83		100	75 85	5,38	3,08
	220	95	85	100	7,63		110	95	5,67 5,95	3,18 3,27
	240	105	90	105	8,44		120	105	6,23	3,35
	260	115	95	110	9,24		130	115	6,50	3,44
	280	125	105	120	10,04		140	125	6,50	3,52
•	300	135	110	125	10,85	1706	150	135	6,50	3,61
9	320	145	120	135	11,65	17,96	160	145	6,50	3,69
	340	155	125	140	12,46		170	155	6,50	3,78
	360	165	130	145	13,26		180	165	6,50	3,86
	380	175	140	155	14,06		190	175	6,50	3,95
	400	185	145	160	14,87		200	185	6,50	4,03
	440	205	160	175	16,47		220	205	6,50	4,21
	480	225	175	190	18,08		240	225	6,50	4,38
	520	245	190	205	19,69		260	245	6,50	4,55
	250	110	95	110	10,80		125	110	8,35	4,57
	300 350	135 160	110 130	125 145	13,26 15,71		150 175	135	9,06 9,06	4,83 5,09
	400	185	145	160	18,17		200	160 185	9,06	5,35
11	450	210	165	180	20,63	26,87	225	210	9,06	5,61
	500	235	180	195	23,08		250	235	9,06	5,87
	550	260	200	215	25,54		275	260	9,06	6,13
	600	285	215	230	27,99		300	285	9,06	6,39
		chen Scl					300	200	5,00	0,55

 $[\]epsilon$ = Winkel zwischen Schraube und Faserrichtung

STATISCHE WERTE | WEITERE ANWENDUNGEN

STATISCHE WERTE

ALLGEMEINE GRUNDLAGEN

- Die charakteristischen Werte werden gemäß der Norm EN 1995:2014 und in Übereinstimmung mit ETA-11/0030 berechnet.
- Die bei der Planung berücksichtigte Zugfestigkeit des Verbinders entspricht dem kleineren Wert zwischen dem berücksichtigten Widerstand auf Holzseite (R_{ax,d}) und dem berücksichtigten Widerstand auf Stahlseite (R_{tens,d}).

$$R_{ax,d} = min \begin{cases} \frac{R_{ax,k} \cdot k_{mod}}{\gamma_M} \\ \frac{R_{tens,k}}{\gamma_{M2}} \end{cases}$$

 Die bei der Planung berücksichtigte Druckfestigkeit des Verbinders entspricht dem kleineren Wert zwischen dem berücksichtigten Widerstand auf Holzseite (R_{ax,d}) und der berücksichtigten Tragfähigkeit auf Ausknicken (R_{ki,d}):

$$R_{ax,d} = min \begin{cases} \frac{R_{ax,k} \cdot k_{mo}}{\gamma_{M}} \\ \frac{R_{ki,k}}{\gamma_{M1}} \end{cases}$$

 Die bei der Planung berücksichtigte Verschiebungsfestigkeit des Verbinders entspricht dem kleineren Wert zwischen der Festigkeit auf Holzseite (R_{V,d}) und der Festigkeit auf Stahlseite projiziert auf 45° (R_{tens,45,d}):

$$R_{V,d} = min \; \begin{cases} \frac{R_{V,k} \cdot k_{mod}}{\gamma_{M}} \\ \frac{R_{tens,45,k}}{\gamma_{M2}} \end{cases}$$

• Die Scherfestigkeit des Verbinders wird aus dem charakteristischen Wert wie folgt berechnet:

$$R_{V,d} = \frac{R_{V,k} \cdot k_{mod}}{\gamma_M}$$

- Die Beiwerte γ_M und $k_{\mbox{mod}}$ sind aus der entsprechenden geltenden Norm zu übernehmen, die für die Berechnung verwendet wird.
- Bei den Werten für die mechanische Festigkeit und die Geometrie der Schrauben wurde auf die Angaben in der ETA-11/0030 Bezug genommen.
- Die Bemessung und Überprüfung der Holzelemente müssen getrennt durchgeführt werden.
- Für die Positionierung der Schrauben sind die Mindestabstände zu berücksichtigen.
- Die charakteristischen Gewindeauszugswerte wurden unter Berücksichtigung einer Einschraubtiefe S_{g, tot} oder S_g berechnet; siehe Tabelle.
 Für Zwischenwerte S_g ist eine lineare Interpolation möglich. Berücksichtigt wird eine Einschraubtiefe 4·d₁.
- Die Scher- und Kriechwerte wurden mit dem Massenmittelpunkt des Verbinders in Nähe der Scherfläche berechnet.
- Die charakteristischen Scherfestigkeitswerte wurden bei eingeschraubten Schrauben ohne Vorbohrung bewertet. Mit vorgebohrten Schrauben können höhere Festigkeitswerte erreicht werden.
- Für weitere Berechnungen steht die kostenlose Software MyProject zur Verfügung (www.rothoblaas.de).

ANMERKUNGEN

- Die charakteristischen Gewindeauszugswerte wurden unter Berücksichtigung eines Winkels ε sowohl von 90° (R_{ax,90,k}) als auch 0° (R_{ax,0,k}) zwischen den Fasern des Holzelements und dem Verbinder berechnet.
- Die charakteristischen Holz-Holz-Scherfestigkeitswerte wurden unter Berücksichtigung eines Winkels ϵ sowohl von 90° (R_{V,90,k}) als auch 0° (R_{V,0,k}) zwischen den Fasern des zweiten Elements und dem Verbinder berechnet.
- * Bei der Berechnung wurde eine Rohdichte der Holzelemente von ρ_k = 385 $\mbox{kg/m}^3$ berücksichtigt.

Für andere p_k-Werte können die aufgelisteten Festigkeitswerte (Auszug-, Druck-, Kriech- und Scherwerte) mithilfe des k_{dens}-Beiwerts umgerechnet werden.

$$\begin{split} R_{ax,k}' &= k_{dens,ax} \cdot R_{ax,k} \\ R_{ki,k}' &= k_{dens,ki} \cdot R_{ki,k} \\ R_{V,k}' &= k_{dens,ax} \cdot R_{V,k} \\ R_{V,90,k}' &= k_{dens,V} \cdot R_{V,90,k} \\ R_{V,0,k}' &= k_{dens,V} \cdot R_{V,0,k} \end{split}$$

ρ _k [kg/m³]	350	380	385	405	425	430	440
C-GL	C24	C30	GL24h	GL26h	GL28h	GL30h	GL32h
k _{dens,ax}	0,92	0,98	1,00	1,04	1,08	1,09	1,11
k _{dens,ki}	0,97	0,99	1,00	1,00	1,01	1,02	1,02
k _{dens,v}	0,90	0,98	1,00	1,02	1,05	1,05	1,07

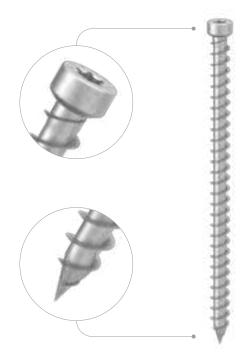
Die so ermittelten Festigkeitswerte können zugunsten der Sicherheit von denen abweichen, die sich aus einer genauen Berechnung ergeben.

VGZ EVO C5

VOLLGEWINDESCHRAUBE MIT ZYLINDERKOPF

ATMOSPHÄRISCHE KORROSIVITÄT C5

Mehrschichtige Beschichtung, die Außenumgebungen mit C5-Klassifizierung nach ISO 9223 standhält. Salzsprühtest (Salt Spray Test - SST) mit einer Expositionszeit von über 3000 Stunden, durchgeführt an zuvor verschraubten und gelösten Schrauben in Douglasie.


SPITZE 3 THORNS

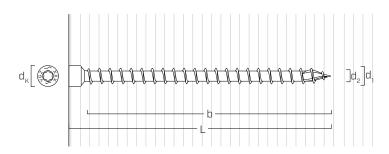
Dank der Spitze 3 THORNS werden die Mindestabstände reduziert. Mehr Schrauben können auf geringerem Raum und größere Schrauben in kleineren Elementen verwendet werden.

Die Kosten und der Zeitaufwand für die Umsetzung des Projekts verringern sich.

MAXIMALE FESTIGKEIT

Die geeignete Schraube, wenn hohe mechanische Leistung unter sehr ungünstigen atmosphärischen Korrosionsbedingungen erforderlich sind. Aufgrund ihres Zylinderkopfs ist sie ideal bei verdeckten Verbindungen, Holzverbindungen und konstruktive Verstärkungen.

ANWENDUNGSGEBIETE


- Holzwerkstoffplatten
- Massiv- und Brettschichtholz
- BSP und LVL
- Harthölzer

ARTIKELNUMMERN UND ABMESSUNGEN

d_1	ARTNR.	L	b	Stk.
[mm]		[mm]	[mm]	
	VGZEVO7140C5	140	130	25
_	VGZEVO7180C5	180	170	25
7 TX 30	VGZEVO7220C5	220	210	25
17.30	VGZEVO7260C5	260	250	25
	VGZEVO7300C5	300	290	25

d_1	ARTNR.	L	b	Stk.
[mm]		[mm]	[mm]	
	VGZEVO9200C5	200	190	25
_	VGZEVO9240C5	240	230	25
9 TX 40	VGZEVO9280C5	280	270	25
17.40	VGZEVO9320C5	320	310	25
	VGZEVO9360C5	360	350	25

GEOMETRIE UND MECHANISCHE EIGENSCHAFTEN

GEOMETRIE

Nenndurchmesser	d ₁ [mm]	7	9
Kopfdurchmesser	d _K [mm]	9,50	11,50
Kerndurchmesser	d ₂ [mm]	4,60	5,90
Vorbohrdurchmesser ⁽¹⁾	d _{V,S} [mm]	4,0	5,0
Vorbohrdurchmesser ⁽²⁾	d _{V.H} [mm]	5,0	6,0

⁽¹⁾ Vorbohrung gültig für Nadelholz (Softwood).

MECHANISCHE KENNGRÖSSEN

Nenndurchmesser	d ₁ [mm]	7	9
Zugfestigkeit	f _{tens,k} [kN]	15,4	25,4
Fließgrenze	f _{v.k} [N/mm²]	1000	1000
Fließmoment	M _{v.k} [Nm]	14,2	27,2

			Nadelholz (Softwood)	LVL aus Nadelholz (LVL Softwood)	LVL aus Buche, vorgebohrt (Beech LVL predrilled)
Charakteristischer Wert der Ausziehfestigkeit	$f_{ax,k}$	[N/mm²]	11,7	15,0	29,0
Assoziierte Dichte	ρ_{a}	[kg/m³]	350	500	730
Rohdichte	ρ_k	[kg/m³]	≤ 440	410 ÷ 550	590 ÷ 750

Für Anwendungen mit anderen Materialien siehe ETA-11/0030.

SEASIDE BUILDINGS

Ideal zur Befestigung von Elementen mit kleinem Querschnitt in Meeresnähe. Für Anwendungen zertifiziert, deren Richtung parallel zur Faser liegt und bei geringen Abständen.

THE HIGHEST PERFORMANCE

Die Festigkeit und Robustheit einer VGZ kombiniert mit der besten Korrosionsschutzleistung.

⁽²⁾ Vorbohrung gültig für Harthölzer (Hardwood) und für LVL aus Buchenholz.

VGZ HARDWOOD

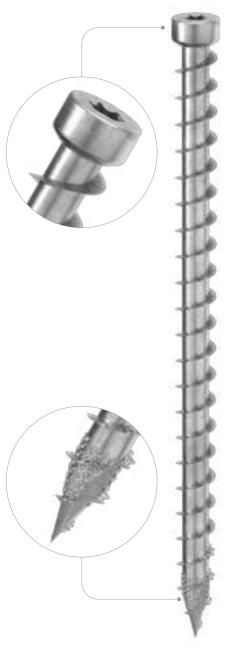
VERBINDER MIT VOLLGEWINDE FÜR HARTHÖLZER

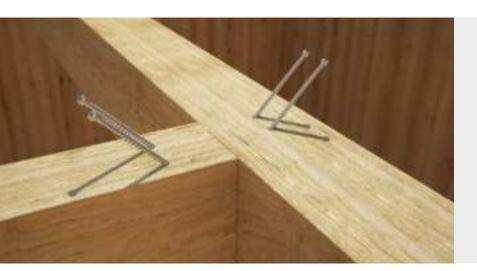
ZERTIFIZIERUNG FÜR HARTHÖLZER

Spezialbohrspitze mit Diamantgeometrie und gezacktem Gewinde mit Kerbe. Zertifizierung ETA-11/0030 für Harthölzer ohne Vorbohrung oder mit einer geeigneten Pilotbohrung. Für die Verwendung bei statisch tragenden Verbindungen zugelassen, bei denen die Schraube in jeder Richtung zur Faser beansprucht wird (0° \div 90°).

HYBRID SOFTWOOD-HARDWOOD

Der hochfeste Stahl und der große Durchmesser der Schraube ermöglichen eine hervorragende Zug- und Torsionsleistung und gewährleisten so ein sicheres Einschrauben in Hölzer mit hoher Dichte.


VERGRÖSSERTER DURCHMESSER


Tiefes Gewinde und hochresistenter Stahl für höhere Kraftübertragungen. Merkmale, die zusammen mit einem ausgezeichneten Torsionsmoment das Einschrauben in Hölzer mit hoher Dichte gewährleisten.

ZYLINDERKOPF

Ideal bei verdeckten Verbindungen, Holzverbindungen und konstruktive Verstärkungen. Bessere Leistung im Brandfall im Vergleich zum Senkkopf.

ANWENDUNGSGEBIETE

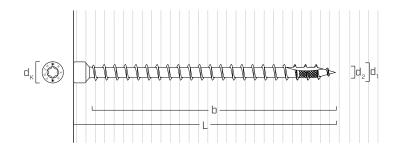
- Holzwerkstoffplatten
- Massiv- und Brettschichtholz
- BSP und LVL
- Harthölzer
- hybride veredelte Hölzer (Softwood-Hardwood)
- Buche, Eiche, Zypresse, Esche, Eukalyptus, Bambus

HARDWOOD PERFORMANCE

Speziell für die Anwendung ohne Vorbohren in Hölzern wie Buche, Eiche, Zypresse, Esche, Eu-kalyptus und Bambus entwickelte Geometrie.

BEECH LVL

Werte auch für Harthölzer, wie Furnierschichtholz (LVL) aus Buche geprüft, zertifiziert und berechnet, Zertifiziert für Anwendungen bis zu einer Dichte von 800 kg/m³.


ARTIKELNUMMERN UND ABMESSUNGEN

d_1	ARTNR.	L	b	Stk.
[mm]		[mm]	[mm]	
	VGZH6140	140	130	25
	VGZH6180	180	170	25
_	VGZH6220	220	210	25
6 TX30	VGZH6260	260	250	25
17.00	VGZH6280	280	270	25
	VGZH6320	320	310	25
	VGZH6420	420	410	25

d ₁ [mm]	ARTNR.	L [mm]	b [mm]	Stk.
[11111]	VGZH8200	200	190	25
	VGZH8240	240	230	25
	VGZH8280	280	270	25
8 TX 40	VGZH8320	320	310	25
\	VGZH8360	360	350	25
	VGZH8400	400	390	25
	VGZH8440	440	430	25

ANMERKUNGEN: Auf Anfrage ist auch EVO Version erhältlich.

GEOMETRIE UND MECHANISCHE EIGENSCHAFTEN

GEOMETRIE

Nenndurchmesser	d_1	[mm]	6	8
Kopfdurchmesser	d_K	[mm]	9,50	11,50
Kerndurchmesser	d_2	[mm]	4,50	5,90
Vorbohrdurchmesser ⁽¹⁾	$d_{V,S}$	[mm]	4,0	5,0
Vorbohrdurchmesser ⁽²⁾	$d_{V,H}$	[mm]	4,0	6,0

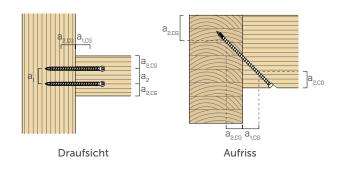
MECHANISCHE KENNGRÖSSEN

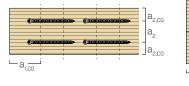
Nenndurchmesser	d_1	[mm]	6	8
Zugfestigkeit	$f_{\text{tens,k}}$	[kN]	18,0	38,0
Fließgrenze	$f_{y,k}$	[N/mm ²]	1000	1000
Fließmoment	$M_{y,k}$	[Nm]	15,8	33,4

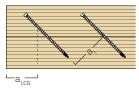
			Nadelholz (Softwood)	Eiche, Buche (Hardwood)	Esche (Hardwood)	LVL Buche (Beech LVL)
Charakteristischer Wert der Ausziehfestigkeit	$f_{ax,k}$	[N/mm ²]	11,7	22,0	30,0	42,0
Assoziierte Dichte	ρ_{a}	[kg/m ³]	350	530	530	730
Rohdichte	$ ho_k$	[kg/m ³]	≤ 440	≤ 590	≤ 590	590 ÷ 750

Für Anwendungen mit anderen Materialien siehe ETA-11/0030.

 ⁽¹⁾ Vorbohrung gültig für Nadelholz (Softwood).
 (2) Vorbohrung gültig für Harthölzer (Hardwood) und für LVL aus Buchenholz.

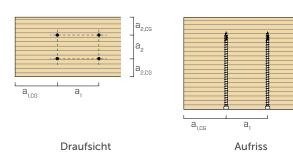

MINDESTABSTÄNDE DER SCHRAUBEN BEI AXIALER BEANSPRUCHUNG

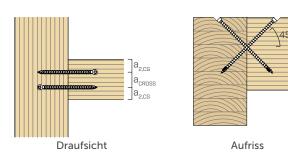



Einsatz der Schrauben MIT und OHNE Vorbohrung

d_1	[mm]		6	8
a ₁	[mm]	5·d	30	40
a ₂	[mm]	5·d	30	40
a _{2,LIM}	[mm] 2	2,5·d	15	20
a _{1,CG}	[mm] 1	10·d	60	80
a _{2,CG}	[mm]	4·d	24	32
a _{CROSS}	[mm] 1	1,5·d	9	12

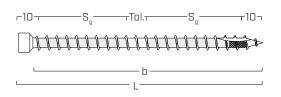
MIT EINEM WINKEL α ZUR FASER EINGEDREHTE SCHRAUBEN UNTER ZUG




Draufsicht

Aufriss

MIT EINEM WINKEL $\alpha = 90^{\circ}$ ZUR FASER EINGEDREHTE **SCHRAUBEN**


MIT EINEM WINKEL α ZUR FASER GEKREUZT EINGEDREHTE **SCHRAUBEN**

ANMERKUNGEN

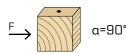
- Die Mindestabstände entsprechen ETA-11/0030.
- Die Mindestabstände sind unabhängig vom Eindrehwinkel des Verbinders und vom Kraftwinkel zu den Fasern
- Der axiale Abstand a_2 kann bis auf $a_{2,LIM}$ reduziert werden, wenn bei jedem Verbinder eine "Verbindungsfläche" von $a_1 \cdot a_2 = 25 \cdot d_1^{\ 2}$ beibehalten wird.

NUTZGEWINDEBERECHNUNG

$$\mathbf{b} = \mathbf{S}_{g,tot} = L - 10 \text{ mm}$$

verweist auf die gesamte Länge des Gewindeteils

$$S_{a} = (L - 10 \text{ mm} - 10 \text{ mm} - \text{Tol.})/2$$


 $S_q = (L - 10 \text{ mm} - 10 \text{ mm} - \text{Tol.})/2$ verweist auf die halbe Gewindelänge abzgl. einer Verlegungstoleranz (Tol.) von 10 mm

■ MINDESTABSTÄNDE DER SCHRAUBEN BEI ABSCHERBEANSPRUCHUNG | HOLZ

Schraubenabstände OHNE Vorbohrung

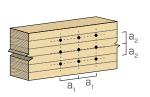
 $\rho_k > 420 \text{ kg/m}^3$

d_1	[mm]		7	9	11
a ₁	[mm]	12·d	84	108	132
a ₂	[mm]	5·d	35	45	55
a _{3,t}	[mm]	15 ⋅d	105	135	165
a _{3,c}	[mm]	10 ⋅d	70	90	110
a _{4,t}	[mm]	5·d	35	45	55
a _{4,c}	[mm]	5·d	35	45	55

d_1	[mm]		7	9	11
a ₁	[mm]	5·d	35	45	55
a ₂	[mm]	5·d	35	45	55
a _{3,t}	[mm]	10 ⋅d	70	90	110
a _{3,c}	[mm]	10 ⋅d	70	90	110
a _{4,t}	[mm]	10 ⋅d	70	90	110
a _{4,c}	[mm]	5·d	35	45	55

 $d = d_1 = Nenndurchmesser Schraube$

Schraubenabstände VORGEBOHRT

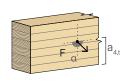


a=90°

d ₁	[mm]		7	9	11
a ₁	[mm]	5·d	35	45	55
a ₂	[mm]	3·d	21	27	33
a _{3,t}	[mm]	12·d	84	108	132
a _{3,c}	[mm]	7·d	49	63	77
a _{4,t}	[mm]	3·d	21	27	33
a _{4,c}	[mm]	3·d	21	27	33

d_1	[mm]		7	9	11
a ₁	[mm]	4·d	28	36	44
a ₂	[mm]	4·d	28	36	44
a _{3,t}	[mm]	7·d	49	63	77
a _{3,c}	[mm]	7·d	49	63	77
a _{4,t}	[mm]	7·d	49	63	77
a _{4,c}	[mm]	3·d	21	27	33

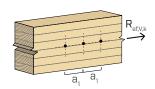
 $d = d_1 = Nenndurchmesser Schraube$



unbeanspruchtes Hirnholzende $90^{\circ} < \alpha < 270^{\circ}$

beanspruchter Rand 0° < α < 180°

unbeanspruchter Rand $180^{\circ} < \alpha < 360^{\circ}$


ANMERKUNGEN

- Die Mindestabstände wurden nach EN 1995:2014 in Übereinstimmung mit der ETA-11/0030 berechnet und beziehen sich auf eine Rohdichte der Holzelemente von 420 < $\rho_{\rm k} \le 500~{\rm kg/m^3}$.
- Bei Holzwerkstoffplatten-Verbindungen können die Mindestabstände (a₁, a₂) mit einem Koeffizienten von 0,85 multipliziert werden.

■ WIRKSAME SCHRAUBENANZAHL BEI ABSCHERBEANSPRUCHUNG

Die Tragfähigkeit einer Verbindung mit mehreren Schrauben vom gleichen Typ und mit gleicher Größe kann kleiner sein als die Summe der Tragfähigkeiten des einzelnen Verbindungsmittels.

Für eine Reihe von n parallel zur Faserrichtung des Holzes in einem Abstand a_1 angeordnete Schrauben kann die effektive charakteristische Tragfähigkeit $R_{ef,V,k}$ mittels der wirksamen Anzahl n_{ef} berechnet werden (siehe S. 169).

 $[\]alpha$ = Winkel zwischen Kraft- und Faserrichtung

 $[\]alpha$ = Winkel zwischen Kraft- und Faserrichtung

		ZUGKRÄFTE									
		١	/ollständige	er Gewindeauszu	ıg		Partieller	Gewindeauszug		Zugtragfähigkeit	
Geor	netrie		:	ε=90°	ε=0°		ε=90° ε=0°			Stahl	
L		S _{g,tot}			ф Поминиципини Помини						
d ₁	L	$S_{g,tot}$	A _{min}	$R_{ax,90,k}$	R _{ax,0,k}	S _g	A _{min}	$R_{ax,90,k}$	R _{ax,0,k}	R _{tens,k}	
[mm]	[mm]	[mm]	[mm]	[kN]	[kN]	[mm]	[mm]	[kN]	[kN]	[kN]	
	140	130	150	9,85	2,95	55	75	4,17	1,25		
	180	170	190	12,88	3,86	75	95	5,68	1,70		
	220	210	230	15,91	4,77	95	115	7,20	2,16		
6	260	250	270	18,94	5,68	115	135	8,71	2,61	18,00	
	280	270	290	20,46	6,14	125	145	9,47	2,84		
	320	310	330	23,49	7,05	145	165	10,99	3,30		
	420	410	430	31,06	9,32	195	215	14,77	4,43		
	200	190	210	19,19	5,76	85	105	8,59	2,58		
	240	230	250	23,23	6,97	105	125	10,61	3,18		
	280	270	290	27,27	8,18	125	145	12,63	3,79		
8	320	310	330	31,31	9,39	145	165	14,65	4,39	32,00	
	360	350	370	35,36	10,61	165	185	16,67	5,00		
	400	390	410	39,40	11,82	185	205	18,69	5,61		
	440	430	450	43,44	13,03	205	225	20,71	6,21		

 $[\]epsilon$ = Winkel zwischen Schraube und Faserrichtung

				KRIE	CHBELASTUNG		SCHERWERT				
Geon	netrie			Holz-Hol	Z	Zugtragfähigkeit Stahl	Holz	-Holz	Holz-Holz ε=90°	Holz-Holz ε=0°	
		A		7 depter 45°	S _q	A. — — — — — — — — — — — — — — — — — — —					
d ₁	L	Sg	Α	B _{min}	$R_{V,k}$	R _{tens,45,k}	Sg	Α	R _{V,90,k}	R _{V,0,k}	
[mm]	[mm]	[mm]	[mm]	[mm]	[kN]	[kN]	[mm]	[mm]	[mm]	[kN]	
	140	55	55	70	2,95		55	70	3,19	1,80	
	180	75	70	85	4,02		75	90	3,57	2,05	
	220	95	85	100	5,09		95	110	3,95	2,17	
6	260	115	95	110	6,16	12,73	115	130	4,30	2,28	
	280	125	105	120	6,70		125	140	4,30	2,34	
	320	145	120	135	7,77		145	160	4,30	2,45	
	420	195	155	170	10,45		195	210	4,30	2,73	
	200	85	75	90	6,07		85	100	5,60	3,17	
	240	105	90	105	7,50		105	120	6,11	3,41	
	280	125	105	120	8,93		125	140	6,61	3,56	
8	320	145	120	135	10,36	22,63	145	160	6,92	3,71	
	360	165	130	145	11,79		165	180	6,92	3,86	
	400	185	145	160	13,21		185	200	6,92	4,02	
	440	205	160	175	14,64		205	220	6,92	4,17	

 $[\]varepsilon$ = Winkel zwischen Schraube und Faserrichtung

		ZUGKRÄFTE									
		\	/ollständig	er Gewindeauszu	ıg		Partieller	Gewindeauszug		Zugtragfähigkeit	
Geon	netrie			ε= 90°	ε= 0 °	ε=		ε= 90°	ε=0°	Stahl	
Dunnumumumumum d ₁		S _{g,tot}	A							↑	
d ₁	L []	S _{g,tot}	A _{min}	R _{ax,90,k}	R _{ax,0,k}	S _g	A _{min}	R _{ax,90,k}	R _{ax,0,k}	R _{tens,k}	
[mm]	[mm] 140	[mm] 130	[mm] 150	[kN] 17,68	[kN] 5,30	[mm] 55	[mm] 75	[kN] 7,48	[kN] 2,24	[kN]	
	180	170	190	23,11	6,93	75	95	10,20	3,06		
	220	210	230	28,55	8,57	95	115	12,92	3,88		
6	260	250	270	33,99	10,20	115	135	15,64	4,69	18,00	
	280	270	290	36,71	11,01	125	145	17,00	5,10		
	320	310	330	42,15	12,65	145	165	19,72	5,91		
	200	190	210	34,45	10,33	85	105	15,41	4,62		
	240	230	250	41,70	12,51	105	125	19,04	5,71		
8	280	270	290	48,95	14,68	125	145	22,66	6,80	32,00	
	320	310	330	56,20	16,86	145	165	26,29	7,89		
	360	350	370	63,45	19,04	165	185	29,91	8,97		

 $[\]epsilon$ = Winkel zwischen Schraube und Faserrichtung

				KRIE	CHBELASTUNG		SCHERWERT					
Geon	netrie		Hard	wood-Hard	dwood	Zugtragfähigkeit Stahl	Hardwood-Hardwood ε=90°			Hardwood-Hardwood ε=0°		
		A B B B B B B B B B B B B B B B B B B B		7 determined 45°	S			←				
d_1	L	Sg	Α	B _{min} R _{V,k}		R _{tens,45,k}	S_g	Α	R _{V,90,k}	R _{V,0,k}		
[mm]	[mm]	[mm]	[mm]	[mm]	[kN]	[kN]	[mm]	[mm]	[mm]	[kN]		
	140	55	55	70	5,29		55	70	4,44	2,50		
	180	75	70	85	7,21		75	90	5,12	2,71		
6	220	95	85	100	9,13	12,73	95	110	5,14	2,91		
0	260	115	95	110	11,06	12,/3	115	130	5,14	3,12		
	280	125	105	120	12,02		125	140	5,14	3,22		
	320	145	120	135	13,94		145	160	5,14	3,42		
	200	85	75	90	10,90		85	100	7,99	4,28		
	240	105	90	105	13,46	22,63	105	120	8,27	4,55		
8	280	125	105	120	16,02		125	140	8,27	4,82		
	320	145	120	135	18,59		145	160	8,27	5,10		
	360	360 165 130 145 21,1	21,15		165	180	8,27	5,37				

 $[\]epsilon$ = Winkel zwischen Schraube und Faserrichtung

		ZUGKRÄFTE											
					Vollständiger G	iewindeauszug		7					
Geon	netrie			w	ide	ed	ge	Zugtragfähigkeit Stahl					
L					Drummummummummummmmmmmmmmmmmmmmmmmmmmmm								
				ohne Vorbohrung	mit Vorbohrung	ohne Vorbohrung	mit Vorbohrung						
d ₁ [mm]	L [mm]	S _{g,tot} [mm]	A _{min} [mm]	R _{ax,90,k} [kN]	R_{ax,90,k} [kN]	R _{ax,0,k} [kN]	R _{ax,0,k} [kN]	R _{tens,k} [kN]					
	140	130	150	32,76	22,62	21,84	15,08						
	180	170	190	42,84	29,58	28,56	19,72						
	220	210	230	52,92	36,54	35,28	24,36						
6	260	250	270	63,00	43,50	42,00	29,00	18,00					
	280	270	290	68,04	46,98	45,36	31,32						
	320	310	330	78,12	53,94	52,08	35,96						
	420	410	430	-	71,34	-	47,56						
	200	190	210	63,84	44,08	42,56	29,39						
	240	230	250	77,28	53,36	51,52	35,57						
	280	270	290	90,72	62,64	60,48	41,76						
8	320	310	330	104,16	71,92	69,44	47,95	32,00					
	360	350	370	117,60	81,20	78,40	54,13						
	400	390	410	-	90,48	-	60,32						
	440	430	450	-	99,76	-	66,51						

			ZUGKRÄFTE											
					Partieller Ge	windeauszug		Zugtragfähigkeit						
Geor	netrie			w	ide	ed	ge	Stahl						
L							→							
				ohne Vorbohrung	mit Vorbohrung	ohne Vorbohrung	mit Vorbohrung							
d ₁	L	Sg	A _{min}	R _{ax,90,k}	R _{ax,90,k}	R _{ax,0,k}	R _{ax,0,k}	R _{tens,k}						
[mm]	[mm]	[mm]	[mm]	[kN]	[kN]	[kN]	[kN]	[kN]						
	140	55	75	13,86	9,57	9,24	6,38							
	180	75	95	18,90	13,05	12,60	8,70							
	220	95	115	23,94	16,53	15,96	11,02	40.00						
6	260	115	135	28,98	20,01	19,32	13,34	18,00						
	280	125	145	31,50	21,75	21,00	14,50							
	320	145	165	36,54	25,23	24,36	16,82							
	420	195	215	-	33,93	-	22,62							
	200	85	105	28,56	19,72	19,04	13,15							
	240	105	125	35,28	24,36	23,52	16,24							
	280	125	145	42,00	29,00	28,00	19,33							
8	320	145	165	48,72	33,64	32,48	22,43	32,00						
	360	165	185	55,44	38,28	36,96	25,52							
	400	185	205	-	42,92	-	28,61							
	440	205	225	-	47,56	-	31,71							

					KRIECHBEL	ASTUNG				SCHERWERT		
Geon	Geometrie Beech LVL-Beech LVL						Zugtragfähigkeit Stahl		Beech LVL-Beech LVL			
L				A B B	→ 5/1/45°		45°			S ₀		
		ohne mit Vorbohrung Vorbohrung								ohne Vorbohrung	mit Vorbohrung	
d ₁ [mm]	L [mm]	S _g [mm]	A [mm]	B _{min} [mm]	R _{V,k} [kN]	R_{V,k} [kN]	R _{tens,45,k} [kN]	S _g [mm]	A [mm]	R _{V,90,k} [kN]	R_{V,90,k} [kN]	
	140	55	55	70	7,84	5,41		55	70	6,77	5,78	
	180	75	70	85	10,69	7,38		75	90	6,77	6,65	
	220	95	85	100	13,54	9,35		95	110	6,77	6,77	
6	260	115	95	110	16,39	11,32	12,73	115	130	6,77	6,77	
	280	125	105	120	17,82	12,30		125	140	6,77	6,77	
	320	145	120	135	20,67	14,27		145	160	6,77	6,77	
	420	195	155	170		19,19		195	210	-	6,77	
	200	85	75	90	16,16	11,16		85	100	11,13	10,50	
	240	105	90	105	19,96	13,78		105	120	11,13	11,13	
	280	125	105	120	23,76	16,40	22.67	125	140	11,13	11,13	
8	320 360	145 165	120 130	135 145	27,56	19,03	22,63	145 165	160 180	11,13	11,13	
	400	185	145	160	31,36	21,65 24,28		185	200	11,13	11,13 11,13	
	440	205	160	175	-	26,90		205	220	-	11,13	

■ STATISCHE WERTE | HYBRIDE VERBINDUNGEN

		KRIECHBELASTUNG											
Geon	netrie			Holz-Beecl	ı LVL					Zugtragfähigkeit Stahl			
	$\begin{bmatrix} \\ \\ \\ \\ \end{bmatrix} \end{bmatrix} d_1$				$A = \begin{bmatrix} S_{3} & & & \\ $					Applied No. 10 April 1985			
d_1	L	$S_{g,A}$	Α	$S_{g,B}$	B_{\min}	$R_{V,k}$	$S_{g,A}$	Α	$S_{g,B}$	B_{\min}	$R_{V,k}$	R _{tens,45,k}	
[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[kN]	[mm]	[mm]	[mm]	[mm]	[kN]	[kN]	
	140	70	65	40	45	3,75	65	60	45	50	3,21		
	180	110	90	40	45	5,83	95	80	55	55	4,23		
	220	130	105	60	60	6,96	125	100	65	65	5,00		
6	260	170	135	60	60	8,74	150	120	80	75	6,15	12,73	
	280	170	135	80	75	9,11	160	125	90	80	6,70		
	320	205	160	85	75	10,98	185	145	105	90	7,77		
	420	305	230	85	75	12,38	270	205	120	100	9,23		
	200	120	100	50	50	8,57	110	90	60	60	6,15		
	240	150	120	60	60	10,71	135	110	75	70	7,69		
	280	180	140	70	65	12,86	160	125	90	80	8,93		
8	320	210	160	80	75	15,00	185	145	105	90	10,36	22,63	
	360	235	180	95	85	16,79	210	160	120	100	11,43		
	400	265	200	105	90	18,93	250	190	120	100	12,31		
	440	305	230	105	90	20,39	265	200	145	120	14,29		

STATISCHE WERTE

ALLGEMEINE GRUNDLAGEN

- Die charakteristischen Werte werden gemäß der Norm EN 1995:2014 und in Übereinstimmung mit ETA-11/0030 berechnet
- $\hbox{\it Die bei der Planung ber\"ucksichtigte Zugfestigkeit des Verbinders entspricht}$ dem kleineren Wert zwischen dem berücksichtigten Widerstand auf Holzseite (R_{ax,d}) und dem berücksichtigten Widerstand auf Stahlseite (R_{tens,d}).

$$R_{ax,d} = min \begin{cases} \frac{R_{ax,k} \cdot k_{mod}}{\gamma_M} \\ \frac{R_{tens,k}}{\gamma_{M2}} \end{cases}$$

• Die bei der Planung berücksichtigte Verschiebungsfestigkeit des Verbinders entspricht dem kleineren Wert zwischen der Festigkeit auf Holzseite (R_{V d}) und der Festigkeit auf Stahlseite projiziert auf 45° (R_{tens,45,d}):

$$R_{V,d} = min \begin{cases} \frac{R_{V,k} \cdot k_{mod}}{\gamma_M} \\ \frac{R_{tens,45,k}}{\gamma_{M2}} \end{cases}$$

• Die Scherfestigkeit des Verbinders wird aus dem charakteristischen Wert

$$R_{V,d} = \frac{R_{V,k} \cdot k_{mod}}{\gamma_M}$$

- Die Beiwerte γ_M und k_{mod} sind aus der entsprechenden geltenden Norm zu übernehmen, die für die Berechnung verwendet wird.
- Bei den Werten für die mechanische Festigkeit und die Geometrie der Schrauben wurde auf die Angaben in der ETA-11/0030 Bezug genommen.
- Die Bemessung und Überprüfung der Holzelemente müssen getrennt durchgeführt werden.
- Für die Positionierung der Schrauben sind die Mindestabstände zu berück-
- Zum Einsetzen einiger Verbinder könnte eine Pilotbohrung erforderlich sein. Für weitere Details siehe ETA-11/0030.
- Die charakteristischen Gewindeauszugswerte wurden unter Berücksichtigung einer Einschraubtiefe $S_{g,TOT}$ oder S_g berechnet; siehe Tabelle. Für Zwischenwerte S_g ist eine lineare Interpolation möglich.
- Sofern nicht anders angegeben, wurden die Zug-, Scher- und Kriechwerte mit dem Massenmittelpunkt des Verbinders auf der Höhe der Scherfläche
- Die Knickfestigkeitsprüfung der Verbinder muss getrennt durchgeführt werden.

ANMERKUNGEN | HOLZ

- Die charakteristischen Gewindeauszugswerte wurden unter Berücksichtigung eines Winkels ϵ sowohl von 90° $(R_{ax,90,k})$ als auch 0° $(R_{ax,0,k})$ zwischen den Fasern des Holzelements und dem Verbinder berechnet.
- Die charakteristischen Kriechwerte wurden unter Berücksichtigung eines Winkels ϵ von 45° zwischen Fasern des Holzelements und dem Verbinder berechnet.
- Die charakteristischen Holz-Holz-Scherfestigkeitswerte wurden unter Berücksichtigung eines Winkels ϵ sowohl von 90° $(R_{V,90,k})$ als auch 0° $(R_{V,0,k})$ zwischen den Fasern des zweiten Elements und dem Verbinder berechnet.
- Die charakteristischen Scherfestigkeitswerte wurden bei eingeschraubten Schrauben ohne Vorbohrung bewertet. Mit vorgebohrten Schrauben können höhere Festigkeitswerte erreicht werden.
- Bei der Berechnung wurde eine Rohdichte der Holzelemente von $\rho_{\nu} = 385 \text{ kg/m}^3$ berücksichtigt.
 - Für andere ρ_k -Werte können die aufgelisteten Festigkeiten mithilfe des k_{dens}-Beiwerts umgerechnet werden (siehe Seite 127).

ANMERKUNGEN | HARDWOOD

- Die charakteristischen Gewindeauszugswerte wurden unter Berücksichtigung eines Winkels ϵ sowohl von 90° $(R_{ax,90,k})$ als auch 0° $(R_{ax,0,k})$ zwischen den Fasern des Holzelements und dem Verbinder berechnet.
- Die charakteristischen Kriechwerte wurden unter Berücksichtigung eines Winkels ε von 45° zwischen Fasern des Holzelements und dem Verbinder berechnet.
- Die charakteristischen Holz-Holz-Scherfestigkeitswerte wurden unter Berücksichtigung eines Winkels ϵ sowohl von 90° (R_{V,90,k}) als auch 0° (R_{V,0,k}) zwischen den Fasern des zweiten Elements und dem Verbinder berechnet.
- Die charakteristischen Festigkeitswerte wurden bei eingeschraubten Schrauben ohne Vorbohrung berechnet.
- Bei der Berechnung wurde eine Rohdichte der Holzelemente aus Hardwood (Eiche) von $\rho_k=550\ kg/m^3$ berücksichtigt.
- Schrauben, die länger sind als der angegebene Maximalwert, entsprechen nicht den Montageanforderungen und sind daher nicht aufgeführt.

ANMERKUNGEN | BEECH LVL

- Für die Berechnung der charakteristischen Kriechwerte wurde für die einzelnen Holzelemente ein Winkel von 45° zwischen dem Verbinder und der Faser und ein Winkel von 45° zwischen Verbinder und Seitenfläche des LVL-Elements berücksichtigt.
- Für die Berechnung der charakteristischen Scherfestigkeitswerte wurde für die einzelnen Holzelemente ein Winkel von 90° zwischen dem Verbinder und der Faser, ein Winkel von 90° zwischen Verbinder und Seitenfläche des LVL-Elements und ein Winkel von 0° zwischen der Kraft- und Faserrichtung berücksichtigt
- Bei der Berechnung wurde eine Rohdichte der LVL-Elemente aus Buchenholz von ρ_k = 730 kg/m³ berücksichtigt.
- Die charakteristischen Festigkeitswerte wurden bei eingeschraubten Schrauben mit und ohne Vorbohrung berechnet.
- Schrauben, die länger sind als der angegebene Maximalwert, entsprechen nicht den Montageanforderungen und sind daher nicht aufgeführt.

ANMERKUNGEN | HYBRID

- Für die Berechnung der charakteristischen Kriechwerte wurde für die einzelnen Holzelemente ein Winkel von 45° zwischen dem Verbinder und der Faser und ein Winkel von 45° zwischen Verbinder und Seitenfläche des LVL-Elements berücksichtigt
- Die charakteristischen Festigkeitswerte wurden bei eingeschraubten Schrauben ohne Vorbohrung berechnet.
- Die Geometrie der Verbindung ist so ausgelegt, dass ausgewogene Festigkeitswerte zwischen den beiden Holzelementen gewährleistet werden.

VGS

VOLLGEWINDE-VERBINDER MIT SENK- ODER SECHSKANTKOPF

SPITZE 3 THORNS

Dank der Spitze 3 THORNS werden die Mindestabstände reduziert. Mehr Schrauben können auf geringerem Raum und größere Schrauben in kleineren Elementen verwendet werden.

Die Kosten und der Zeitaufwand für die Umsetzung des Projekts verringern sich.

ZERTIFIZIERUNG FÜR HOLZ UND BETON

Bauverbinder mit Zulassung für Anwendungen nach ETA-11/0030 und für Holz-Beton-Anwendungen nach ETA-22/0806.

ZUGFESTIGKEIT

Tiefes Gewinde und hochresistenter Stahl für ausgezeichnete Leistungen bei Zug und Verschiebung. Für die Verwendung bei statisch tragenden Verbindungen zugelassen, bei denen die Schraube in jeder Richtung zur Faser beansprucht wird $(0^{\circ} \div 90^{\circ})$.

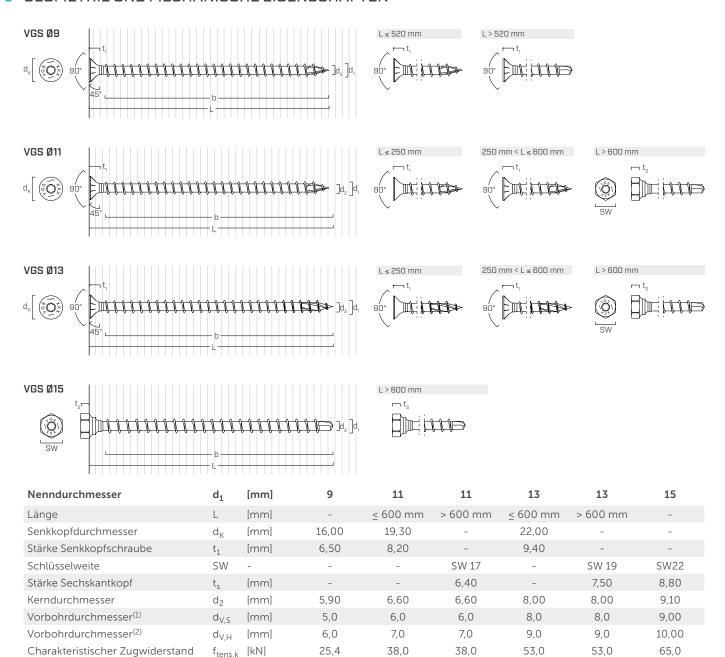
Kann mit Stahlplatten in Kombination mit VGU- und HUS-Unterlegscheiben verwendet werden.

SENK- ODER SECHSKANTKOPF

Senkkopf bis L = 600 mm, ideal für Platten oder verdeckte Verstärkungen. Sechskantkopf ab L > 600 mm, um das Anbeißen mit dem Schrauber zu erleichtern.

ANWENDUNGSGEBIETE

- Holzwerkstoffplatten
- Massivholz
- Brettschichtholz
- BSP und LVL
- Harthölzer



TC FUSION

Die ETA-22/0806-Zulassung des TC-FUSION-Systems ermöglicht die Verwendung der VGS-Schrauben zusammen mit der Bewehrung im Beton, um Massivholzplatten zu verbinden und den Stabilisierungskern mit Stahlbetonrippen zu verstärken.

■ GEOMETRIE UND MECHANISCHE EIGENSCHAFTEN

⁽¹⁾ Vorbohrung gültig für Nadelholz (Softwood).

Charakteristisches Fließmoment

Charakteristische Fließgrenze

 $M_{y,k}$

[Nm]

 $[N/mm^2]$

Die mechanischen Parameter für die VGS Ø 15 werden analytisch ermittelt und durch experimentelle Prüfungen validiert.

27,2

1000

			Nadelholz (Softwood)	LVL aus Nadelholz (LVL Softwood)	LVL aus Buche, vorgebohrt (Beech LVL predrilled)
Charakteristischer Wert der Ausziehfestigkeit	$f_{ax,k}$	[N/mm²]	11,7	15,0	29,0
Assoziierte Dichte	ρ_{a}	[kg/m ³]	350	500	730
Rohdichte	$ ho_k$	[kg/m³]	≤ 440	410 ÷ 550	590 ÷ 750

45,9

1000

45,9

1000

70,9

1000

70,9

1000

95,0

1000

SYSTEM TC FUSION FÜR HOLZ-BETON-ANWENDUNG

Nenndurchmesser	d_1	[mm]	9	11	13	15
Tangentiale Verbund- tragfähigkeit in Beton C25/30	f _{b,k}	[N/mm ²]	12,5	12,5	12,5	-

Für Anwendungen mit anderen Materialien siehe ETA-22/0806.

⁽²⁾ Vorbohrung gültig für Harthölzer (Hardwood) und für LVL aus Buchenholz.

Für Anwendungen mit anderen Materialien siehe ETA-11/0030.

ARTIKELNUMMERN UND ABMESSUNGEN

d_1	ARTNR.	L	b	Stk.	
[mm]		[mm]	[mm]		
	VGS9100	100	90	25	
	VGS9120	120	110	25	
	VGS9140	140	130	25	
	VGS9160	160	150	25	
	VGS9180	180	170	25	
	VGS9200	200	190	25	
	VGS9220	220	210	25	
	VGS9240	240	230	25	
	VGS9260	260	250	25	
9	VGS9280	280	270	25	
TX40	VGS9300	300	290	25	
	VGS9320	320	310	25	
	VGS9340	340	330	25	
	VGS9360	360	350	25	
	VGS9380	380	370	25	
	VGS9400	400	390	25	
	VGS9440	440	430	25	
	VGS9480	480	470	25	
	VGS9520	520	510	25	
	VGS9560	560	550	25	
	VGS9600	600	590	25	
	VGS1180	80	70	25	
	VGS11100	100	90	25	
	VGS11125	125	115	25	
	VGS11150	150	140	25	No in a
	VGS11175	175	165	25	
	VGS11200	200	190	25	
	VGS11225	225	215	25	
	VGS11250	250	240	25	
	VGS11275	275	265	25	
	VGS11300	300	290	25	
11	VGS11325	325	315	25	
TX 50	VGS11350	350	340	25	
	VGS11375	375	365	25	
	VGS11400	400	390	25	
	VGS11425	425	415	25	N. i i
	VGS11450	450	440	25	
	VGS11475	475	465	25	
	VGS11500	500	490	25	
	VGS11525	525	515	25	
	VGS11550	550	540	25	
	VGS11575	575	565	25	
	VGS11600	600	590	25	
	VGS11650	650	630	25	
	VGS11700	700	680	25	
	VGS11750	750	680	25	
11	VGS11750 VGS11800	800	780	25	
SW 17					
TX 50	VGS11850	850	830	25	
	VGS11900	900	880	25	
	VGS11950	950	930	25	
	VGS111000	1000	980	25	

d_1	ARTNR.	L	b	Stk.		
[mm]		[mm]	[mm]			
	VGS1380	80	70	25		
	VGS13100	100	90	25	ı	
	VGS13150	150	140	25		H
	VGS13200	200	190	25		
	VGS13250	250	240	25		
13	VGS13300	300	280	25		
TX 50	VGS13350	350	330	25		
	VGS13400	400	380	25		
	VGS13450	450	430	25		H
	VGS13500	500	480	25		
	VGS13550	550	530	25		
	VGS13600	600	580	25		
	VGS13650	650	630	25		
	VGS13700	700	680	25		
	VGS13750	750	730	25		
	VGS13800	800	780	25		
	VGS13850	850	830	25		
13	VGS13900	900	880	25		
SW 19	VGS13950	950	930	25		
TX 50	VGS131000	1000	980	25		
	VGS131100	1100	1080	25		
	VGS131200	1200	1180	25		
	VGS131300	1300	1280	25		
	VGS131400	1400	1380	25		
	VGS131500	1500	1480	25		
	VGS15600	600	580	25		
	VGS15700	700	680	25		
	VGS15800	800	780	25		
	VGS15900	900	880	25		
15	VGS151000	1000	980	25		i
SW 21 TX 50	VGS151200	1200	1180	25		
. 7. 50	VGS151400	1400	1380	25		
	VGS151600	1600	1580	25		
	VGS151800	1800	1780	25		
	VGS152000	2000	1980	25		

■ ZUGEHÖRIGE PRODUKTE

VGU

45° UNTERLEGSCHEIBE FÜR VGS

Seite 190

TORQUE LIMITER

DREHMOMENTBEGRENZER

Seite 408

W/ACD

TRANSPORTANKER FÜR HOLZELEMENTE

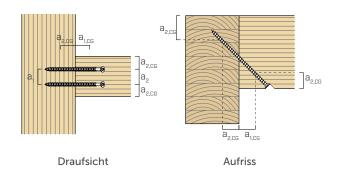
Seite 413

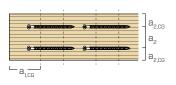
■ MINDESTABSTÄNDE DER SCHRAUBEN BEI AXIALER BEANSPRUCHUNG

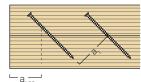
Einsatz der Schrauben MIT und OHNE Vorbohrung

Ĺ	1	ď		•
=	-)—	1	

d_1	[mm]		9	11
a ₁	[mm]	5·d	45	55
a ₂	[mm]	5·d	45	55
a _{2,LIM}	[mm]	2,5·d	23	28
a _{1,CG}	[mm]	8·d	72	88
a _{2,CG}	[mm]	3·d	27	33
a _{CROSS}	[mm]	1,5·d	14	17

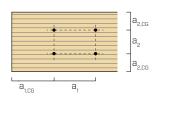


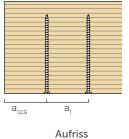

d_1	[mm]		13
a ₁	[mm]	5·d	65
a ₂	[mm]	5·d	65
a _{2,LIM}	[mm]	2,5·d	33
a _{1,CG}	[mm]	8·d	104
a _{2,CG}	[mm]	3·d	39
a _{CROSS}	[mm]	1,5·d	20



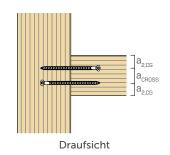
d_1	[mm]		9	11	13	15
a ₁	[mm]	5·d	45	55	65	75
a ₂	[mm]	5·d	45	55	65	75
a _{2,LIM}	[mm]	2,5·d	23	28	33	38
a _{1,CG}	[mm]	5·d	45	55	65	150
a _{2,CG}	[mm]	3·d	27	33	39	60
a _{CROSS}	[mm]	1,5·d	14	17	20	23

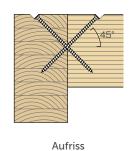
MIT EINEM WINKEL α ZUR FASER EINGEDREHTE SCHRAUBEN UNTER ZUG




Draufsicht

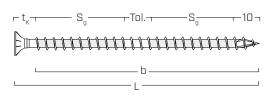
Aufriss


MIT EINEM WINKEL α = 90° ZUR FASER EINGEDREHTE SCHRAUBEN



Draufsicht

MIT EINEM WINKEL α ZUR FASER GEKREUZT EINGEDREHTE SCHRAUBEN



ANMERKUNGEN

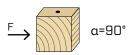
- Die Mindestabstände entsprechen ETA-11/0030.
- Die Mindestabstände sind unabhängig vom Eindrehwinkel des Verbinders und vom Kraftwinkel zu den Fasern.
- Der axiale Abstand a₂ kann bis auf a_{2, LIM} reduziert werden, wenn bei jedem Verbinder eine "Verbindungsfläche" von a₁-a₂ = 25-d₁² beibehalten wird.
- Für Schrauben mit Spitze 3 THORNS und Self-drilling wurden die angegebenen Mindestabstände aus experimentellen Untersuchungen ermittelt; wahlweise $a_{1,CG} = 10 \cdot d$ und $a_{2,CG} = 4 \cdot d$ gemäß EN 1995:2014 anwenden.

NUTZGEWINDEBERECHNUNG

$$\mathbf{b} = \mathbf{S}_{g,tot} = L - t_K$$

$$S_g = (L - t_K - 10 \text{ mm} - \text{Tol.})/2$$

 $t_K = 10 \text{ mm (Senkkopf)}$ $t_K = 20 \text{ mm (Sechskantkopf)}$ verweist auf die gesamte Länge des Gewindeteils


verweist auf die halbe Gewindelänge abzgl. einer Verlegungstoleranz (Tol.) von 10 mm

MINDESTABSTÄNDE DER SCHRAUBEN BEI ABSCHERBEANSPRUCHUNG

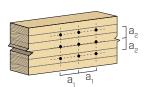
Schraubenabstände OHNE Vorbohrung

 $\rho_k \leq 420 \; kg/m^3$

d_1	[mm]		9	11	13	15
a ₁	[mm]	10·d	90	110	130	150
a ₂	[mm]	5·d	45	55	65	75
a _{3,t}	[mm]	15·d	135	165	195	225
a _{3,c}	[mm]	10·d	90	110	130	150
$a_{4,t}$	[mm]	5·d	45	55	65	75
a _{4,c}	[mm]	5·d	45	55	65	75

d_1	[mm]		9	11	13	15
a ₁	[mm]	5·d	45	55	65	75
a ₂	[mm]	5·d	45	55	65	75
a _{3,t}	[mm]	10 ⋅d	90	110	130	150
a _{3,c}	[mm]	10 ⋅d	90	110	130	150
a _{4,t}	[mm]	10 ⋅d	90	110	130	150
a _{4,c}	[mm]	5·d	45	55	65	75

Schraubenabstände VORGEBOHRT

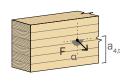

α=90°

d_1	[mm]		9	11	13	15
a ₁	[mm]	5·d	45	55	65	75
a ₂	[mm]	3·d	27	33	39	45
a _{3,t}	[mm]	12·d	108	132	156	180
a _{3,c}	[mm]	7⋅d	63	77	91	105
a _{4,t}	[mm]	3·d	27	33	39	45
a _{4,c}	[mm]	3·d	27	33	39	45

15 9 11 13 [mm] 44 52 60 [mm] 4-d 36 44 52 60 4·d 36 [mm] 77 7.d 63 91 105 [mm] 77 63 91 105 7·d [mm] 77 63 91 105 7·d [mm] 27 33 39 45 [mm] 3·d

α = Winkel zwischen Kraft- und Faserrichtung

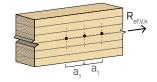
 $d = d_1 = Nenndurchmesser Schraube$



unbeanspruchtes Hirnholzende

beanspruchter Rand 0° < α < 180°

unbeanspruchter Rand



ANMERKUNGEN

- Die Mindestabstände wurden nach EN 1995:2014 und in Übereinstimmung mit der ETA-11/0030 berechnet und beziehen sich auf eine Rohdichte der Holzelemente von $\rho_k \le 420 \text{ kg/m}^3$.
- Bei Stahl-Holz-Verbindungen können die Mindestabstände (a₁, a₂) mit einem Koeffizienten von 0,7 multipliziert werden.
- Bei Holzwerkstoffplatten-Verbindungen können die Mindestabstände (a_1 , a_2) mit einem Koeffizienten von 0,85 multipliziert werden.
- Der Abstand a_1 , aufgelistet für Schrauben mit Spitze 3 THORNS, eingeschraubt ohne Vorbohrung in Holzelemente mit Dichte $\rho_k \leq 420 \text{ kg/m}^3$ und Winkel zwischen Kraft- und Faserrichtung α = 0°, wurde auf der Grundlage experimenteller Untersuchungen mit 10-d angenommen; wahlweise können 12·d gemäß EN 1995:2014 übernommen werden.

WIRKSAME SCHRAUBENANZAHL BEI ABSCHERBEANSPRUCHUNG

Die Tragfähigkeit einer Verbindung mit mehreren Schrauben vom gleichen Typ und mit gleicher Größe kann kleiner sein als die Summe der Tragfähigkeiten des einzelnen Verbindungsmittels. Für eine Reihe von n parallel zur Faserrichtung des Holzes in einem Abstand a₁ angeordnete Schrauben entspricht die effektive charakteristische Tragfähigkeit:

$$R_{ef,V,k} = n_{ef} \cdot R_{V,k}$$

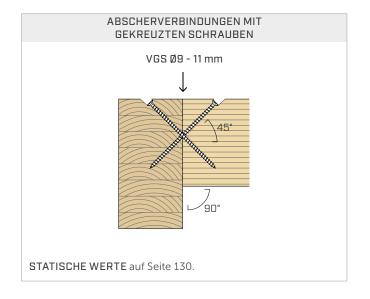
Der Wert von n_{ef} ist in der folgenden Tabelle abhängig von n und a₁ aufgeführt.

							a ₁ (*)					
		4·d	5·d	6·d	7⋅d	8·d	9·d	10 ⋅d	11 ⋅d	12·d	13·d	≥ 14·d
	2	1,41	1,48	1,55	1,62	1,68	1,74	1,80	1,85	1,90	1,95	2,00
n	3	1,73	1,86	2,01	2,16	2,28	2,41	2,54	2,65	2,76	2,88	3,00
"	4	2,00	2,19	2,41	2,64	2,83	3,03	3,25	3,42	3,61	3,80	4,00
	5	2,24	2,49	2,77	3,09	3,34	3,62	3,93	4,17	4,43	4,71	5,00

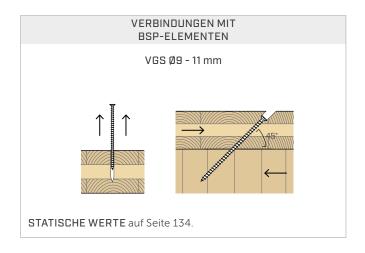
 $^{(\star)}$ Für Zwischenwerte \mathbf{a}_1 ist eine lineare Interpolation möglich.

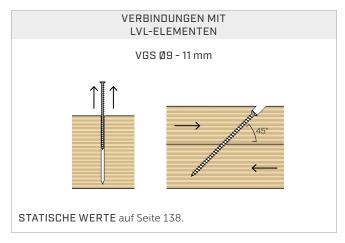
		ZUGKRAFT / DRUCK									
			Vollständ	diger Gewindeau	ıszug		Partiel	ler Gewindeaus	zug	Zugtragfähigkeit	Instabilität
Geon	netrie			ε=90°	ε=0°			ε=90°	ε=0°	Stahl	ε=90°
		S. S	A				A			финининининин — — — — — — — — — — — — — —	
d_1	L	S _{g,tot}	A _{min}	$R_{ax,90,k}$	R _{ax,0,k}	Sg	A _{min}	$R_{ax,90,k}$	R _{ax,0,k}	R _{tens,k}	$R_{ki,90,k}$
[mm]	[mm]	[mm]	[mm]	[kN]	[kN]	[mm]	[mm]	[kN]	[kN]	[kN]	[kN]
9	100 120 140 160 180 200 220 240 260 300 320 340 360 380 400 440 480 520 560 600	90 110 130 150 170 190 210 230 250 270 290 310 330 350 370 390 430 470 510 550 590	110 130 150 170 190 210 230 250 270 290 310 330 350 370 390 410 450 490 530 570 610	10,23 12,50 14,77 17,05 19,32 21,59 23,87 26,14 28,41 30,68 32,96 35,23 37,50 39,78 42,05 44,32 48,87 53,41 57,96 62,50 67,05	3,07 3,75 4,43 5,11 5,80 6,48 7,16 7,84 8,52 9,21 9,89 10,57 11,25 11,93 12,61 13,30 14,66 16,02 17,39 18,75 20,11	35 45 55 65 75 85 95 105 115 125 135 145 155 165 175 185 205 225 245 265 285	55 65 75 85 95 105 115 125 135 145 155 165 175 185 195 205 225 245 265 285 305	3,98 5,11 6,25 7,39 8,52 9,66 10,80 11,93 13,07 14,21 15,34 16,48 17,61 18,75 19,89 21,02 23,30 25,57 27,84 30,12 32,39	1,19 1,53 1,88 2,22 2,56 2,90 3,24 3,58 3,92 4,26 4,60 4,94 5,28 5,63 5,97 6,31 6,99 7,67 8,35 9,03 9,72	25,40	17,25
11	80 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500 525 550 575 600 650 700 750 800 850 900 950 1000	70 90 115 140 165 190 215 240 265 290 315 340 365 390 415 440 465 490 515 540 565 590 630 680 680 780 830 880 930 980	90 110 135 160 185 210 235 260 285 310 335 360 385 410 435 460 485 510 535 560 585 610 660 710 760 810 860 910 960 1010	9,72 12,50 15,97 19,45 22,92 26,39 29,86 33,34 36,81 40,28 43,75 47,22 50,70 54,17 57,64 61,11 64,59 68,06 71,53 75,00 78,48 81,95 87,51 94,45 94,45 108,34 115,28 122,23 129,17 136,12	2,92 3,75 4,79 5,83 6,88 7,92 8,96 10,00 11,04 12,08 13,13 14,17 15,21 16,25 17,29 18,33 19,38 20,42 21,46 22,50 23,54 24,58 26,25 28,33 28,33 32,50 34,59 36,67 38,75 40,84	25 35 48 60 73 85 98 110 123 135 148 160 173 185 198 210 223 235 248 260 273 285 305 330 330 380 405 430 455 480	45 55 68 80 93 105 118 130 143 155 168 180 193 205 218 230 243 255 268 280 293 305 325 350 400 425 450 475 500	3,47 4,86 6,60 8,33 10,07 11,81 13,54 15,28 17,01 18,75 20,49 22,22 23,96 25,70 27,43 29,17 30,90 32,64 34,38 36,11 37,85 39,59 42,36 45,84 45,84 52,78 56,25 59,73 63,20 66,67	1,04 1,46 1,98 2,50 3,02 3,54 4,06 4,58 5,10 5,63 6,15 6,67 7,19 7,71 8,23 8,75 9,27 9,79 10,31 10,83 11,35 11,88 12,71 13,75 13,75 15,83 16,88 17,92 18,96 20,00	38,00	21,93

			ZUGKRAFT / DRUCK											
			Vollständ	diger Gewindeau	ıszug		Partiel	ler Gewindeaus	zug	Zugtragfähigkeit	Instabilität			
Geon	netrie			ε=90°	ε=0°			ε=90°	ε=0°	Stahl	ε=90°			
L		S _{old}	A			S	A			↑				
d ₁	L	S _{g,tot}	A _{min}	$R_{ax,90,k}$	R _{ax,0,k}	Sg	A _{min}	$R_{ax,90,k}$	R _{ax,0,k}	R _{tens,k}	$R_{ki,90,k}$			
[mm]	[mm]	[mm]	[mm]	[kN]	[kN]	[mm]	[mm]	[kN]	[kN]	[kN]	[kN]			
	80	70	90	11,49	3,45	25	45	4,10	1,23					
	100	90	110	14,77	4,43	35	55	5,75	1,72					
	150	140	160	22,98	6,89	60	80	9,85	2,95					
	200	190	210	31,19	9,36	85	105	13,95	4,19					
	250	240	260	39,40	11,82	110	130	18,06	5,42					
	300	280	310	45,96	13,79	130	150	21,34	6,40					
	350	330	360	54,17	16,25	155	175	25,44	7,63					
	400	380	410	62,38	18,71	180	200	29,55	8,86					
	450	430	460	70,58	21,18	205	225	33,65	10,10					
	500	480	510	78,79	23,64	230	250	37,75	11,33					
	550	530	560	87,00	26,10	255	275	41,86	12,56					
	600	580	610	95,21	28,56	280	300	45,96	13,79					
13	650	630	660	103,42	31,02	305	325	50,07	15,02	53,00	32,69			
	700	680	710	111,62	33,49	330	350	54,17	16,25					
	750	730	760	119,83	35,95	355	375	58,27	17,48					
	800	780	810	128,04	38,41	380	400	62,38	18,71					
	850	830	860	136,25	40,87	405	425	66,48	19,94					
	900	880	910	144,45	43,34	430	450	70,58	21,18					
	950	930	960	152,66	45,80	455	475	74,69	22,41					
	1000	980	1010	160,87	48,26	480	500	78,79	23,64					
	1100	1080	1110	177,28	53,18	530	550	87,00	26,10					
	1200	1180	1210	193,70	58,11	580	600	95,21	28,56					
	1300	1280	1310	210,11	63,03	630	650	103,42	31,02					
	1400	1380	1410	226,53	67,96	680	700	111,62	33,49					
	1500	1480	1510	242,94	72,88	730	750	119,83	35,95					
	600	580	610	109,85	32,96	280	300	53,03	15,91					
	700	680	710	128,80	38,64	330	350	62,50	18,75					
	800	780	810	147,74	44,32	380	400	71,97	21,59					
	900	880	910	166,68	50,00	430	450	81,44	24,43					
15	1000	980	1010	185,62	55,69	480	500	90,91	27,27	65,00	42,86			
13	1200	1180	1210	223,50	67,05	580	600	109,85	32,96	05,00	12,00			
	1400	1380	1410	261,38	78,41	680	700	128,80	38,64					
	1600	1580	1610	299,26	89,78	780	800	147,74	44,32					
	1800	1780	1810	337,14	101,14	880	900	166,68	50,00					
	2000	1980	2010	375,02	112,51	980	1000	185,62	55,69					

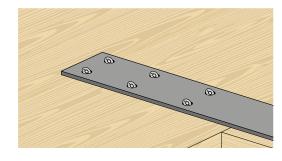

 $[\]epsilon$ = Winkel zwischen Schraube und Faserrichtung

			KRIECHBELASTUNG								SCHERWERT			
Geon	netrie		Н	olz-Holz	:		Sta	hl - Holz		Zugtragfähigkeit Stahl			Holz-Holz ε=90°	Holz-Holz ε=0°
L		A - B - L			45°	Splate		45°	←	45°	L			
d_1	L	Sg	Α	B_{\min}	$R_{V,k}$	S _{PLATE}	S_g	A_{min}	$R_{V,k}$	R _{tens,45,k}	Sg	Α	R _{V,90,k}	R _{V,0,k}
[mm]	[mm]	[mm]	[mm]	[mm]	[kN]	[mm]	[mm]	[mm]	[kN]	[kN]	[mm]	[mm]	[mm]	[kN]
	100	35	40	55	2,81		85	80	6,83		35	50	4,04	2,07
	120 140	45 55	45 55	60 70	3,62 4,42		105 125	95 110	8,44 10,04		45 55	60 70	4,53 4,81	2,30 2,55
	160	65	60	75	5,22		145	125	11,65		65	80	5,10	2,81
	180	75	70	85	6,03		165	135	13,26		75	90	5,38	3,08
	200	85	75	90	6,83		185	150	14,87		85	100	5,67	3,18
	220	95	85	100	7,63		205	165	16,47		95	110	5,95	3,27
	240	105	90	105	8,44		225	180	18,08		105	120	6,23	3,35
	260 280	115 125	95 105	110 120	9,24 10.04		245 265	195 205	19,69 21,29		115 125	130 140	6,50 6,50	3,44 3,52
9	300	135	110	125	10,04	15	285	203	22,90	17,96	135	150	6,50	3,61
,	320	145	120	135	11,65	15	305	235	24,51	17,50	145	160	6,50	3,69
	340	155	125	140	12,46		325	250	26,12		155	170	6,50	3,78
	360	165	130	145	13,26		345	265	27,72		165	180	6,50	3,86
	380	175	140	155	14,06		365	280	29,33		175	190	6,50	3,95
	400	185	145	160	14,87		385	290	30,94		185	200	6,50	4,03
	440 480	205	160 175	175 190	16,47 18,08		425 465	320 350	34,15 37,37		205 225	220 240	6,50 6,50	4,21 4,38
	520	245	190	205	19,69		505	375	40,58		245	260	6,50	4,55
	560	265	205	220	21,29		545	405	43,79		265	280	6,50	4,72
	600	285	215	230	22,90		585	435	47,01		285	300	6,50	4,89
	80	25	35	50	2,46		60	60	5,89		25	40	3,67	2,16
	100 125	35 48	40 50	55 65	3,44 4,67		80 105	75 95	7,86 10,31		35 48	50 63	4,72 6,03	2,69 2,99
	150	60	60	75	5,89		130	110	12,77		60	75	6,61	3,33
	175	73	65	80	7,12		155	130	15,22		73	88	7,05	3,71
	200	85	75	90	8,35		180	145	17,68		85	100	7,48	4,10
	225	98	85	100	9,58		205	165	20,13		98	113	7,92	4,44
	250	110	95	110	10,80		230	185	22,59		110	125	8,35	4,57
	275 300	123 135	100	115 125	12,03 13,26		255 280	200	25,04 27,50		123 135	138 150	8,79 9,06	4,70 4,83
	325	148		135	14,49		305	235	29,96		148	163	9,06	4,03
	350	160		145	15,71		330	255	32,41		160	175	9,06	5,09
	375	173		155	16,94		355	270	34,87		173	188	9,06	5,22
	400	185		160	18,17		380	290	37,32		185	200	9,06	5,35
11	425	198		170	19,40	18	405	305	39,78	26,87	198	213	9,06	5,48
	450 475	210 223		180 190	20,63 21,85		430 455	325 340	42,23 44,69		210 223	225 238	9,06 9,06	5,61 5,74
	500	235		190	23,08		480	360	47,14		235	250	9,06	5,87
	525	248		205	24,31		505	375	49,60		248	263	9,06	6,00
	550		200	215	25,54		530	395	52,05		260	275	9,06	6,13
	575	273		225	26,76		555	410	54,51		273	288	9,06	6,26
	600	285		230	27,99		580	430	56,96		285	300	9,06	6,39
	650		230	245	29,96		-	-	-		305	320	9,06	6,60
	700 750		250 250	265 265	32,41 32,41		-	-	-		330 330	345 345	9,06 9,06	6,85 6,85
	800		285	300	37,32		-	-	-		380	395	9,06	6,85
	850		300	315	39,78		-	-	-		405	420	9,06	6,85
	900		320	335	42,23		-	-	-		430	445	9,06	6,85
	950		335	350	44,69		-	-	-		455	470	9,06	6,85
	1000	480	355	370	47,14		-		-		480	495	9,06	6,85


						KRIEC	HBELA	ASTUNG	3		SCHERWERT			
Geon	netrie		Но	olz-Holz	:		Sta	hl - Holz		Zugtragfähigkeit Stahl			Holz-Holz ε=90°	Holz-Holz ε=0°
L	Bunnunununununun d	A - B - L			45"	45° 45° A			Attended 45°	S ₉			←	
d_1	L	Sg	Α	B_{min}	$R_{V,k}$	S _{PLATE}	S_g	A_{\min}	$R_{V,k}$	R _{tens,45,k}	Sg	Α	R _{V,90,k}	$R_{V,0,k}$
[mm]	[mm]	[mm]	[mm]	[mm]	[kN]	[mm]	[mm]		[kN]	[kN]	[mm]	[mm]	[mm]	[kN]
	80	25	35	50	2,90		60	60	6,96		25	40	4,18	2,44
	100	35	40	55	4,06		80	75	9,29		35	50	5,37	3,10
	150	60	60	75	6,96		130	110	15,09		60	75	8,37	4,06
	200	85	75	90	9,87		180	145	20,89		85	100	9,46	4,88
	250	110	95	110	12,77		230	185	26,70		110	125	10,49	5,77
	300	130	110	125	15,09		280	220	32,50		130	145	11,31	6,11
	350	155	125	140	17,99		330	255	38,30		155	170	11,94	6,42
	400	180	145	160	20,89		380	290	44,11		180	195	11,94	6,73
	450	205	160	175	23,79		430	325	49,91		205	220	11,94	7,04
	500	230	180	195	26,70		480	360	55,71		230	245	11,94	7,35
	550	255	195	210	29,60		530	395	61,52		255	270	11,94	7,65
	600	280	215	230	32,50		580	430	67,32		280	295	11,94	7,96
13	650	305	230	245	35,40	20	-	-	-	37,48	305	320	11,94	8,27
	700	330	250	265	38,30		-	-	-		330	345	11,94	8,58
	750	355	265	280	41,21		-	-	-		355	370	11,94	8,88
	800	380	285	300	44,11		-	-	-		380	395	11,94	9,03
	850	405	300	315	47,01		-	-	-		405	420	11,94	9,03
	900	430	320	335	49,91		-	-	-		430	445	11,94	9,03
	950	455	335	350	52,81		-	-	-		455	470	11,94	9,03
	1000	480	355	370	55,71		-	-	-		480	495	11,94	9,03
	1100	530	390	405	61,52		-	-	-		530	545	11,94	9,03
	1200	580	425	440	67,32		-	-	-		580	595	11,94	9,03
	1300	630		475	73,13		-	-	-		630	645	11,94	9,03
	1400	680	495	510	78,93		-	-	-		680	695	11,94	9,03
	1500	730	530	545	84,73		-	-	-		730	745	11,94	9,03
	600	280	215	230	37,50		-	-	-		280	295	14,53	9,47
	700		250	265	44,20		-	-	-		330	345	14,53	10,18
	800	380	285	300	50,89		-	-	-		380	395	14,53	10,89
	900		320	335	57,59		-	-	-		430	445	14,53	10,99
15	1000	480		370	64,29	-	-	-	-	45,96	480	495	14,53	10,99
	1200	580		440	77,68		-	-	-		580	595	14,53	10,99
	1400	680		510	91,07		-	-	-		680	695	14,53	10,99
	1600		565	580	104,47		-	-	-		780	795	14,53	10,99
	1800	880	640	655	117,86		-	-	-		880	895	14,53	10,99
	2000	980	/10	725	131,25		-	-	-		980	995	14,53	10,99


 $[\]epsilon$ = Winkel zwischen Schraube und Faserrichtung

STATISCHE WERTE | WEITERE ANWENDUNGEN



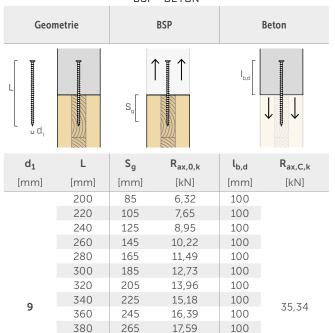
■ WIRKSAME SCHRAUBENANZAHL BEI AXIALER BEANSPRUCHUNG

Die Tragfähigkeit einer Verbindung mit mehreren Schrauben vom gleichen Typ und mit gleicher Größe kann kleiner sein als die Summe der Tragfähigkeiten des einzelnen Verbindungsmittels.

Bei einer Verbindung mit geneigten Schrauben entspricht die effektive charakteristische Tragfähigkeit bei Verschiebung für eine Reihe:

$$R_{ef,V,k} = n_{ef,ax} \cdot R_{V,k}$$

Der Wert von n_{ef} ist in der folgenden Tabelle abhängig von n (Anzahl der Schrauben in einer Reihe) aufgeführt.


n	2	3	4	5	6	7	8	9	10
n _{ef,ax}	1,87	2,70	3,60	4,50	5,40	6,30	7,20	8,10	9,00

ZUGVERBINDUNG BSP - BETON

18,78

21,14

23.47

25,40

25,40

25,40

9,36

11,26

13,12

14,95

16,75

18,54

20,31

22,05

23,79

25,51

27,22

28,91

30,59

32,27

33,93

35,59

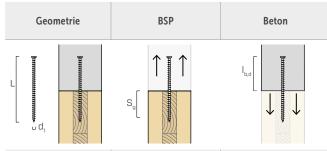
38,00

38,00

38,00

38,00

38,00


38,00

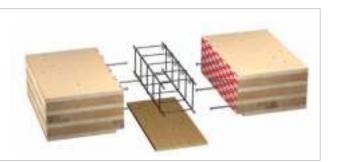
38,00

38,00

43,20

ZUGVERBINDUNG BSP - BETON

d ₁	L	Sg	$R_{ax,0,k}$	l _{b,d}	$R_{ax,C,k}$		
[mm]	[mm]	[mm]	[kN]	[mm]	[kN]		
	300	165	15,41	120			
	350	215	19,56	120			
	400	265	23,61	120			
	450	315	27,58	120			
	500	365	31,50	120			
	550	415	35,35	120			
	600	465	39,16	120			
	650	515	42,93	120			
	700	565	46,67	120			
13	750	615	50,37	120	61,26		
13	800	665	53,00	120	01,20		
	850	715	53,00	120			
	900	765	53,00	120			
	950	815	53,00	120			
	1000	865	53,00	120			
	1100	965	53,00	120			
	1200	1065	53,00	120			
	1300	1165	53,00	120			
	1400	1265	53,00	120			
	1500	1365	53,00	120			


ANM. und ALLGEMEINE GRUNDLAGEN auf Seite 176.

TC FUSION

HOLZ-BETON-VERBINDUNGSSYSTEM

Die Innovation der VGS-, VGZ- und RTR-Vollgewindeverbinder für Holz-Beton-Anwendungen.

Mehr erfahren auf S. 270

STATISCHE WERTE

ALLGEMEINE GRUNDLAGEN

- Die charakteristischen Werte werden gemäß der Norm EN 1995:2014 und in Übereinstimmung mit ETA-11/0030 berechnet.
- Die bei der Planung berücksichtigte Zugfestigkeit des Verbinders entspricht dem kleineren Wert zwischen dem berücksichtigten Widerstand auf Holzseite (R_{ax.d}) und dem berücksichtigten Widerstand auf Stahlseite (R_{tens.d}).

$$R_{ax,d} = min \begin{cases} \frac{R_{ax,k} \cdot k_{mod}}{\gamma_M} \\ \frac{R_{tens,k}}{\gamma_{M2}} \end{cases}$$

 Die bei der Planung berücksichtigte Druckfestigkeit des Verbinders entspricht dem kleineren Wert zwischen dem berücksichtigten Widerstand auf Holzseite (R_{ax,d}) und der berücksichtigten Tragfähigkeit auf Ausknicken (R_{ki,d}):

$$R_{ax,d} = min \begin{cases} \frac{R_{ax,k} \cdot K_{mod}}{\gamma_M} \\ \frac{R_{k_i^{\prime},k}}{\gamma_{M1}} \end{cases}$$

 Die bei der Planung berücksichtigte Verschiebungsfestigkeit des Verbinders entspricht dem kleineren Wert zwischen der Festigkeit auf Holzseite (R_{V,d}) und der projizierten Festigkeit auf Stahlseite (R_{tens,45,d}).

$$R_{V,d} = min \begin{cases} \frac{R_{V,k} \cdot k_{mon}}{\gamma_{M}} \\ \frac{R_{tens,45,k}}{\gamma_{M2}} \end{cases}$$

 Die Scherfestigkeit des Verbinders wird aus dem charakteristischen Wert wie folgt berechnet:

$$R_{V,d} = \frac{R_{V,k} \cdot k_{mod}}{\gamma_M}$$

- Die Beiwerte γ_M und k_{mod} sind aus der entsprechenden geltenden Norm zu übernehmen, die für die Berechnung verwendet wird.
- Bei den Werten für die mechanische Festigkeit und die Geometrie der Schrauben wurde auf die Angaben in der ETA-11/0030 Bezug genommen.
- Die Bemessung und Überprüfung der Holzelemente müssen getrennt durchgeführt werden.
- Für die Positionierung der Schrauben sind die Mindestabstände zu berücksichtigen.
- Die charakteristischen Gewindeauszugswerte wurden unter Berücksichtigung einer Einschraubtiefe $S_{g,tot}$ oder S_g berechnet; siehe Tabelle. Für Zwischenwerte S_g ist eine lineare Interpolation möglich.
- Die Scher- und Kriechwerte wurden mit dem Massenmittelpunkt des Verbinders in Nähe der Scherfläche berechnet.
- Die charakteristischen Scherfestigkeitswerte wurden bei eingeschraubten Schrauben ohne Vorbohrung bewertet. Mit vorgebohrten Schrauben können höhere Festigkeitswerte erreicht werden.
- Die angegebenen Werte werden unter Berücksichtigung der Parameter für die mechanische Festigkeit der Schrauben VGS Ø 15 bewertet, die analytisch ermittelt und durch experimentelle Prüfungen validiert wurden.
- Für weitere Berechnungen steht die kostenlose Software MyProject zur Verfügung (www.rothoblaas.de).

ANMERKUNGEN | HOLZ

- Die charakteristischen Gewindeauszugswerte wurden unter Berücksichtigung eines Winkels ε sowohl von 90° (R_{ax,90,k}) als auch 0° (R_{ax,0,k}) zwischen den Fasern des Holzelements und dem Verbinder berechnet.
- Die charakteristischen Kriechwerte wurden unter Berücksichtigung eines Winkels ε von 45° zwischen Fasern des Holzelements und dem Verbinder berechnet.
- Die Stärken der Platten (S_{PLATE}) sind die Mindestwerte für die Aufnahme des Senkkopfs der Schraube.
- Die charakteristischen Holz-Holz-Scherfestigkeitswerte wurden unter Berücksichtigung eines Winkels ϵ sowohl von 90° (R_{V,90,k}) als auch 0° (R_{V,0,k}) zwischen den Fasern des zweiten Elements und dem Verbinder berechnet.
- Bei der Berechnung wurde eine Rohdichte der Holzelemente von ρ_k = 385 kg/m³ berücksichtigt.

Für andere ρ_K-Werte können die aufgelisteten Festigkeitswerte (Auszug-, Druck-, Kriech- und Scherwerte) mithilfe des k_{dens}-Beiwerts umgerechnet werden.

$$\begin{aligned} R_{ax,k}' &= k_{dens,ax} \cdot R_{ax,k} \\ R_{kl,k}' &= k_{dens,ki} \cdot R_{kl,k} \\ R_{V,k}' &= k_{dens,ax} \cdot R_{V,k} \\ R_{V,90,k}' &= k_{dens,V} \cdot R_{V,90,k} \\ R_{V,0,k}' &= k_{dens,V} \cdot R_{V,0,k} \end{aligned}$$

ρ _k [kg/m³]	350	380	385	405	425	430	440
C-GL	C24	C30	GL24h	GL26h	GL28h	GL30h	GL32h
k _{dens,ax}	0,92	0,98	1,00	1,04	1,08	1,09	1,11
k _{dens,ki}	0,97	0,99	1,00	1,00	1,01	1,02	1,02
$k_{dens,v}$	0,90	0,98	1,00	1,02	1,05	1,05	1,07

Die so ermittelten Festigkeitswerte können zugunsten der Sicherheit von denen abweichen, die sich aus einer genauen Berechnung ergeben.

ANMERKUNGEN | TC FUSION

- Die charakteristischen Werte sind nach ETA-22/0806.
- Die axiale Auszugsfestigkeit des "narrow-face"-Gewindes gilt unter Einhaltung der BSP-Mindeststärke von t $_{CLT,min}$ = $10\cdot d_1$ und einer Mindestdurchzugstiefe der Schraube von t $_{pen}$ = $10\cdot d_1$.
- Verbinder, die kürzer sind als der aufgelistete Wert, erfüllen nicht die Anforderungen an die Mindesteinschraubtiefe und sind nicht aufgeführt.
- Bei der Berechnung wurde die Betonklasse C25/30 berücksichtigt. Für Anwendungen mit anderen Materialien siehe ETA-22/0806.
- Die bei der Planung berücksichtigte Zugfestigkeit des Verbinders entspricht dem kleineren Wert zwischen dem berücksichtigten Widerstand auf Holzseite (R_{ax,d}) und dem berücksichtigten Widerstand auf Betonseite (R_{ax,C,d}).

$$R_{ax,d} = min \begin{cases} \frac{R_{ax,0,k} \cdot K_{mod}}{Y_M} \\ \frac{R_{ax,C,k}}{Y_{M,concrete}} \end{cases}$$

- Das Betonelement muss über geeignete Bewehrungsstäbe verfügen.
- Die Verbinder müssen in einem Abstand von max. 300 mm angeordnet werden.

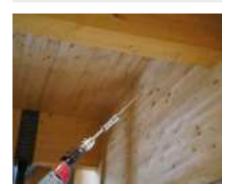
ZUGEHÖRIGE PRODUKTE

man

JIG VGU Seite 409

LEWISSeite 414

CATCH Seite 408


TORQUE LIMITER
Seite 408

B 13 B Seite 405

MONTAGEANLEITUNGEN

LANGE SCHRAUBEN

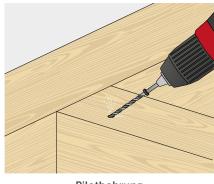
Mit dem CATCH lassen sich auch lange Schrauben schnell und sicher einschrauben, ohne dass der Bit abrutschen kann. Kombinationsmöglichkeit mit TORQUE LIMITER.

VGS + VGU

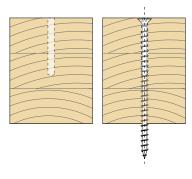
Mit der Montagelehre JIG VGU können problemlos Vorbohrungen mit einer Neigung von 45° ausgeführt werden, wodurch sich danach die VGS-Schrauben einfacher einschrauben lassen. Es wird eine Vorbohrung von mindestens 20 mm empfohlen.

Um die Kontrolle des angewandten Drehmoments zu gewährleisten, muss je nach gewähltem Verbinder der richtige TOR-QUE LIMITER zum Einsatz kommen.

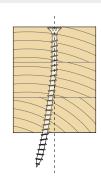
VGS +WASPL



Die Schraube so einsetzen, dass der Kopf um 15 mm herausragt, und den WASPL-Anker einhaken.



Nach dem Anheben lässt sich der WASPL-Anker schnell und einfach lösen und ist wieder einsatzbereit.

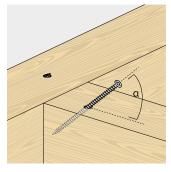

BEDEUTUNG DER PILOTBOHRUNG

Pilotbohrung

Einschrauben mit Pilotbohrung

Einschrauben ohne Pilotbohrung

Eine Verschiebung der Schraube im Verhältnis zur Verschraubungsrichtung kommt häufig bei der Montage vor. Dieses Phänomen hängt mit der Beschaffenheit des Werkstoffs Holz zusammen, der nicht homogen und gleichmäßig ist, z. B. aufgrund von Astlöchern oder physikalischen Eigenschaften im Zusammenhang mit der Faserrichtung. Eine wichtige Rolle spielen dabei auch die Fähigkeiten der ausführenden Person.


Die Verwendung einer Pilotbohrung erleichtert das Einsetzen der Schrauben, vor allem langer Schrauben, und ermöglicht die Einhaltung einer sehr präzisen Einschraubrichtung.

MONTAGEANLEITUNGEN

Bei der Montage von Schrauben, die in Holz-Holz-Verbindungen (Softwood) eingesetzt werden, kann auch ein Impuls-/Schlagschrauber verwendet werden.

Den Eindrehwinkel mithilfe einer Pilotbohrung und/oder der Montageschablone einhalten.

Schraubenkopf nicht in das Holz einhämmern.

Die Schraube kann nicht wiederverwendet werden.

 d_1

[mm]

9

11

11

13

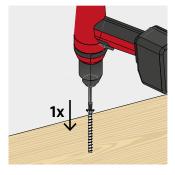
VGS

Ø9

Ø11

L < 400 mm Ø11

L ≥ 400 mm Ø13 $M_{ins,rec}$


[Nm]

20

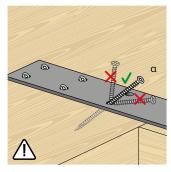
30

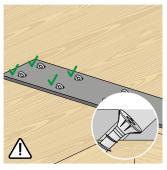
40

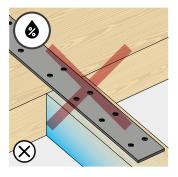
50

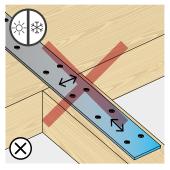
Im Allgemeinen wird empfohlen, den Verbinder in einem einzigen Arbeitsgang ohne Stopps und Neustarts einzusetzen, welche die Schraube überbeanspruchen könnten.

STAHL-HOLZ-ANWENDUNG

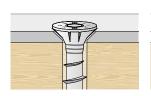

Keine Impuls-/Schlagschrauber verwenden.


Den korrekten Anzug sicherstellen. Möglichst Schrauber mit Drehmomentkontrolle verwenden, z. B. mittels TORQUE LIMITER. Wahlweise mit einem Drehmomentschlüssel anziehen.

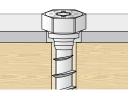

Nach der Montage können die Befestigungselemente mit einem Drehmomentschlüssel überprüft werden.


Nicht verbiegen.

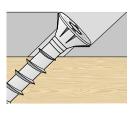
Die Montage muss so erfolgen, dass sich die Beanspruchungen gleichmäßig auf alle angebrachten Schrauben verteilen.

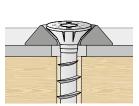


Eine Schrumpfung oder Quellverformung der Holzelemente aufgrund von Feuchtigkeitsschwankungen vermeiden.

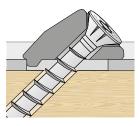


Maßänderungen des Metalls vermeiden, die z.B. durch starke Temperaturschwankungen auftreten.

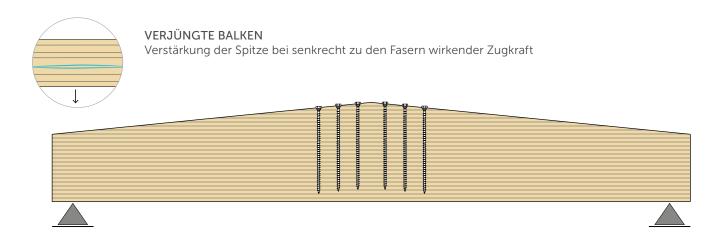

LOCHPLATTE

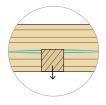

Versenktes Loch

Zylinderförmige Bohrung.

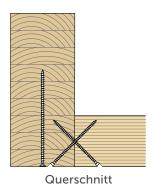


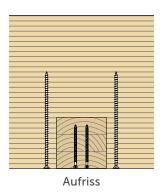
Geneigte versenkte Bohrung.

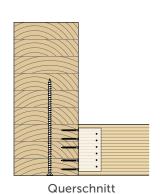

UNTERLEGSCHEIBEN

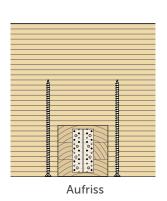

Zylindrische Bohrung mit Senkscheibe HUS.

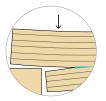
Langloch mit Unterlegscheibe VGU DE.

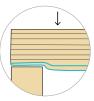

■ ANWENDUNGSBEISPIELE: VERSTÄRKUNGEN



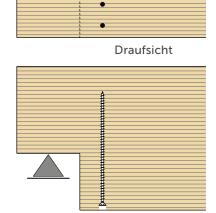



ANGEHÄNGTE LAST


Verstärkung bei senkrecht zu den Fasern wirkender Zugkraft

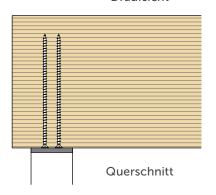


KERBE


Verstärkung bei senkrecht zu den Fasern wirkender Zugkraft

AUFLAGER

. .


Verstärkung bei senkrecht zu den Fasern wirkendem Druck

Querschnitt

Draufsicht

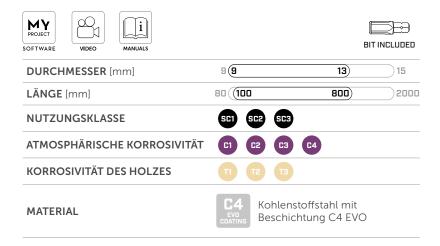
VGS EVO

VOLLGEWINDE-VERBINDER MIT SENK- ODER SECHSKANTKOPF

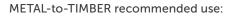
BESCHICHTUNG C4 EVO

Oberflächenbehandlung auf Epoxidharzbasis mit Aluminiumflakes. Rostfrei nach einem Test von 1440 Stunden nach Exposition in Salzsprühnebel entsprechend ISO 9227. Zur Verwendung im Außenbereich bei Nutzungsklasse 3 und Korrosionskategorie C4.

EINSATZ IN STATISCH TRAGENDEN VERBINDUNGEN


Für die Verwendung bei statisch tragenden Verbindungen zugelassen, bei denen die Schraube in jeder Richtung zur Faser beansprucht wird (0° - 90°). Die Sicherheit wurde durch zahlreiche Tests zertifiziert, bei denen Einschraubungen in jede Richtung ausgeführt wurden. Zyklische Prüfung SEISMIC-REV gemäß EN 12512. Senkkopf bis L = 600 mm, ideal für Platten oder verdeckte Verstärkungen.

AUTOKLAVIERTES HOLZ


Die C4 EVO Beschichtung ist nach dem US-Akzeptanzkriterium AC257 für die Verwendung im Freien mit Holz zertifiziert, das einer Behandlung vom Typ ACQ unterzogen wurde.

SPITZE 3 THORNS

Dank der Spitze 3 THORNS werden die Mindestabstände reduziert. Mehr Schrauben können auf geringerem Raum und größere Schrauben in kleineren Elementen verwendet werden.



ANWENDUNGSGEBIETE

- Holzwerkstoffplatten
- Massiv- und Brettschichtholz
- BSP und LVL
- Harthölzer
- ACQ-, CCA-behandelte Hölzer

KONSTRUKTIVE PERFORMANCE AUSSEN

Ideal zur Befestigung von Rahmenpaneelen und Fachwerkträgern (Rafter, Truss). Werte auch für Harthölzer geprüft, zertifiziert und berechnet. Ideal zur Befestigung von Holzelementen in aggressiven Außenumgebungen (C4).

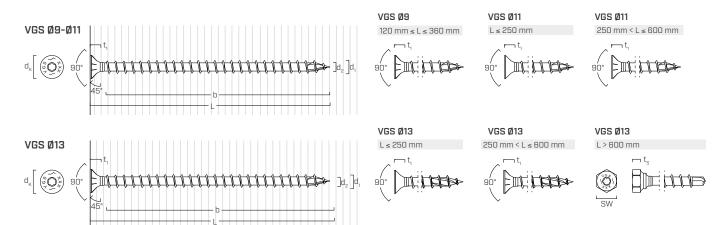
BSP & LVL

Werte auch für BSP und Harthölzer, sowie Furnierschichtholz (LVL) geprüft, zertifiziert und berechnet.

d_1	ARTNR.	L	b	Stk.	
[mm]		[mm]	[mm]		
	VGSEVO9120	120	110	25	
	VGSEVO9160	160	150	25	
	VGSEVO9200	200	190	25	
9 TX 40	VGSEVO9240	240	230	25	
17.40	VGSEVO9280	280	270	25	
	VGSEVO9320	320	310	25	
	VGSEVO9360	360	350	25	
	VGSEVO11100	100	90	25	
	VGSEVO11150	150	140	25	Mi Hara
	VGSEVO11200	200	190	25	
	VGSEVO11250	250	240	25	
11 TX 50	VGSEVO11300	300	290	25	
17.50	VGSEVO11350	350	340	25	
	VGSEVO11400	400	390	25	
	VGSEVO11500	500	490	25	
	VGSEVO11600	600	590	25	

d ₁ [mm]	ARTNR.	L [mm]	b [mm]	Stk.	
	VGSEVO13200	200	190	25	
13	VGSEVO13300	300	280	25	
TX 50	VGSEVO13400	400	380	25	Pm in
	VGSEVO13500	500	480	25	
	VGSEVO13600	600	580	25	
13	VGSEVO13700	700	680	25	
SW 19 TX 50	VGSEVO13800	800	780	25	

■ ZUGEHÖRIGE PRODUKTE



TORQUE LIMITERSeite 408

GEOMETRIE UND MECHANISCHE EIGENSCHAFTEN

Nenndurchmesser	d_1	[mm]	9	11	13	13
Länge	L	[mm]	-	-	≤ 600 mm	> 600 mm
Senkkopfdurchmesser	d_K	[mm]	16,00	19,30	22,00	-
Stärke Senkkopfschraube	t ₁	[mm]	6,50	8,20	9,40	-
Schlüsselweite	SW	-	-	-	-	SW 19
Stärke Sechskantkopf	t _s	[mm]	-	-	-	7,50
Kerndurchmesser	d_2	[mm]	5,90	6,60	8,00	8,00
Vorbohrdurchmesser ⁽¹⁾	$d_{V,S}$	[mm]	5,0	6,0	8,0	8,0
Vorbohrdurchmesser ⁽²⁾	$d_{V,H}$	[mm]	6,0	7,0	9,0	9,0
Charakteristischer Zugwiderstand	f _{tens,k}	[kN]	25,4	38,0	53,0	53,0
Charakteristisches Fließmoment	$M_{y,k}$	[Nm]	27,2	45,9	70,9	70,9
Charakteristische Fließgrenze	$f_{y,k}$	[N/mm ²]	1000	1000	1000	1000

⁽¹⁾ Vorbohrung gültig für Nadelholz (Softwood).

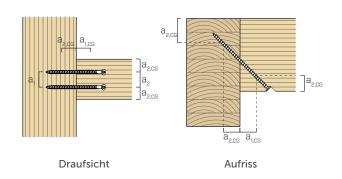
⁽²⁾ Vorbohrung gültig für Harthölzer (Hardwood) und für LVL aus Buchenholz.

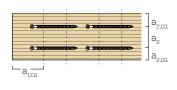
			Nadelholz (Softwood)	LVL aus Nadelholz (LVL Softwood)	LVL aus Buche, vorgebohrt (Beech LVL predrilled)
Charakteristischer Wert der Ausziehfestigkeit	$f_{ax,k}$	[N/mm ²]	11,7	15,0	29,0
Assoziierte Dichte	ρ_{a}	[kg/m³]	350	500	730
Rohdichte	$ ho_k$	[kg/m³]	≤ 440	410 ÷ 550	590 ÷ 750

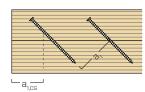
Für Anwendungen mit anderen Materialien siehe ETA-11/0030.

■ MINDESTABSTÄNDE DER SCHRAUBEN BEI AXIALER BEANSPRUCHUNG

Einsatz der Schrauben MIT und OHNE Vorbohrung

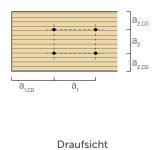

	Λ_	سم	۸.
V	N	r	D
	-1	-	40-0

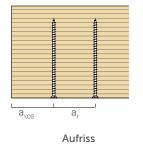

d_1	[mm]		9	11
a ₁	[mm]	5·d	45	55
a ₂	[mm]	5·d	45	55
a _{2,LIM}	[mm]	2,5·d	23	28
a _{1,CG}	[mm]	8·d	72	88
a _{2,CG}	[mm]	3·d	27	33
a _{CROSS}	[mm]	1,5·d	14	17


d_1	[mm]		13
a ₁	[mm]	5·d	65
a ₂	[mm]	5·d	65
a _{2,LIM}	[mm]	2,5·d	33
a _{1,CG}	[mm]	8∙d	104
a _{2,CG}	[mm]	3·d	39
a _{CROSS}	[mm]	1,5·d	20

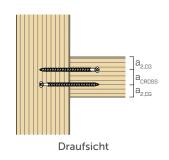
d_1	[mm]		13
a ₁	[mm]	5·d	65
a ₂	[mm]	5·d	65
a _{2,LIM}	[mm]	2,5·d	33
a _{1,CG}	[mm]	5·d	65
a _{2,CG}	[mm]	3·d	39
a _{CROSS}	[mm]	1,5·d	20

MIT EINEM WINKEL α ZUR FASER EINGEDREHTE SCHRAUBEN UNTER ZUG



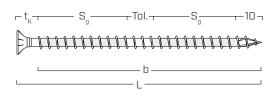


Draufsicht


Aufriss


MIT EINEM WINKEL α = 90° ZUR FASER EINGEDREHTE SCHRAUBEN

MIT EINEM WINKEL α ZUR FASER GEKREUZT EINGEDREHTE SCHRAUBEN



ANMERKUNGEN

- Die Mindestabstände entsprechen ETA-11/0030.
- Die Mindestabstände sind unabhängig vom Eindrehwinkel des Verbinders und vom Kraftwinkel zu den Fasern.
- Der axiale Abstand a $_2$ kann bis auf a $_{2,LIM}$ reduziert werden, wenn bei jedem Verbinder eine "Verbindungsfläche" von a $_1$ -a $_2$ = $25 \cdot d_1^{\ 2}$ beibehalten wird.
- Für Schrauben mit Spitze 3 THORNS und Self-drilling wurden die angegebenen Mindestabstände aus experimentellen Untersuchungen ermittelt; wahlweise $a_{1,CG}=10\cdot d$ und $a_{2,CG}=4\cdot d$ gemäß EN 1995:2014 anwenden.
- Für die Mindestabstände der Schrauben bei Abscheren siehe VGS auf S. 169.

NUTZGEWINDEBERECHNUNG

$$\mathbf{b} = \mathbf{S}_{g,tot} = L - t_K$$

$$S_q = (L - t_K - 10 \text{ mm} - \text{Tol.})/2$$

$$t_K = 10 \text{ mm (Senkkopf)}$$

 $t_K = 20 \text{ mm (Sechskantkopf)}$

verweist auf die gesamte Länge des Gewindeteils

verweist auf die halbe Gewindelänge abzgl. einer Verlegungstoleranz (Tol.) von 10 mm

		ZUGKRAFT / DRUCK											
			Vollständ	liger Gewindeau	ıszug		Partiell	er Gewindeaus	zug	Zugtragfähigkeit	Instabilität		
Geon	netrie			ε=90°	ε=0°			ε=90° ε=0°		Stahl	ε=90°		
L		S _{etot}	A		Ammunumum		A			→			
d_1	L	S _{g,tot}	A _{min}	$R_{ax,90,k}$	R _{ax,0,k}	Sg	A _{min}	$R_{ax,90,k}$	R _{ax,0,k}	R _{tens,k}	$R_{ki,90,k}$		
[mm]	[mm]	[mm]	[mm]	[kN]	[kN]	[mm]	[mm]	[kN]	[kN]	[kN]	[kN]		
9	120 160 200 240 280 320 360	110 150 190 230 270 310 350	130 170 210 250 290 330 370	12,50 17,05 21,59 26,14 30,68 35,23 39,78	3,75 5,11 6,48 7,84 9,21 10,57 11,93	45 65 85 105 125 145 165	65 85 105 125 145 165 185	5,11 7,39 9,66 11,93 14,21 16,48 18,75	1,53 2,22 2,90 3,58 4,26 4,94 5,63	25,40	17,25		
11	100 150 200 250 300 350 400 500 600	90 140 190 240 290 340 390 490 590	110 160 210 260 310 360 410 510 610	12,50 19,45 26,39 33,34 40,28 47,22 54,17 68,06 81,95	3,75 5,83 7,92 10,00 12,08 14,17 16,25 20,42 24,58	35 60 85 110 135 160 185 235 285	55 80 105 130 155 180 205 255 305	4,86 8,33 11,81 15,28 18,75 22,22 25,70 32,64 39,59	1,46 2,50 3,54 4,58 5,63 6,67 7,71 9,79 11,88	38,00	21,93		
13	200 300 400 500 600 700 800	190 280 380 480 580 680 780	210 310 410 510 610 710 810	31,19 45,96 62,38 78,79 95,21 111,62 128,04	9,36 13,79 18,71 23,64 28,56 33,49 38,41	85 130 180 230 280 330 380	105 150 200 250 300 350 400	13,95 21,34 29,55 37,75 45,96 54,17 62,38	4,19 6,40 8,86 11,33 13,79 16,25 18,71	53,00	32,69		

ANMERKUNGEN

- Die charakteristischen Gewindeauszugswerte wurden unter Berücksichtigung eines Winkels ϵ sowohl von 90° ($R_{ax,90,k}$) als auch 0° ($R_{ax,0,k}$) zwischen den Fasern des Holzelements und dem Verbinder berechnet.
- Die charakteristischen Kriechwerte wurden unter Berücksichtigung eines Winkels ϵ von 45° zwischen Fasern des Holzelements und dem Verbinder berechnet.
- $\bullet \quad \text{Die St\"{a}rken der Platten } (S_{\mbox{\scriptsize PLATE}}) \mbox{ sind die Mindestwerte f\"{u}r die Aufnahme des Schraubenkopfes}.$
- Die charakteristischen Holz-Holz-Scherfestigkeitswerte wurden unter Berücksichtigung eines Winkels ε sowohl von 90° (R_{V,90,k}) als auch 0° (R_{V,0,k}) zwischen den Fasern des zweiten Elements und dem Verbinder berechnet.
- Bei der Berechnung wurde eine Rohdichte der Holzelemente von ρ_k = 385 kg/m³ berücksichtigt. Für andere ρ_k -Werte können die aufgelisteten Festigkeitswerte (Auszug-, Druck-, Kriech- und Scherwerte) mithilfe des k_{dens}-Beiwerts umgerechnet werden.

 $R'_{ax,k} = k_{dens,ax} \cdot R_{ax,k}$

 $R'_{ki,k} = k_{dens,ki} \cdot R_{ki,k}$

 $R'_{V,k} = k_{dens,ax} \cdot R_{V,k}$

 $R'_{V,90,k} = k_{dens,V} \cdot R_{V,90,k}$

 $R'_{V,0,k} = k_{dens,V} \cdot R_{V,0,k}$

ρ _k [kg/m³]	350	380	385	405	425	430	440
C-GL	C24	C30	GL24h	GL26h	GL28h	GL30h	GL32h
k _{dens,ax}	0,92	0,98	1,00	1,04	1,08	1,09	1,11
k _{dens,ki}	0,97	0,99	1,00	1,00	1,01	1,02	1,02
k _{dens,v}	0,90	0,98	1,00	1,02	1,05	1,05	1,07

Die so ermittelten Festigkeitswerte können zugunsten der Sicherheit von denen abweichen, die sich aus einer genauen Berechnung ergeben.

			KRIECHBELASTUNG							;	SCHERWERT			
Geon	netrie		Н	olz-Holz			Sta	ıhl - Holz		Zugtragfähigkeit Stahl			Holz-Holz ε=90°	Holz-Holz ε=0°
		A			45°	S PLATE	→	45°	←	45°	A S _g			
d ₁	L	Sg	Α	B_{\min}	$R_{V,k}$	S _{PLATE}	S_g	A_{min}	$R_{V,k}$	R _{tens,45,k}	S_g	Α	R _{V,90,k}	R _{V,0,k}
[mm]	[mm]	[mm]	[mm]	[mm]	[kN]	[mm]	[mm]	[mm]	[kN]	[kN]	[mm]	[mm]	[mm]	[kN]
9	120 160 200 240 280 320 360 100 150 200 250 300 350 400 500 600	45 65 85 105 125 145 165 35 60 85 110 135 160 185 235 285	45 60 75 90 105 120 130 40 60 75 95 110 130 145 180	60 75 90 105 120 135 145 55 75 90 110 125 145 160 195	3,62 5,22 6,83 8,44 10,04 11,65 13,26 3,44 5,89 8,35 10,80 13,26 15,71 18,17 23,08	15	105 145 185 225 265 305 345 80 130 180 230 280 330 380 480	95 125 150 180 205 235 265 75 110 145 185 220 255 290 360	8,44 11,65 14,87 18,08 21,29 24,51 27,72 7,86 12,77 17,68 22,59 27,50 32,41 37,32 47,14	17,96	45 65 85 105 125 145 165 35 60 85 110 135 160 185 235 285	60 80 100 120 140 160 180 50 75 100 125 150 175 200 250 300	4,53 5,10 5,67 6,23 6,50 6,50 6,50 4,72 6,61 7,48 8,35 9,06 9,06 9,06	2,30 2,81 3,18 3,35 3,52 3,69 3,86 2,69 3,33 4,10 4,57 4,83 5,09 5,35 5,87
13	200 300 400 500 600 700 800	85 130 180 230 280 330 380	215 75 110 145 180 215 250 285	90 125 160 195 230 265 300	27,99 9,87 15,09 20,89 26,70 32,50 38,30 44,11	20	580 180 280 380 480 580	430 145 220 290 360 430	56,96 20,89 32,50 44,11 55,71 67,32	37,48	85 130 180 230 280 330 380	100 145 195 245 295 345 395	9,06 9,46 11,31 11,94 11,94 11,94 11,94	6,39 4,88 6,11 6,73 7,35 7,96 8,58 9,03

ALLGEMEINE GRUNDLAGEN

- Die charakteristischen Werte werden gemäß der Norm EN 1995:2014 und in Übereinstimmung mit ETA-11/0030 berechnet.
- Die bei der Planung berücksichtigte Zugfestigkeit des Verbinders entspricht dem kleineren Wert zwischen dem berücksichtigten Widerstand auf Holzseite (R_{ax,d}) und dem berücksichtigten Widerstand auf Stahlseite (R_{tens,d}).

$$R_{ax,d} = min \begin{cases} \frac{R_{ax,k} \cdot k_{mod}}{\gamma_{M}} \\ \frac{R_{tens,k}}{\gamma_{M}} \end{cases}$$

 Die bei der Planung berücksichtigte Druckfestigkeit des Verbinders entspricht dem kleineren Wert zwischen dem berücksichtigten Widerstand auf Holzseite (R_{ax,d}) und der berücksichtigten Tragfähigkeit auf Ausknicken (R_{ki,d}):

$$R_{ax,d} = min \left\{ \begin{array}{l} \frac{R_{ax,k} \cdot k_{mod}}{\gamma_{M}} \\ \frac{R_{ki,k}}{\gamma_{M1}} \end{array} \right.$$

 Die bei der Planung berücksichtigte Verschiebungsfestigkeit des Verbinders entspricht dem kleineren Wert zwischen der Festigkeit auf Holzseite (R_{V,d}) und der projizierten Festigkeit auf Stahlseite (R_{tens,45,d}).

$$R_{V,d} = min \begin{cases} \frac{R_{V,k} \cdot R_{mon}}{\gamma_{M}} \\ \frac{R_{tens,45,k}}{\gamma_{M2}} \end{cases}$$

• Die Scherfestigkeit des Verbinders wird aus dem charakteristischen Wert wie folgt berechnet:

$$R_{V,d} = \frac{R_{V,k} \cdot k_{mod}}{\gamma_M}$$

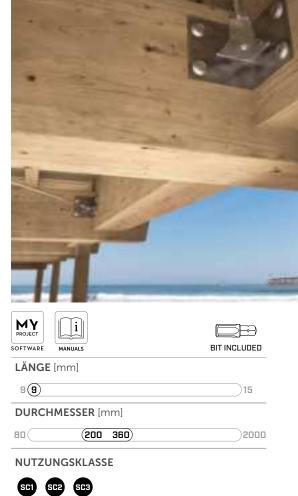
- Die Beiwerte γ_M und $k_{\mbox{mod}}$ sind aus der entsprechenden geltenden Norm zu übernehmen, die für die Berechnung verwendet wird.
- Bei den Werten für die mechanische Festigkeit und die Geometrie der Schrauben wurde auf die Angaben in der ETA-11/0030 Bezug genommen.
- Die Bemessung und Überprüfung der Holzelemente müssen getrennt durchaeführt werden.
- Für die Positionierung der Schrauben sind die Mindestabstände zu berücksichtigen.
- Die charakteristischen Gewindeauszugswerte wurden unter Berücksichtigung einer Einschraubtiefe $S_{g,tot}$ oder S_g berechnet; siehe Tabelle. Für Zwischenwerte S_g ist eine lineare Interpolation möglich.
- Die Scher- und Kriechwerte wurden mit dem Massenmittelpunkt des Verbinders in Nähe der Scherfläche berechnet.
- Die charakteristischen Scherfestigkeitswerte wurden bei eingeschraubten Schrauben ohne Vorbohrung bewertet. Mit vorgebohrten Schrauben können höhere Festigkeitswerte erreicht werden.
- Für weitere Berechnungen steht die kostenlose Software MyProject zur Verfügung (www.rothoblaas.de).
- Für Mindestabstände und statische Werte für gekreuzte Verbinder in Hauptträger-Nebenträger-Scherverbindungen siehe VGZ auf S. 130.
- Für Mindestabstände und statische Werte auf BSP und LVL siehe VGZ auf S. 134.

VGS EVO C5

SENKKOPFSCHRAUBE MIT VOLLGEWINDE

ATMOSPHÄRISCHE KORROSIVITÄT C5

Mehrschichtige Beschichtung, die Außenumgebungen mit C5-Klassifizierung nach ISO 9223 standhält. Salzsprühtest (Salt Spray Test - SST) mit einer Expositionszeit von über 3000 Stunden, durchgeführt an zuvor verschraubten und gelösten Schrauben in Douglasie.


SPITZE 3 THORNS

Dank der Spitze 3 THORNS werden die Mindestabstände reduziert. Mehr Schrauben können auf geringerem Raum und größere Schrauben in kleineren Elementen verwendet werden.

MAXIMALE FESTIGKEIT

Die richtige Schraube, wenn hohe mechanische Leistungen unter sehr ungünstigen Umweltbedingungen und bei Holzkorrosion gefordert werden. Aufgrund ihres Zylinderkopfs ist sie ideal bei verdeckten Verbindungen, Holzverbindungen und konstruktive Verstärkungen.

KORROSIVITÄT DES HOLZES

MATERIAL

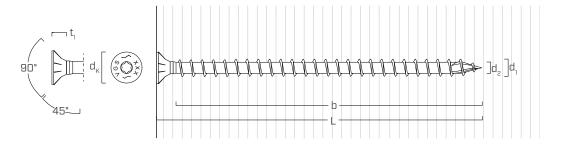
Kohlenstoffstahl mit Beschichtung C5 EVO, besonders hohe Korrosionsbeständigkeit

ANWENDUNGSGEBIETE

- Holzwerkstoffplatten
- Massiv- und Brettschichtholz
- BSP und LVL
- Harthölzer

ZUGEHÖRIGE PRODUKTE

d_1	ARTNR.	L	b	Stk.
[mm]		[mm]	[mm]	
	VGSEVO9200C5	200	190	25
	VGSEVO9240C5	240	230	25
9 TX 40	VGSEVO9280C5	280	270	25
17.40	VGSEVO9320C5	320	310	25
	VGSEVO9360C5	360	350	25



VGU EVO Seite 190

TORQUE LIMITER Seite 408

GEOMETRIE UND MECHANISCHE EIGENSCHAFTEN

GEOMETRIE

Nenndurchmesser	d_1	[mm]	9
Senkkopfdurchmesser	d_K	[mm]	16,00
Stärke Senkkopfschraube	t_1	[mm]	6,50
Kerndurchmesser	d_2	[mm]	5,90
Vorbohrdurchmesser ⁽¹⁾	$d_{V,S}$	[mm]	5,0
Vorbohrdurchmesser ⁽²⁾	$d_{V,H}$	[mm]	6,0

⁽¹⁾ Vorbohrung gültig für Nadelholz (Softwood).

MECHANISCHE KENNGRÖSSEN

Nenndurchmesser	d_1	[mm]	9
Zugfestigkeit	f _{tens,k}	[kN]	25,4
Fließmoment	$M_{y,k}$	[Nm]	27,2
Fließgrenze	$f_{y,k}$	[N/mm ²]	1000

			Nadelholz (Softwood)	LVL aus Nadelholz (LVL Softwood)	LVL aus Buche, vorgebohrt (Beech LVL predrilled)
Charakteristischer Wert der Ausziehfestigkeit	$f_{ax,k}$	[N/mm ²]	11,7	15,0	29,0
Assoziierte Dichte	ρ_{a}	[kg/m³]	350	500	730
Rohdichte	$ ho_k$	[kg/m ³]	≤ 440	410 ÷ 550	590 ÷ 750

Für Anwendungen mit anderen Materialien siehe ETA-11/0030.

STAHL-HOLZ-HYBRIDKONSTRUK-

VGS EVO C5 ist die ideale Lösung für Stahlkonstruktionen, bei denen hochfeste Ad-hoc-Verbindungen erforderlich sind, vor allem unter ungünstigen klimatischen Bedingungen, wie z. B. bei Meeresklima.

QUELLVERFORMUNG DES HOLZES

Die Verwendung von VGS EVO C5 in Kombination mit zwischengelegten Schichten aus Polymeren, wie XYLOFON WASHER, verleiht der Verbindung eine gewisse Anpassungsfähigkeit, um die Belastung durch das Schrumpfen/Quellen des Holzes zu verringern.

⁽²⁾ Vorbohrung gültig für Harthölzer (Hardwood) und für LVL aus Buchenholz.

VGS A4

SENKKOPFSCHRAUBE MIT VOLLGEWINDE

A4 | AISI316

Austenitischer Edelstahl A4 | AISI316 mit ausgezeichneter Korrosionsfestigkeit. Ideal für Meeresklima; Korrosivitätskategorie C5, und zum Einschrauben in die aggressivsten Hölzer der Klasse T5.

KORROSIVITÄT DES HOLZES T5

Für Anwendungen auf aggressiven Hölzern mit einem Säuregehalt (pH-Wert) unter 4, wie Eiche, Douglasie und Kastanie, und bei einer Holzfeuchtigkeit über 20 %.

METAL-to-TIMBER recommended use:

Austenitischer Edelstahl A4 | AISI316

Holzwerkstoffplatten

(CRC III)

- Massiv- und Brettschichtholz
- BSP und LVL
- ACQ-, CCA-behandelte Hölzer

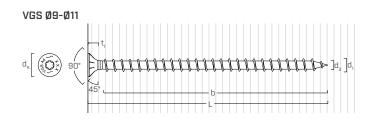
d ₁ [mm]	ARTNR.	L [mm]	b [mm]	Stk.	
	VGS9120A4	120	110	25	
	VGS9160A4	160	150	25	
	VGS9200A4	200	190	25	Find: propos
9 TX 40	VGS9240A4	240	230	25	
	VGS9280A4	280	270	25	
	VGS9320A4	320	310	25	
	VGS9360A4	360	350	25	
	VGS11100A4	100	90	25	
	VGS11150A4	150	140	25	
	VGS11200A4	200	190	25	First property
	VGS11250A4	250	240	25	
11 TX 50	VGS11300A4	300	290	25	
	VGS11350A4	350	340	25	
	VGS11400A4	400	390	25	
	VGS11500A4	500	490	25	-
	VGS11600A4	600	590	25	

■ ZUGEHÖRIGE PRODUKTE

HUS A4
GEDREHTE BEILAGSCHEIBE
Seite 68

JIG VGZ 45° SCHABLONEN FÜR 45° KANTEN

Seite 409



TORQUE LIMITER

DREHMOMENTBEGRENZER

Seite 408

GEOMETRIE

VGS Ø9	VGS Ø9
L ≤ 240 mm	240 mm < L ≤ 360 mm
90°	
VGS Ø11	VGS Ø11
L ≤ 250 mm	250 mm < L ≤ 600 mm

Nenndurchmesser	d_1	[mm]	9	11
Kopfdurchmesser	d_K	[mm]	16,00	19,30
Kopfstärke	t_1	[mm]	6,50	8,20
Kerndurchmesser	d_2	[mm]	5,90	6,60
Vorbohrdurchmesser ⁽¹⁾	$d_{V,S}$	[mm]	5,0	6,0

⁽¹⁾ Vorbohrung gültig für Nadelholz (Softwood).

Für die mechanischen Parameter siehe ETA-11/0030.

STAHL-HOLZ-HYBRIDKONSTRUK-TIONEN

Ideal für Stahlkonstruktionen, bei denen hochfeste kundenspezifische Verbindungen erforderlich sind, vor allem unter ungünstigen klimatischen Bedingungen, wie z.B. bei Meeresklima und bei säurehaltigen Hölzern.

QUELLVERFORMUNG DES HOLZES

Die Verwendung in Kombination mit zwischengelegten Schichten aus Polymeren, wie XYLOFON WASHER, verleiht der Verbindung eine gewisse Anpassungsfähigkeit, um die Belastung durch das Schrumpfen/ Quellen des Holzes zu verringern.

VGU

45° UNTERLEGSCHEIBE FÜR VGS

SICHERHEIT

Mit der Unterlegscheibe können VGS-Vollgewindeschrauben mit einer Neigung von 45° an Stahlplatten montiert werden. Unterlegscheibe mit CE-Kennzeichnung gemäß ETA-11/0030.

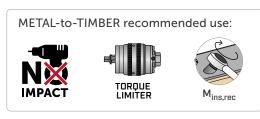
PRAKTISCH

Sicheren Halt und genaues Verlegen dank der ergonomischen Form. Für die verschieden starken Platten sind drei verschiedene Ausführungen der Unterlegscheiben, die mit VGS Durchmesser 9, 11 und 13 mm kompatibel sind, erhältlich.

Durch den Einsatz der Unterlegscheibe können an der Platte geneigte Schrauben verwendet werden. Üblicherweise zeit- und kostenaufwendige Senkbohrungen sind nicht erforderlich.

BESCHICHTUNG C4 EVO

Die Version EVO ist mit einer gegen atmosphärische Korrosivität widerstandsfähigen Oberflächenbehandlung beschichtet. Kompatibel mit VGS EVO, Durchmesser 9, 11 und 13 mm.



VGU DE

VGU EVO DE

ANWENDUNGSGEBIETE

- Holzwerkstoffplatten
- Massivholz
- Brettschichtholz
- BSP und LVL
- Harthölzer
- Stahlkonstruktionen
- Metallplatten und -profile

VGU - UNTERLEGSCHEIBE

ARTNR.	erhältlich in	Schraube [mm]	d _{V,S} [mm]	Stk.
VGU945DE	DE	VGS Ø9	5	25
VGU1145DE	DE	VGS Ø11	6	25
VGU1345DE	DE	VGS Ø13	8	25
VGU945	außer DE	VGS Ø9	5	25
VGU1145	außer DE	VGS Ø11	6	25
VGU1345	außer DE	VGS Ø13	8	25

 $d_{V,S}$ = Vorbohrdurchmesser (softwood)

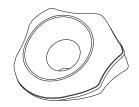
MONTAGELEHRE JIG VGU

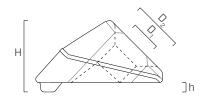
ARTNR.	Unterlegscheibe	d_h	d_V	Stk.
	[mm]	[mm]	[mm]	
JIGVGU945	VGU945	5,5	5	1
JIGVGU1145	VGU1145	6,5	6	1
JIGVGU1345	VGU1345	8,5	8	1

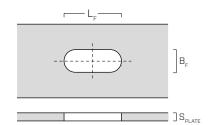
Für weitere Informationen siehe S 409.

VGU EVO - UNTERLEGSCHEIBE

ARTNR.	erhältlich	Schraube	$d_{V,S}$	Stk.
	in	[mm]	[mm]	
VGUEVO945DE	DE	VGSEVO Ø9	5	25
VGUEVO1145DE	DE	VGSEVO Ø11	6	25
VGUEVO1345DE	DE	VGSEVO Ø13	8	25
VGUEVO945	außer DE	VGSEVO Ø 9	5	25
VGUEVO1145	außer DE	VGSEVO Ø11	6	25
VGUEVO1345	außer DE	VGSEVO Ø13	8	25


 $d_{V,S}$ = Vorbohrdurchmesser (Softwood)


HSS BOHRER


ARTNR.	d_V	GL	SpL	Stk.
	[mm]	[mm]	[mm]	
F1599105	5	150	100	1
F1599106	6	150	100	1
F1599108	8	150	100	1

GEOMETRIE

Unterlegscheibe			VGU945DE VGUEVO945DE	VGU1145DE VGUEVO1145DE	VGU1345DE VGUEVO1345DE
Durchmesser Schraube VGS	d_1	[mm]	9,0	11,0	13,0
Vorbohrdurchmesser Schraube VGS ⁽¹⁾	$d_{V,S}$	[mm]	5,0	6,0	8,0
Innendurchmesser	D_1	[mm]	9,70	11,80	14,00
Außendurchmesser	D_2	[mm]	19,00	23,00	27,40
Zahnhöhe	h	[mm]	3,00	3,60	4,30
Gesamthöhe	Н	[mm]	23,00	28,00	33,00
Länge Langloch	L _F	[mm]	33,0 ÷ 34,0	41,0 ÷ 42,0	49,0 ÷ 50,0
Breite Langloch	B_F	[mm]	14,0 ÷ 15,0	17,0 ÷ 18,0	20,0 ÷ 21,0
Stärke der Stahlplatte ⁽²⁾	S _{PLATE}	[mm]	3,0 ÷ 12,0	4,0 ÷ 15,0	5,0 ÷ 15,0

⁽¹⁾ Vorbohrung gültig für Nadelholz (Softwood).
(2) Für größere als die aufgelisteten Stärken muss eine Ausfräsung im unteren Teil der Stahlplatte vorgenommen werden. Empfohlen wird eine Lochführung Ø 5 mm (Mindestlänge 50 mm) für Schrauben VGS mit Länge L > 300 mm.

MONTAGEHILFE

Mit der Montagelehre JIG VGU können problemlos Vorbohrungen mit einer Neigung von 45° ausgeführt werden, wodurch sich danach die VGS-Schrauben einfacher Einschrauben lassen. Es wird eine Vorbohrung von mindestens 20 mm empfohlen.

■ STATISCHE WERTE | STAHL-HOLZ-VERBINDUNG

			KRIECHBELASTUNG									
Geor	metrie		Holz							Stahl		
	L			S _{PLATE} A _{min}							Approximately 45°	
	VGS/V	GS EVO										
VGU DE	d_1	L	Sg	A _{min}	$R_{V,k}$	Sg	A _{min}	$R_{V,k}$	Sg	A _{min}	$R_{V,k}$	R _{tens,45,k}
VGU EVO DE	[mm]	[mm]	[mm]	[mm]	[kN]	-	[mm]	[kN]	[mm]		[kN]	[kN]
Sp	LATE			3 mm			8 mm			12 mm		-
J p	LAIE	100	75	75	6,03	70	70	5,63	65	65	5,22	
		120	95	85	7,63	90	85	7,23	85	80	6,83	
		140	115	100	9,24	110	100	8,84	105	95	8,44	
		160	135	115	10,85	130	110	10,45	125	110	10,04	
		180	155	130	12,46	150	125	12,05	145	125	11,65	
		200	175	145	14,06	170	140	13,66	165	135	13,26	
		220	195	160	15,67	190	155	15,27	185	150	14,87	
		240	215	170	17,28	210	170	16,88	205	165	16,47	
		260	235	185	18,88	230	185	18,48	225	180	18,08	
VGU945DE		280	255	200	20,49	250	195	20,09	245	195	19,69	
7407.352	9	300	275	215	22,10	270	210	21,70	265	205	21,29	17,96
VGUEVO945DE		320	295	230	23,71	290	225	23,30	285	220	22,90	
		340	315	245	25,31	310	240	24,91	305	235	24,51	
		360	335	255	26,92	330	255	26,52	325	250	26,12	
		380	355	270	28,53	350	265	28,13	345	265	27,72	
		400	375	285	30,13	370	280	29,73	365	280	29,33	
		440	415	315	33,35	410	310	32,95	405	305	32,54	
		480	455	340	36,56	450	340	36,16	445	335	35,76	
		520	495	370	39,78	490	365	39,38	485	365	38,97	
		560	535	400	42,99	530	395	42,59	525	390	42,19	
		600	575	425	46,21	570	425	45,80	565	420	45,40	
Sn	LATE			4 mm			10 mm			15 mm	 	_
	LATE	80	50	55	4,91	_	_	_	_	_	_	
		100	70	70	6,88	60	60	5,89	55	60	5,40	
		125	95	85	9,33	85	80	8,35	80	75	7,86	
		150	120	105	11,79	110	100	10,80	105	95	10,31	
		175	145	125	14,24	135	115	13,26	130	110	12,77	
		200	170	140	16,70	160	135	15,71	155	130	15,22	
		225	195	160	19,15	185	150	18,17	180	145	17,68	
		250	220	175	21,61	210	170	20,63	205	165	20,13	
		275	245	195	24,06	235	185	23,08	230	185	22,59	
		300	270	210	26,52	260	205	25,54	255	200	25,04	
VGU1145DE	11	325	295	230	28,97	285	220	27,99	280	220	27,50	26,87
VGUEVO1145DE		350	320	245	31,43	310	240	30,45	305	235	29,96	20,07
		375	345	265	33,88	335	255	32,90	330	255	32,41	
		400	370	280	36,34	360	275	35,36	355	270	34,87	
		425	395	300	38,79	385	290	37,81	380	290	37,32	
		450	420	315	41,25	410	310	40,27	405	305	39,78	
		475	445	335	43,71	435	330	42,72	430	325	42,23	
		500	470	350	46,16	460	345	45,18	455	340	44,69	
		525	495	370	48,62	485	365	47,63	480	360	47,14	
		550	520	390	51,07	510	380	50,09	505	375	49,60	
		575	545	405	53,53	535	400	52,55	530	395	52,05	
		600	570	425	55,98	560	415	55,00	555	410	54,51	

■ STATISCHE WERTE | STAHL-HOLZ-VERBINDUNG

Geor			Holz Stahl								Stahl	
						A _{min}	45°					45°
VGU DE	VGS/V	GS EVO										
VGU EVO DE	d ₁	L .	S _g	A _{min}	R _{V,k}	S _g	A _{min}	R _{V,k}	S _g	A _{min}	R _{V,k}	R _{tens,45,k}
	[mm]	[mm]	[mm]	[mm]	[kN]	[mm]	[mm]	[kN]	[mm]	[mm]	[kN]	[kN]
S _{PLATE}			5 m			10 r			15 n	nm	-	
		100	65	65	7,54	55	60	6,38	-	-	-	
		150	115	100	13,35	105	95	12,19	100	90	11,61	
		200	165	135	19,15	155	130	17,99	150	125	17,41	
		250	215	170	24,96	205	165	23,79	200	160	23,21	
VGU1345DE		300	265	205	30,76	255	200	29,60	250	195	29,02	
	13	350	315	245	36,56	305	235	35,40	300	230	34,82	37,48
VGUEVO1345DE		400	365	280	42,37	355	270	41,21	350	265	40,63	
		450	415	315	48,17	405	305	47,01	400	305	46,43	
		500	465	350	53,97	455	340	52,81	450	340	52,23	
		550	515	385	59,78	505	375	58,62	500	375	58,04	
		600	565	420	65,58	555	410	64,42	550	410	63,84	

ALLGEMEINE GRUNDLAGEN

- Die charakteristischen Werte werden gemäß der Norm EN 1995:2014 und in Übereinstimmung mit ETA-11/0030 berechnet.
- Die bei der Planung berücksichtigte Verschiebungsfestigkeit des Verbinders entspricht dem kleineren Wert zwischen der Festigkeit auf Holzseite (R_{V,d}) und der projizierten Festigkeit auf Stahlseite (R_{tens,45,d}).

$$R_{V,d} = min \begin{cases} \frac{R_{V,k} \cdot k_{mod}}{\gamma_M} \\ \frac{R_{tens,45,k}}{\gamma_{M2}} \end{cases}$$

- Die Beiwerte γ_M und k_{mod} sind aus der entsprechenden geltenden Norm zu übernehmen, die für die Berechnung verwendet wird.
- Bei den Werten für die mechanische Festigkeit und die Geometrie der Schrauben wurde auf die Angaben in der ETA-11/0030 Bezug genommen.
- Die Bemessung und Überprüfung der Holzelemente und Metallplatten müssen separat durchgeführt werden.
- Für die Positionierung der Schrauben sind die Mindestabstände zu berücksichtigen.
- Um die Verbindung korrekt auszuführen, muss der Kopf des Verbinders vollständig in die Unterlegscheibe eingedreht werden.
- Für die Berechnung der charakteristischen Kriechwerte wurde eine Einschraubtiefe ${\rm S_g}$ entsprechend der Tabelle berücksichtigt, wobei eine Mindesteinschraubtiefe von $4\cdot d_1$ angenommen wurde. Für Zwischenwerte ${\rm S_g}$ oder ${\rm S_{PLATE}}$ ist eine lineare Interpolation möglich.
- Die charakteristischen Kriechwerte wurden unter Berücksichtigung eines Winkels ε von 45° zwischen Fasern des Holzelements und dem Verbinder berechnet.
- Die Unterlegscheibe ist im Vergleich zur Festigkeit der Schraube VGS/ VGSEVO überdimensioniert.

- Bei der Berechnung wurde eine Rohdichte der Holzelemente von ρ_k = 385 $\mbox{kg/m}^3$ berücksichtigt.

Für andere ρ_k -Werte können die aufgelisteten Festigkeitswerte (Auszug-, Druck-, Kriech- und Scherwerte) mithilfe des k_{dens} -Beiwerts umgerechnet werden.

$$R'_{ax,k} = k_{dens,ax} \cdot R_{ax,k}$$

ρ _k [kg/m³]	350	380	385	405	425	430	440
C-GL	C24	C30	GL24h	GL26h	GL28h	GL30h	GL32h
k _{dens,ax}	0,92	0,98	1,00	1,04	1,08	1,09	1,11

Die so ermittelten Festigkeitswerte können zugunsten der Sicherheit von denen abweichen, die sich aus einer genauen Berechnung ergeben.

 Bei einer Verbindung mit geneigten Schrauben in Verbindung mit einer Metallplatte entspricht die effektive charakteristische Tragfähigkeit bei Verschiebung für eine Reihe:

$$R_{ef,V,k} = n_{ef,ax} \cdot R_{V,k}$$

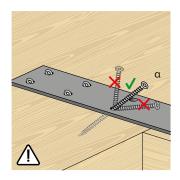
Der Wert von $n_{\rm ef}$ ist in der folgenden Tabelle abhängig von n (Anzahl der Schrauben in einer Reihe) aufgeführt.

n	2	3	4	5	6	7	8	9	10
n _{ef,ax}	1,87	2,70	3,60	4,50	5,40	6,30	7,20	8,10	9,00

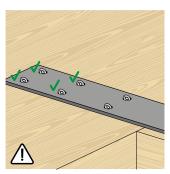
 Für die erhältlichen Größen der Schrauben VGS und VGS EVO (siehe Seiten 164 und 180.

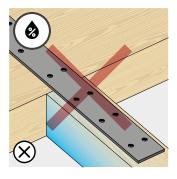
MONTAGEANLEITUNGEN

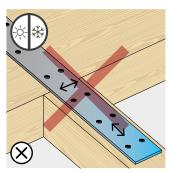
Keine Impuls-/Schlagschrauber verwenden.



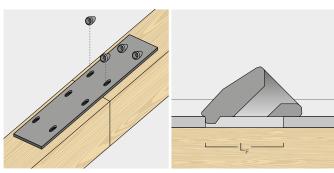
VGS	d₁ [mm]	M _{ins,rec} [Nm]
Ø9	9	20
Ø11 L < 400 mm	11	30
Ø11 L ≥ 400 mm	11	40
Ø13	13	50


Den korrekten Anzug sicherstellen. Möglichst Schrauber mit Drehmomentkontrolle verwenden, z. B. mittels TORQUE LIMITER. Wahlweise mit einem Drehmomentschlüssel anziehen.

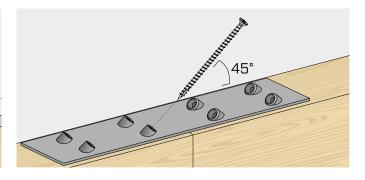

Nach der Montage können die Befestigungselemente mit einem Drehmomentschlüssel überprüft werden.


Nicht verbiegen.

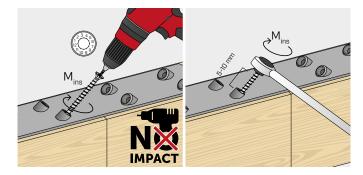
Die Montage muss so erfolgen, dass sich die Beanspruchungen gleichmäßig auf alle angebrachten Schrauben verteilen.

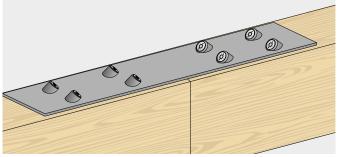


Eine Schrumpfung oder Quellverformung der Holzelemente aufgrund von Feuchtigkeitsschwankungen vermeiden.

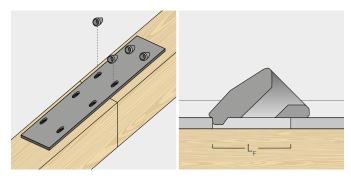


Maßänderungen des Metalls vermeiden, die z. B. durch starke Temperaturschwankungen auf-

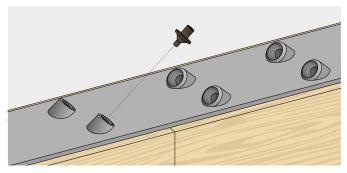

MONTAGE OHNE VORBOHRUNG


Die Metallplatte auf das Holz auflegen und die Unterlegscheiben in die entsprechenden Langlöcher einlegen.

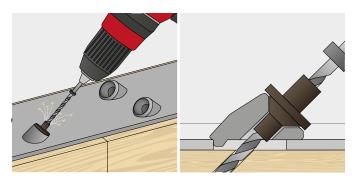
Die Schrauben anlegen und auf den Eindrehwinkel von 45° achten.

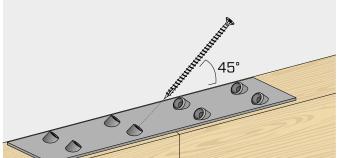


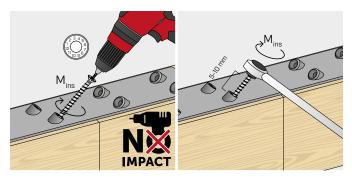
Beim Einschrauben den korrekten Anzug sicherstellen.

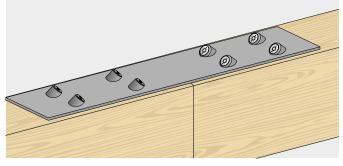


Diesen Vorgang bei allen Unterlegscheiben ausführen. Die Montage muss so erfolgen, dass sich die Beanspruchungen gleichmäßig auf alle verwendeten Unterlegscheiben verteilen.


MONTAGE MIT EINER MONTAGELEHRE FÜR VORBOHRUNGEN


Die Metallplatte auf das Holz auflegen und die Unterlegscheiben in die entsprechenden Langlöcher einlegen.


Die Montagelehre JIG VGU mit dem richtigen Durchmesser verwenden und in der Unterlegscheibe einsetzen.


Mit einem Spezialbohrer mithilfe der Montagelehre eine Vorbohrung/Lochführung vornehmen (mindestens 50 mm lang).

Die Schrauben anlegen und auf den Eindrehwinkel von 45° achten.

Beim Einschrauben den korrekten Anzug sicherstellen.

Diesen Vorgang bei allen Unterlegscheiben ausführen. Die Montage muss so erfolgen, dass sich die Beanspruchungen gleichmäßig auf alle verwendeten Unterlegscheiben verteilen.

RTR

ZERTIFIZIERUNG FÜR HOLZ UND BETON

Bauverbinder mit Zulassung für Anwendungen nach ETA-11/0030 und für Holz-Beton-Anwendungen nach ETA-22/0806.

SCHNELLES UND TROCKENES SYSTEM

Erhältlich in den Durchmessern 16 und 20 mm, zur Verstärkung und Verbindung großer Elemente. Das Holzgewinde ermöglicht die Anwendung ohne Harze oder Klebstoffe.

KONSTRUKTIVE VERSTÄRKUNGEN

Der Stahl mit hoher Zugfestigkeit ($f_{y,k}$ = 640 N/mm²) und die großen verfügbaren Abmessungen machen RTR zum idealen Produkt für konstruktive Verstärkungen.

GROSSE SPANNWEITEN

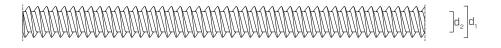
Das System, das für Anwendungen auf Elementen mit großen Spannweiten entwickelt wurde, ermöglicht aufgrund der beachtlichen Länge der Stangen eine schnelle und sichere Verstärkung und Verbindung bei jeder Balkengröße.

Ideale Montage im Werk.

ANWENDUNGSGEBIETE

- Holzwerkstoffplatten
- Massivholz
- Brettschichtholz
- BSP, LVL

ZUGEHÖRIGE PRODUKTE


d ₁ [mm]	ARTNR.	L [mm]	Stk.
16	RTR162200	2200	10
20	RTR202200	2200	5

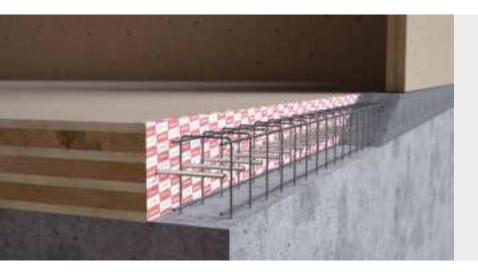
D 38 RLE 4-GANG BOHRSCHRAUBER

Seite 407

GEOMETRIE UND MECHANISCHE EIGENSCHAFTEN

Nenndurchmesser [mm] 16 20 d_1 d₂ 12,00 15,00 Kerndurchmesser [mm] 16,0 Vorbohrdurchmesser⁽¹⁾ $d_{V,S}$ [mm] 13,0 Charakteristischer Zugwiderstand f_{tens.k} [kN] 100,0 145,0 Charakteristisches Fließmoment [Nm] 200,0 350,0 $M_{v,k}$ Charakteristische Fließgrenze $f_{y,k}$ [N/mm²]640 640

MECHANISCHE KENNGRÖSSEN


			(Softwood)
Charakteristischer Wert der Ausziehfestigkeit	$f_{ax,k}$	[N/mm²]	9,0
Assoziierte Dichte	ρ_{a}	$[kg/m^3]$	350
Rohdichte	ρ_k	[kg/m ³]	≤ 440

Für Anwendungen mit anderen Materialien siehe ETA-11/0030.

SYSTEM TC FUSION FÜR HOLZ-BETON-ANWENDUNG

Nenndurchmesser	d_1	[mm]	16	20
Tangentiale Verbund- tragfähigkeit in Beton C25/30	f _{b,k}	[N/mm²]	9,0	-

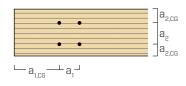
Für Anwendungen mit anderen Materialien siehe ETA-22/0806.

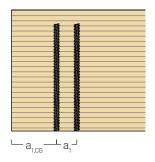
TC FUSION

Nadallaal-

Die ETA-22/0806-Zulassung des TC-FUSION-Systems ermöglicht die Verwendung der RTR-Gewindestangen zusammen mit den Bewehrungen im Beton, um die Plattendecken und den Stabilisierungskern mit einer kleinen zusätzlichen Schüttung zu verfestigen.

⁽¹⁾ Vorbohrung gültig für Nadelholz (Softwood).


MINDESTABSTÄNDE DER STANGEN BEI AXIALER BEANSPRUCHUNG



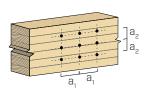
Stangenabstände VORGEBOHRT _

d_1	[mm]	16	20
a ₁	[mm] 5·d	80	100
a ₂	[mm] 5·d	80	100
a _{1,CG}	[mm] 10·d	160	200
a _{2,CG}	[mm] 4·d	64	80

 $d = d_1 = Nenndurchmesser Stange$

MINDESTABSTÄNDE DER STANGEN BEI ABSCHERBEANSPRUCHUNG

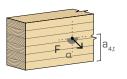
Stangenabstände **VORGEBOHRT**



d_1	[mm]		16	20
a ₁	[mm]	5·d	80	100
a ₂	[mm]	3·d	48	60
a _{3,t}	[mm]	12 ⋅d	192	240
a _{3,c}	[mm]	7·d	112	140
a _{4,t}	[mm]	3·d	48	60
a _{4,c}	[mm]	3·d	48	60

d_1	[mm]		16	20
a ₁	[mm]	4·d	64	80
a ₂	[mm]	4·d	64	80
a _{3,t}	[mm]	7·d	112	140
a _{3,c}	[mm]	7·d	112	140
a _{4,t}	[mm]	7·d	112	140
a _{4,c}	[mm]	3·d	48	60

 $d = d_1 = Nenndurchmesser Stange$


beanspruchtes Hirnholzende

unbeanspruchtes . Hirnholzende

beanspruchter Rand 0° < α < 180°

unbeanspruchter Rand 180° < α < 360°

ANMERKUNGEN

- Die Mindestabstände entsprechen ETA-11/0030.
- Die Mindestabstände der Stangen bei Abscherbeanspruchung werden gemäß der Norm EN 1995:2014 berechnet.
- Die Mindestabstände der Stangen mit axialer Beanspruchung sind unabhängig vom Eindrehwinkel des Verbinders und vom Kraftwinkel zu den Fasern.

 $[\]alpha$ = Winkel zwischen Kraft- und Faserrichtung

			ZUGKRAF	T / DRUCK		KRIECHBELASTUNG				
Geometrie		Gewinde ε=9		Zugtragfähigkeit Stahl	Instabilität ε=90°			Holz-Holz		Zugtragfähigkeit Stahl
d ₁	S _g A _{min}		↑	1	A B		A		45°	
d₁ [mm]	S _g [mm]	A _{min} [mm]	R _{ax,90,k} [kN]	R _{tens,k} [kN]	R _{ki,90,k} [kN]	S _g [mm]	A [mm]	B _{min} [mm]	R _{V,k} [kN]	R _{tens,45,k} [kN]
16	200 300 400 500 600 700 800 900 1000 1200	210 310 410 510 610 710 810 910 1010 1210	31,08 46,62 62,16 77,70 93,25 108,79 124,33 139,87 155,41 186,49	100	55,16	100 150 200 250 300 350 400 450 500 600	80 115 150 185 220 255 290 325 360 430	90 125 160 195 230 265 300 335 370 440	10,99 16,48 21,98 27,47 32,97 38,46 43,96 49,45 54,95 65,93	70,71
20	200 300 400 500 600 700 800 1000 1200 1400	210 310 410 510 610 710 810 1010 1210 1410	38,85 58,28 77,70 97,13 116,56 135,98 155,41 194,26 233,11 271,97	145	87,46	100 150 200 250 300 350 400 500 600 700	80 115 150 185 220 255 290 360 430 500	90 125 160 195 230 265 300 370 440 510	13,74 20,60 27,47 34,34 41,21 48,08 54,95 68,68 82,42 96,15	102,53

ε = Winkel zwischen Schraube und Faserrichtung

SCHERWERT Holz-Holz Geometrie ε=90° _ d. L Α d_1 \mathbf{S}_{g} $R_{V,90,k}$ [mm] [mm] [mm] [mm] [mm] 100 50 50 10.73 200 100 100 18,87 300 150 150 20,81 16 400 200 200 22,75 500 250 250 24,69 600 300 300 26,64 ≥ 800 <u>≥</u> 400 ≥ 400 29.96 100 50 50 12,89 200 100 100 25,78 300 150 150 28,91 400 200 200 31,34 20 500 250 250 33,77 600 300 300 36,19 800 400 400 41,05 > 1000 > 500 > 500 43,25

ANMERKUNGEN | HOLZ

- Die charakteristischen Gewindeauszugswerte wurden mit einem Winkel ϵ von 90° ($R_{ax,90,k}$) zwischen den Fasern des Holzelements und dem Verbinder be-
- Die charakteristischen Kriechwerte wurden unter Berücksichtigung eines Winkels avon 45° zwischen Fasern des Holzelements und dem Verbinder berechnet.
- Die charakteristischen Holz-Holz-Scherfestigkeitswerte wurden unter Berücksichtigung eines Winkels ϵ von 90° (R_{V,90,k}) zwischen Fasern des zweiten Elements und dem Verbinder berechnet.
- Bei der Berechnung wurde eine Rohdichte der Holzelemente von ρ_k = 385 kg/m³

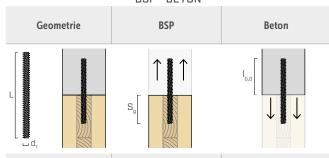
Für andere ρ_k -Werte können die aufgelisteten Festigkeitswerte (Auszug-, Druck-, Kriech- und Scherwerte) mithilfe des k_{dens}-Beiwerts umgerechnet werden.

$$R'_{ax,k} = k_{dens,ax} \cdot R_{ax,k}$$

$$R'_{ki,k} = k_{dens,ki} \cdot R_{ki,k}$$

$$R'_{V,k} = k_{dens,ax} \cdot R_{V,k}$$

$$R'$$
..... = K R


$R'_{V,90,k} = k_{dens,V} \cdot R_{V,90}$	ļ,k

ρ _k [kg/m³]	350	380	385	405	425	430	440
C-GL	C24	C30	GL24h	GL26h	GL28h	GL30h	GL32h
k _{dens,ax}	0,92	0,98	1,00	1,04	1,08	1,09	1,11
k _{dens,ki}	0,97	0,99	1,00	1,00	1,01	1,02	1,02
k _{dens,v}	0,90	0,98	1,00	1,02	1,05	1,05	1,07

Die so ermittelten Festigkeitswerte können zugunsten der Sicherheit von denen abweichen, die sich aus einer genauen Berechnung ergeben.

ALLGEMEINE GRUNDLAGEN auf Seite 200.

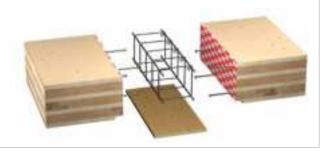
ZUGVERBINDUNG BSP - BETON

d₁ [mm]	L _{min} [mm]	S _g [mm]	R _{ax,0,k} [kN]	l _{b,d} [mm]	R _{ax,C,k} [kN]
	400	240	25,50	150	
	500	340	34,89	150	
	600	440	44,00	150	
	700	540	52,90	150	
	800	640	61,64	150	
16	900	740	70,25	150	67,86
	1000	840	78,74	150	
	1100	940	87,12	150	
	1200	1040	95,42	150	
	1300	1140	100,00	150	
	1400	1240	100,00	150	

ANMERKUNGEN | TC FUSION

- Die charakteristischen Werte sind nach ETA-22/0806.
- Die axiale Auszugsfestigkeit des "narrow-face"-Gewindes gilt unter Einhaltung der BSP-Mindeststärke von t_{CLT,min} = 10·d₁ und einer Mindestdurchzugstiefe der Schraube von t_{pen} = 10·d₁.
 Verbinder, die kürzer sind als der aufgelistete Wert, erfüllen nicht die Anforderungen an die Mindesteinschraubtiefe und sind nicht aufgeführt.
- Bei der Berechnung wurde die Betonklasse C25/30 berücksichtigt. Für Anwendungen mit anderen Materialien siehe ETA-22/0806.
- Die bei der Planung berücksichtigte Zugfestigkeit des Verbinders entspricht dem kleineren Wert zwischen dem berücksichtigten Widerstand auf Holzseite (R_{ax,d}) und dem berücksichtigten Widerstand auf Betonseite (R_{ax,C,d}).

$$R_{ax,d} = min \begin{cases} \frac{R_{ax,0,k} \cdot k_{mod}}{Y_M} \\ \frac{R_{ax,C,k}}{Y_{M,concrete}} \end{cases}$$


- Das Betonelement muss über geeignete Bewehrungsstäbe verfügen
- Die Verbinder müssen in einem Abstand von max. 300 mm angeordnet werden.

TC FUSION

HOLZ-BETON-VERBINDUNGSSYSTEM

Die Innovation der VGS-, VGZ- und RTR-Vollgewindeverbinder für Holz-Beton-Anwendungen.

Mehr erfahren auf S. 270

STATISCHE WERTE

ALLGEMEINE GRUNDLAGEN

- Die charakteristischen Werte werden gemäß der Norm EN 1995:2014 und in Übereinstimmung mit ETA-11/0030 berechnet.
- Die bei der Planung berücksichtigte Zugfestigkeit des Verbinders entspricht dem kleineren Wert zwischen dem berücksichtigten Widerstand auf Holzseite (R_{ax,d}) und dem berücksichtigten Widerstand auf Stahlseite (R_{tens,d}).

$$R_{ax,d} = min \begin{cases} \frac{R_{ax,k} \cdot k_{mod}}{\gamma_M} \\ \frac{R_{tens,k}}{\gamma_{M2}} \end{cases}$$

 Die bei der Planung berücksichtigte Druckfestigkeit des Verbinders entspricht dem kleineren Wert zwischen dem berücksichtigten Widerstand auf Holzseite (R_{ax.d}) und der berücksichtigten Tragfähigkeit auf Ausknicken (R_{ki.d}):

$$R_{ax,d} = min \begin{cases} \frac{R_{ax,k} \cdot k_{mox}}{\gamma_{M}} \\ \frac{R_{ki,k}}{\gamma_{M1}} \end{cases}$$

 Die bei der Planung berücksichtigte Verschiebungsfestigkeit des Verbinders entspricht dem kleineren Wert zwischen der Festigkeit auf Holzseite (R_{V,d}) und der projizierten Festigkeit auf Stahlseite (R_{tens,45,d}).

$$R_{V,d} = min \begin{cases} \frac{R_{V,k} \cdot k_{moo}}{\gamma_M} \\ \frac{R_{tens,45,k}}{\gamma_{M2}} \end{cases}$$

• Die Scherfestigkeit des Verbinders wird aus dem charakteristischen Wert wie folgt berechnet:

$$R_{V,d} = \frac{R_{V,k} \cdot k_{mod}}{\gamma_M}$$

- Die Beiwerte $\gamma_{\rm M}$ und $k_{\rm mod}$ sind aus der entsprechenden geltenden Norm zu übernehmen, die für die Berechnung verwendet wird.
- Bei den Werten für die mechanische Festigkeit und die Geometrie der Stangen wurde auf die Angaben in der ETA-11/0030 Bezug genommen.
- Die Bemessung und Überprüfung der Holzelemente müssen getrennt durchgeführt werden.
- Für die Positionierung der Stangen sind die Mindestabstände zu berücksichtigen.
- Die charakteristischen Gewindeauszugswerte wurden unter Berücksichtigung einer Einschraubtiefe $\mathbf{S_g}$ berechnet; siehe Tabelle. Für Zwischenwerte $\mathbf{S_g}$ ist eine lineare Interpolation möglich.

MONTAGEANLEITUNGEN

Für einen besseren Abschluss sollte ein Loch durch BORMAX gebohrt werden, in dem der Abdeckzapfen aus Holz aufgenommen werden kann.

Die Vorbohrung im Holzelement vornehmen und dabei darauf achten, dass sie gerade verläuft. Der Einsatz von COLUMN garantiert eine höhere Genauigkeit.

Die Gewindestange RTR auf die gewünschte Länge zuschneiden und sicherstellen, dass sie kleiner als die Tiefe der Vorbohrung ist.

Die Hülse (ATCS007 oder ATCS008) mit der Sicherheitskupplung (DUVSKU) an den Adapter montieren. Wahlweise kann auch ein einfacher Adapter (ATCS2010) verwendet werden.

Die Hülse in die Gewindestange stecken und den Adapter auf den Schraubendreher setzen.

Es empfiehlt sich die Verwendung des Handgriffs (DUD38SH) für eine bessere Kontrolle und Stabilität beim Einschrauben.

Bis auf die im Entwurf festgelegte Länge einschrauben. Es empfiehlt sich, den Wert für das Einschraubmoment auf 200 Nm (RTR 16) und 300 Nm (RTR 20) zu begrenzen.

Die Hülse von der Stange abschrauben.

Falls vorgesehen, einen TAP-Abdeckzapfen einsetzen, um die Gewindestange zu verbergen sowie eine bessere ästhetische Verarbeitung und den Feuerwiderstand zu gewährleisten.

ZUGEHÖRIGE PRODUKTE

VGS Seite 164

LEWISSeite 414

D 38 RLE Seite 407

COLUMN Seite 411

DGZ

DOPPELGEWINDESCHRAUBE FÜR DÄMMSTOFFE

FORTLAUFENDER DÄMMSTOFF

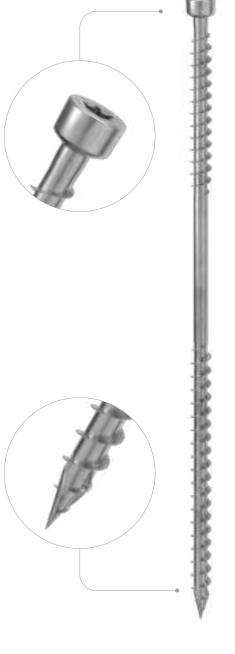
Erlaubt eine fortlaufende Befestigung ohne Unterbrechungen des Dämmpakets. Wärmebrücken werden entsprechend den Vorordnungen zur Energieeinsparung vermindert.

Zylinderkopf, ideal für eine verdeckt in die Leiste eingedrehte Schraube. Auch in der Ausführung mit großem Tellerkopf (DGT) und Senkkopf (DGS) zertifizierte Schraube.

ZERTIFIZIERUNG

Verbinder für harte und weiche Dämmstoffe zur Anwendung auf Dachflächen und an Fassaden mit CE-Kennzeichnung gemäß ETA-11/0030. Zwei Durchmesser (7 und 9 mm) erhältlich, um die Anzahl der Befestigungen zu optimieren.

MYPROJECT


Mit dem kostenlosen Software MyProject können individuelle Berechnungen und Berechnungsnachweise erstellt werden.

SPITZE 3 THORNS

Dank der Spitze 3 THORNS werden die Mindestabstände reduziert. Mehr Schrauben können auf geringerem Raum und größere Schrauben in kleineren Elementen verwendet werden.

Die Kosten und der Zeitaufwand für die Umsetzung des Projekts verringern sich.

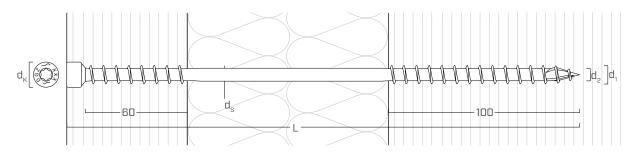
ANWENDUNGSGEBIETE

- Holzwerkstoffplatten
- Massivholz
- Brettschichtholz
- BSP, LVL
- veredelte Hölzer

WÄRMEBRÜCKEN

Dank des Doppelgewindes kann das Dämmpaket des Dachs durchgehend an der tragenden Konstruktion befestigt werden, wodurch Wärmebrücken begrenzt werden. Besondere Zertifizierung für die Befestigung harter und weicher Dämmstoffe.

BELÜFTETE FASSADEN


Auch für Fassadenleisten und veredelte Bauhölzer wie Furnierschichtholz (LVL) zertifiziert, getestet und berechnet.

d_1	ARTNR.	L	Stk.
[mm]		[mm]	
	DGZ7220	220	50
	DGZ7260	260	50
7 TX 30	DGZ7300	300	50
17.30	DGZ7340	340	50
	DGZ7380	380	50

ANMERKUNGEN: Auf Anfrage ist auch EVO Version erhältlich.

d_1	ARTNR.	L	Stk.
[mm]		[mm]	
	DGZ9240	240	50
	DGZ9280	280	50
	DGZ9320	320	50
9	DGZ9360	360	50
TX 40	DGZ9400	400	50
	DGZ9440	440	50
	DGZ9480	480	50
	DGZ9520	520	50

GEOMETRIE UND MECHANISCHE EIGENSCHAFTEN

GEOMETRIE

Nenndurchmesser	d_1	[mm]	7	9
Kopfdurchmesser	d_K	[mm]	9,50	11,50
Kerndurchmesser	d ₂	[mm]	4,60	5,90
Schaftdurchmesser	d _S	[mm]	5,00	6,50

MECHANISCHE KENNGRÖSSEN

Nenndurchmesser	d_1	[mm]	7	9
Zugfestigkeit	f _{tens,k}	[kN]	15,4	25,4
Fließmoment	$M_{y,k}$	[Nm]	14,2	27,2

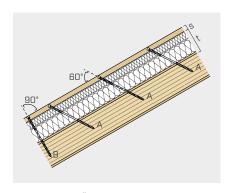
 $F\"{u}r\ die\ Knickfestigkeit\ der\ Schrauben\ abh\"{a}ngig\ von\ ihrer\ freien\ Einschraubtiefe\ siehe\ ETA-11/0030.$

			Nadelholz (Softwood)	LVL aus Nadelholz (LVL Softwood)
Charakteristischer Wert der Ausziehfestigkeit	f _{ax,k}	[N/mm²]	11,7	15,0
Assoziierte Dichte	ρ_{a}	[kg/m ³]	350	500
Rohdichte	$ ho_k$	[kg/m³]	≤ 440	410 ÷ 550

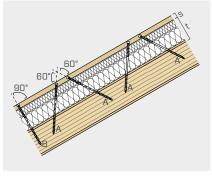
Für Anwendungen mit anderen Materialien siehe ETA-11/0030.

SCHRAUBENAUSWAHL

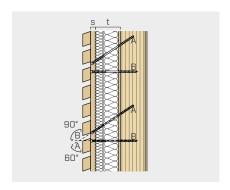
MINDESTLÄNGE SCHRAUBE DGZ Ø7


Stärke					Höhe	UK(*)				
Dämmung +	s = 30	0 mm	s = 40 mm		s = 50) mm	s = 6	0 mm	s = 80) mm
Dachschalung	Α	В	Α	В	Α	В	Α	В	Α	В
t	DGZ 60°	DGZ 90°								
[mm]	L _{min} [mm]	L _{min} [mm]	L _{min} [mm]	L _{min} [mm]	L _{min} [mm]	L _{min} [mm]	L _{min} [mm]	L _{min} [mm]	L _{min} [mm]	L _{min} [mm]
60	220	220	220	220	220	220	220	220	260	220
80	220	220	220	220	220	220	260	220	260	220
100	220	220	260	220	260	220	260	220	300	260
120	260	220	260	220	260	260	300	260	300	260
140	260	260	300	260	300	260	300	260	340	300
160	300	260	300	260	340	300	340	300	340	300
180	340	300	340	300	340	300	340	300	380	340
200	340	300	340	300	380	340	380	340	-	340
220	380	340	380	340	380	340	380	340	-	380
240	380	340	380	340	-	380	-	380	-	380
260	-	380	-	380	-	380	-	380	-	-
280	-	380	-	380	-	-	-	-	-	-

^(*) Mindestmaße der Latte: DGZ Ø7 mm: Basis/Höhe = 50/30 mm.


MINDESTLÄNGE SCHRAUBE DGZ Ø9

Stärke		Höhe UK ^(*)											
Dämmung +	s = 30) mm	s = 40	0 mm	s = 50	0 mm	s = 6	0 mm	s = 80) mm			
Dachschalung	Α	В	Α	В	Α	В	Α	В	Α	В			
t	DGZ 60°	DGZ 90°	DGZ 60°	DGZ 90°	DGZ 60°	DGZ 90°	DGZ 60°	DGZ 90°	DGZ 60°	DGZ 90°			
[mm]	L _{min} [mm]	L _{min} [mm]	L _{min} [mm]	L _{min} [mm]	L _{min} [mm]	L _{min} [mm]	L _{min} [mm]	L _{min} [mm]	L _{min} [mm]	L _{min} [mm]			
60	-	-	240	240	240	240	240	240	240	240			
80	-	-	240	240	240	240	240	240	280	240			
100	-	-	240	240	240	240	280	240	280	240			
120	-	-	280	240	280	240	280	240	320	280			
140	-	-	280	240	320	280	320	280	320	280			
160	-	-	320	280	320	280	320	280	360	320			
180	-	-	320	280	360	320	360	320	400	320			
200	-	-	360	320	360	320	400	320	400	360			
220	-	-	400	320	400	360	400	360	440	360			
240	-	-	400	360	400	360	440	360	440	400			
260	-	-	440	360	440	400	440	400	480	400			
280	-	-	440	400	480	400	480	400	480	440			
300	-	-	480	400	480	400	480	440	520	440			
320	-	-	520	440	520	440	520	480	520	480			
340	-	-	520	480	520	480	-	-	-	-			

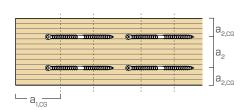

 $^{^{(*)}}$ Mindestmaße der Latte: DGZ Ø9 mm: Basis/Höhe = 60/40 mm.

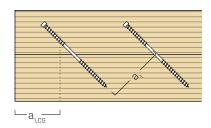
STARRER DÄMMSTOFF BEDACHUNG $\sigma_{(10\%)} \geq 50 \text{ kPa (EN826)}$

WEICHER DÄMMSTOFF BEDACHUNG $\sigma_{(10\%)}$ < 50 kPa (EN826)

FASSADENDÄMMUNG

HINWEIS: Prüfen, ob die Länge der Schraube mit der Größe des Holzbauelements kompatibel ist und die Spitze nicht aus der Unterkante austritt.


■ MINDESTABSTÄNDE DER SCHRAUBEN BEI AXIALER BEANSPRUCHUNG⁽¹⁾


(V)

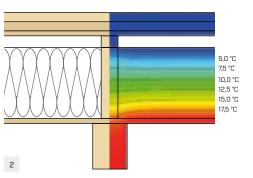
Einsatz der Schrauben MIT und OHNE Vorbohrung

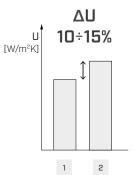
d_1	[mm]		7	9
a ₁	[mm]	5·d	35	45
a ₂	[mm]	5·d	35	45
$a_{1,CG}$	[mm]	8·d	56	72
a _{2,CG}	[mm]	3·d	21	27

 $d = d_1 = Nenndurchmesser Schraube$

ANMERKUNGEN:

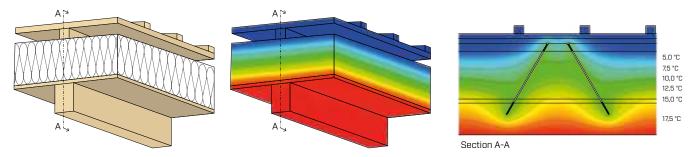
- (1) Gemäß ETA-11/0030 hängen die Mindestabstände für axial beanspruchte Verbinder nicht vom Eindrehwinkel des Verbinders und vom Kraftwinkel zu den Fasern ab.
- Für Schrauben mit Spitze 3 THORNS sind die angegebenen Mindestabstände aus experimentellen Untersuchungen ermittelt; wahlweise $a_{1,CG}=10\cdot d$ und $a_{2,CG}=4\cdot d$ gemäß EN 1995:2014 anwenden.


FORSCHUNG & ENTWICKLUNG


DÄMMSTOFF UND EINFLUSS DER WÄRMEBRÜCKEN

FORTLAUFENDER DÄMMSTOFF

5,0 °C 7,5 °C 10,0 °C 12,5 °C 17,5 °C


UNTERBROCHENE DÄMMUNG

Die Verwendung einer Aufsparrendämmung mit durchgängig verlegtem Dämmstoff ermöglicht, Wärmebrücken zu begrenzen. Wenn die Befestigung des Pakets starre Elemente innerhalb des Dämmstoffs erfordert, entsteht eine Verringerung der thermischen Leistung aufgrund einer Wärmebrücke, die sich über die gesamte Achse der zwischengesetzten Sparren erstreckt. Bei einer unterbrochenen Dämmung könnten außerdem während der Montage häufiger lokale Unterbrechungen zwischen den Elementen auftreten, was zu einer Erhöhung der Wärmebrücke führt.

BEFESTIGUNG EINER AUFSPARRENDÄMMUNG VON DURCHGÄNGIG VERLEGTEM DÄMMSTOFF MIT DGZ SCHRAUBEN

Die Verwendung der DGZ-Schraube ermöglicht die Montage einer Aufsparrendämmung mit durchgängig verlegtem Dämmstoff ohne Unterbrechungen.

In diesem Fall ist die Wärmebrücke einzig auf die Verbinder lokalisiert und konzentriert, sodass ihr Beitrag zur Wärmeleistung des Pakets unerheblich ist und diese somit aufrechterhalten bleibt.

Übermäßige Verankerungen oder falsche Anordnungen sind zu vermeiden, um die thermische Leistung des Pakets nicht zu beeinträchtigen.

Calculation performed by EURAC Research as part of MEZeroE project that has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 953157.

For more info www.mezeroe.eu

■ BERECHNUNGSBEISPIEL: BEFESTIGUNG EINER AUFSPARRENDÄMMUNG VON DURCHGÄNGIG VERLEGTEM DÄMMSTOFF MIT DGZ SCHRAUBEN

30% = 16,7°

5,00 m

 L_1

PROJEKTDATEN

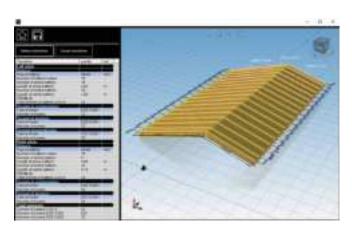
Dachlasten		
Dauerlast	g_k	0.45 kN/m^2
Schneelast	S	1,70 kN/m ²
Winddruck	W _e	0.30 kN/m^2
Windsog	We	-0,30 kN/m ²
Dachfirsthöhe	Z	8,00 m
Gebäudeabmessungen		
Gebäudelänge	L	11,50 m
Gebäudebreite	В	8,00 m
Geometrie der Bedachung		

DATEN DES DÄMMPAKETS

Neigung der Dachfläche Position des Dachfirst

Sparren GL24h	b₊x h₊	120 x 160 mm	Achsabstand	i	0.70 m
Dachschalung	S ₁	20,00 mm	7 GHSubstanta		0,7 0 111
Dachziegellatte	e _b	0,33 m			
Dämmstoff	S ₂	160,00 mm	Holzfaser (weich)	σ _(10%)	0,03 N/mm ²
Unterkonstruktionen C24	$b_L x h_L$	60 x 40 mm	Handelsübliche Länge	L _L	4,00 m

AUSWAHL DES VERBINDERS - OPTION 1 - DGZ Ø7


Schraube unter Zug	7 x 300 mm	Winkel 60°: 126 Stk.
Schraube unter Druck	7 x 300 mm	Winkel 60°: 126 Stk.
Senkrechte Schraube	7 x 260 mm	Winkel 90°: 72 Stk.

AUSWAHL DES VERBINDERS - OPTION 2 - DGZ Ø9

Schraube unter Zug	9 x 320 mm	Winkel 60°: 108 Stk.
Schraube unter Druck	9 x 320 mm	Winkel 60°: 108 Stk.
Senkrechte Schraube	9 x 280 mm	Winkel 90°: 36 Stk.

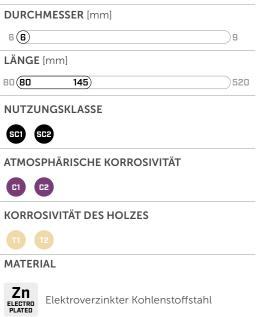
Schema für die Positionierung der Verbinder.

Aufmaß Dachlatten.

DRS

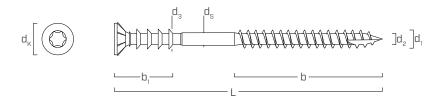
ABSTANDSSCHRAUBE HOLZ - HOLZ

DOPPELTES DIFFERENTIALGEWINDE


Die Geometrie des Unterkopfgewindes wurde speziell entwickelt, um einen Abstand zwischen den Anbauteilen zu schaffen und zu justieren.

HINTERLÜFTETE FASSADEN

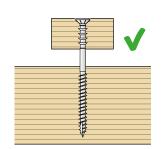
Das doppelte Differentialgewinde ist ideal, um die Position der Leisten an der Fassade zu justieren und die richtige senkrechte Lage zu schaffen. Ideal, um Täfelungen, Lattungen, Zwischendecken und Fußböden auszurichten.

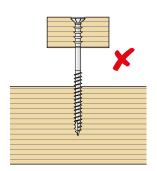


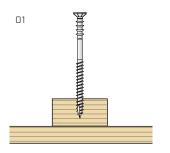
ANWENDUNGSGEBIETE

Da die Möglichkeit besteht, die Anbauteile aus Holz mit einem Abstand zueinander auszurichten, können vielseitige Befestigungssysteme schnell und präzise realisiert werden, ohne Zwischenelemente einfügen zu müssen.

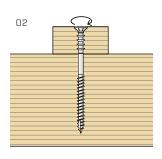
d ₁	ARTNR.	L	b	Stk.
[mm]		[mm]	[mm]	
	DRS680	80	40	100
6	DRS6100	100	60	100
TX 30	DRS6120	120	60	100
	DRS6145	145	60	100

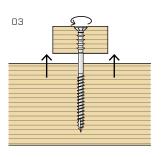

GEOMETRIE

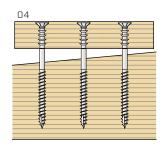



Nenndurchmesser	d_1	[mm]	6
Kopfdurchmesser	d_K	[mm]	12,00
Kerndurchmesser	d_2	[mm]	3,80
Schaftdurchmesser	d_S	[mm]	4,35
Durchmesser des Unterkopfgewindes	d_3	[mm]	6,80
Länge Kopf + Ringe	b_1	[mm]	24,0

MONTAGE


Die Schraubenlänge sollte so gewählt werden, dass das Gewinde vollständig im Holzträger eingeschraubt ist.




Die DRS Schraube positionieren.

Die Leiste befestigen, indem die Schraube so eingeschraubt wird, dass der Schraubenkopf bündig zum Holzelement verläuft.

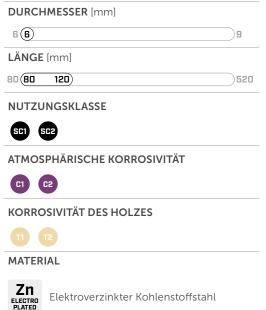
Die Schraube je nach gewünschtem Abstand wieder ein Stück herausschrauben.

Die anderen Schrauben auf die gleiche Weise justieren, um die Konstruktion korrekt auszurichten.

DRT

ABSTANDSSCHRAUBE HOLZ - MAUERWERK

DOPPELTES DIFFERENTIALGEWINDE

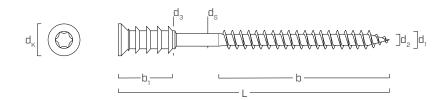

Die Geometrie des Unterkopfgewindes wurde speziell entwickelt, um einen Abstand zwischen den Anbauteilen zu schaffen und zu justieren.

BEFESTIGUNG AM MAUERWERK

Unterkopfgewinde mit größerem Durchmesser, um die Montage am Mauerwerk mithilfe von Kunststoffdübeln zu ermöglichen.

ANWENDUNGSGEBIETE

Das doppelte Differentialgewinde ist ideal, um die Position der Holzelemente an Trägern im Mauerwerk (mithilfe eines Kunststoffdübels) zu regulieren und die richtige senkrechte Lage zu schaffen. Ideal, um Wandvertäfelungen, Zwischendecken und Bodenbeläge anzugleichen.

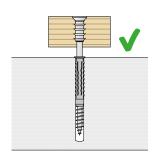

d ₁ [mm]	ARTNR.	L [mm]	b [mm]	Stk.
	DRT680	80	50	100
6 TX 30	DRT6100	100	70	100
	DRT6120	120	70	100

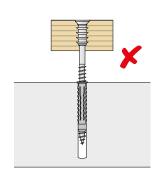
NYLONDÜBEL NDK GL

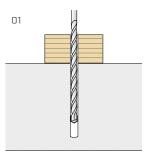
ARTNR.	d_0	L	Stk.
	[mm]	[mm]	
NDKG840	8	40	100

Für Befestigungen an Beton oder an Mauerwerk wird die Verwendung von Nylondübeln NDK GL empfohlen.

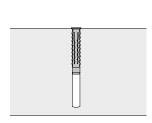
GEOMETRIE

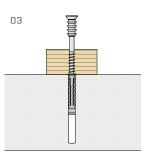


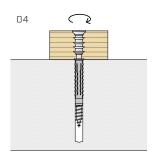

Nenndurchmesser	d_1	[mm]	6
Kopfdurchmesser	d_K	[mm]	12,00
Kerndurchmesser	d_2	[mm]	3,90
Schaftdurchmesser	d_S	[mm]	4,35
Durchmesser des Unterkopfgewindes	d_3	[mm]	9,50
Länge Kopf + Ringe	b_1	[mm]	20,0
Bohrdurchmesser Beton/Mauerwerk	d_V	[mm]	8,0

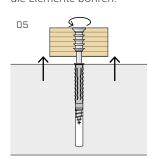

MONTAGE

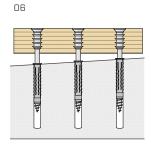
Die Schraubenlänge sollte so gewählt werden, dass das Gewinde vollständig im Träger aus Beton/Mauerwerk eingeschraubt ist.


02




Ein Loch mit einem Durchmesser von $\rm d_V = 8.0~mm$ in die Elemente bohren.


Den Nylondübel NDK GL in den Träger einsetzen.


Die DRT Schraube ansetzen.

Die Leiste befestigen, indem die Schraube so eingeschraubt wird, dass der Schraubenkopf bündig zum Holzelement verläuft.

Die Schraube je nach gewünschtem Abstand wieder ein Stück herausschrauben.

Die anderen Schrauben auf die gleiche Weise justieren, um die Konstruktion korrekt auszurichten.

HBS PLATE

SCHRAUBE MIT KEGELUNTERKOPF FÜR PLATTEN

NEUE GEOMETRIE

Der innere Kerndurchmesser der Schrauben \emptyset 8, \emptyset 10 und \emptyset 12 mm wurde erhöht, um eine höhere Leistung bei Anwendungen an dicken Platten zu gewährleisten. Bei den Stahl-Holz-Verbindungen ermöglicht die neue Geometrie eine Steigerung der Festigkeit von über 15 %.

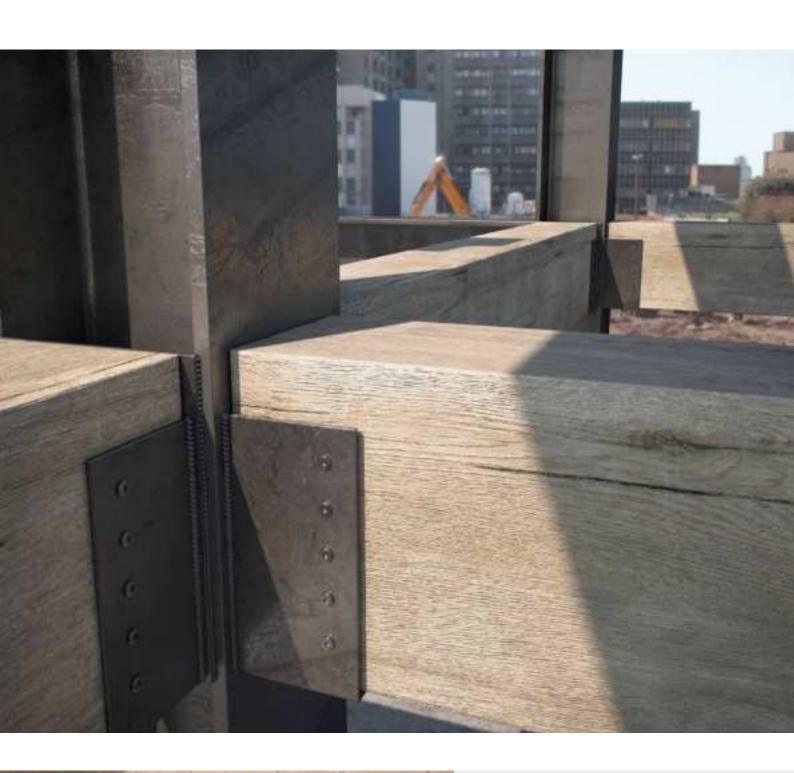
BEFESTIGUNG VON PLATTEN

Durch den Kegelunterkopf entsteht ein Steckverbindungseffekt mit der runden Bohrung der Platte und garantiert ausgezeichnete statische Leistungen. Die kantenlose Geometrie des Kopfes reduziert die Spannungskonzentrationspunkte und verleiht der Schraube Festigkeit.

SPITZE 3 THORNS

Dank der Spitze 3 THORNS werden die Mindestabstände reduziert. Mehr Schrauben können auf geringerem Raum und größere Schrauben in kleineren Elementen verwendet werden.

Die Kosten und der Zeitaufwand für die Umsetzung des Projekts verringern sich.



ANWENDUNGSGEBIETE

- Holzwerkstoffplatten
- Massivholz
- Brettschichtholz
- BSP und LVL
- Harthölzer

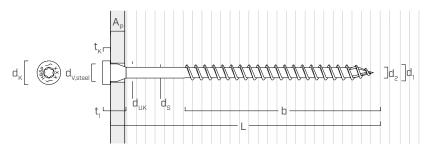
MULTISTOREY

Ideal für Stahl - Holz-Verbindungen mit großen, passgenauen Platten (customized plates) beim Bau mehrstöckiger Holzgebäude.

TITAN

Werte auch zur Befestigung von Rothoblaas-Verbindern getestet, zertifiziert und berechnet.

d_1	ARTNR.	L	b	A_{P}	Stk.
[mm]		[mm]	[mm]	[mm]	
	HBSPL860	60	52	1÷10	100
	HBSPL880	80	55	1÷15	100
8	HBSPL8100	100	75	1÷15	100
TX 40	HBSPL8120	120	95	1÷15	100
	HBSPL8140	140	110	1÷20	100
	HBSPL8160	160	130	1÷20	100
	HBSPL1080	80	60	1÷10	50
	HBSPL10100	100	75	1÷15	50
10	HBSPL10120	120	95	1÷15	50
TX 40	HBSPL10140	140	110	1÷20	50
	HBSPL10160	160	130	1÷20	50
	HBSPL10180	180	150	1÷20	50


d_1	ARTNR.	L	b	A_{P}	Stk.
[mm]		[mm]	[mm]	[mm]	
	HBSPL12100	100	75	1÷15	25
	HBSPL12120	120	90	1÷20	25
12	HBSPL12140	140	110	1÷20	25
TX 50	HBSPL12160	160	120	1÷30	25
	HBSPL12180	180	140	1÷30	25
	HBSPL12200	200	160	1÷30	25

■ ZUGEHÖRIGE PRODUKTE

TORQUE LIMITER DREHMOMENTBEGRENZER Seite 408

GEOMETRIE UND MECHANISCHE EIGENSCHAFTEN

GEOMETRIE

Nenndurchmesser	d_1	[mm]	8	10	12
Kopfdurchmesser	d_K	[mm]	13,50	16,50	18,50
Kerndurchmesser	d_2	[mm]	5,90	6,60	7,30
Schaftdurchmesser	d_S	[mm]	6,30	7,20	8,55
Kopfstärke	t_1	[mm]	13,50	16,50	19,50
Stärke Beilagscheibe	t_K	[mm]	4,50	5,00	5,50
Unterkopfdurchmesser	d_UK	[mm]	10,00	12,00	13,00
Bohrdurchmesser auf Stahlplatte	$d_{V,steel}$	[mm]	11,0	13,0	14,0
Vorbohrdurchmesser ⁽¹⁾	$d_{V,S}$	[mm]	5,0	6,0	7,0
Vorbohrdurchmesser ⁽²⁾	$d_{V,H}$	[mm]	6,0	7,0	8,0

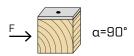
MECHANISCHE KENNGRÖSSEN

Nenndurchmesser	d_1	[mm]	8	10	12
Zugfestigkeit	$f_{tens,k}$	[kN]	32,0	40,0	48,0
Fließmoment	$M_{y,k}$	[Nm]	33,4	45,0	55,0

Die mechanischen Parameter werden analytisch ermittelt und durch experimentelle Prüfungen validiert (HBS PLATE Ø 10 und Ø 12) .

			Nadelholz (Softwood)	LVL aus Nadelholz (LVL Softwood)	LVL aus Buche, vorgebohrt (Beech LVL predrilled)
Charakteristischer Wert der Ausziehfestigkeit	f _{ax,k}	[N/mm ²]	11,7	15,0	29,0
Charakteristischer Durchziehparameter	f _{head,k}	[N/mm ²]	10,5	20,0	-
Assoziierte Dichte	ρ_{a}	[kg/m ³]	350	500	730
Rohdichte	ρ_k	[kg/m³]	≤ 440	410 ÷ 550	590 ÷ 750

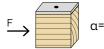
Für Anwendungen mit anderen Materialien siehe ETA-11/0030.


⁽¹⁾ Vorbohrung gültig für Nadelholz (Softwood).
(2) Vorbohrung gültig für Harthölzer (Hardwood) und für LVL aus Buchenholz.

MINDESTABSTÄNDE DER SCHRAUBEN BEI ABSCHERBEANSPRUCHUNG | STAHL-HOLZ

Schraubenabstände OHNE Vorbohrung

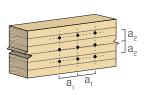
 $\rho_k \leq 420 \; kg/m^3$


d_1	[mm]		8	10	12
a ₁	[mm]	10·d·0,7	56	70	84
a ₂	[mm]	5·d·0,7	28	35	42
a _{3,t}	[mm]	15 ⋅d	120	150	180
a _{3,c}	[mm]	10 ⋅d	80	100	120
a _{4,t}	[mm]	5·d	40	50	60
a _{4,c}	[mm]	5·d	40	50	60

d_1	[mm]		8	10	12
a ₁	[mm]	5·d·0,7	28	35	42
a ₂	[mm]	5·d·0,7	28	35	42
a _{3,t}	[mm]	10 ⋅d	80	100	120
a _{3,c}	[mm]	10·d	80	100	120
a _{4,t}	[mm]	10 ⋅d	80	100	120
a _{4,c}	[mm]	5·d	40	50	60


 $d = d_1 = Nenndurchmesser Schraube$

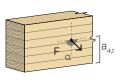
Schraubenabstände VORGEBOHRT



d_1	[mm]		8	10	12
a ₁	[mm]	5·d·0,7	28	35	42
a ₂	[mm]	3·d·0,7	17	21	25
a _{3,t}	[mm]	12·d	96	120	144
a _{3,c}	[mm]	7·d	56	70	84
a _{4,t}	[mm]	3·d	24	30	36
a _{4,c}	[mm]	3·d	24	30	36

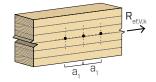
d_1	[mm]		8	10	12
a ₁	[mm]	4·d·0,7	22	28	34
a ₂	[mm]	4·d·0,7	22	28	34
a _{3,t}	[mm]	7·d	56	70	84
a _{3,c}	[mm]	7·d	56	70	84
a _{4,t}	[mm]	7·d	56	70	84
a _{4,c}	[mm]	3·d	24	30	36

 $d = d_1 = Nenndurchmesser Schraube$


beanspruchtes . Hirnholzende -90° < α < 90°

unbeanspruchtes . Hirnholzende 90° < α < 270°

beanspruchter Rand 0° < α < 180°


unbeanspruchter Rand

ANMERKUNGEN auf Seite 221.

WIRKSAME SCHRAUBENANZAHL BEI ABSCHERBEANSPRUCHUNG

Die Tragfähigkeit einer Verbindung mit mehreren Schrauben vom gleichen Typ und mit gleicher Größe kann kleiner sein als die Summe der Tragfähigkeiten des einzelnen Verbindungsmittels. Für eine Reihe von n parallel zur Faserrichtung des Holzes in einem Abstand a₁ angeordnete Schrauben entspricht die effektive charakteristische Tragfähigkeit:

$$R_{ef,V,k} = n_{ef} \cdot R_{V,k}$$

Der Wert von n_{ef} ist in der folgenden Tabelle abhängig von n und a₁ aufgeführt.

		a ₁ (*)										
		4·d	5·d	6·d	7⋅d	8·d	9·d	10 ⋅d	11-d	12·d	13·d	≥ 14·d
	2	1,41	1,48	1,55	1,62	1,68	1,74	1,80	1,85	1,90	1,95	2,00
n	3	1,73	1,86	2,01	2,16	2,28	2,41	2,54	2,65	2,76	2,88	3,00
	4	2,00	2,19	2,41	2,64	2,83	3,03	3,25	3,42	3,61	3,80	4,00
	5	2,24	2,49	2,77	3,09	3,34	3,62	3,93	4,17	4,43	4,71	5,00

^(*)Für Zwischenwerte a_1 ist eine lineare Interpolation möglich.

α = Winkel zwischen Kraft- und Faserrichtung

α = Winkel zwischen Kraft- und Faserrichtung

■ STATISCHE WERTE | STAHL-HOLZ

			SCHERWERT								
	Geometrie		Stahl - Holz dünne Platte ε=90°			Stahl - Holz mittlere Platte ε=90°		Stahl - Holz dicke Platte ε=90°			
				→	⊐S _{PLAT}	→	SPLATE	Splate			
d ₁	L	b		R _{V,90,k}			R _{V,90,k}		R _{V,90,k}		
[mm]	[mm] S _{PLATE}	[mm]	2 mm	[kN] 3 mm	4 mm	5 mm	N] 6 mm	8 mm	[kN] 10 mm	12 mm	
	60	52	3,14	3,09	3,03	3,64	4,13	5,12	5,12	5,12	
	80	55	4,22	4,17	4,11	4,72	5,22	6,21	6,21	6,21	
	100	75	5,31	5,25	5,20	5,68	6,04	6,78	6,78	6,78	
8	120	95	5,86	5,86	5,86	6,22	6,57	7,29	7,29	7,29	
	140	110	6,24	6,24	6,24	6,59	6,95	7,67	7,67	7,67	
	160	130	6,74	6,74	6,74	7,10	7,46	8,17	8,17	8,17	
	S _{PLATE}		3 mm	4 mm	5 mm	6 mm	8 mm	10 mm	12 mm	16 mm	
	80	60	4,87	4,81	4,75	5,42	6,50	7,58	7,58	7,58	
	100	75	6,14	6,08	6,01	6,61	7,56	8,50	8,50	8,50	
	120	95	7,34	7,34	7,28	7,70	8,42	9,14	9,14	9,14	
10	140	110	7,81	7,81	7,81	8,17	8,89	9,61	9,61	9,61	
	160	130	8,44	8,44	8,44	8,80	9,52	10,24	10,24	10,24	
	180	150	8,68	8,68	8,68	9,12	10,00	10,87	10,87	10,87	
	S _{PLATE}		4 mm	5 mm	6 mm	8 mm	10 mm	12 mm	16 mm	20 mm	
	100	75	6,90	6,83	6,76	7,96	9,02	10,07	10,07	10,07	
	120	90	8,34	8,27	8,20	9,11	9,87	10,64	10,64	10,64	
40	140	110	9,28	9,28	9,28	9,99	10,69	11,40	11,40	11,40	
12	160	120	9,66	9,66	9,66	10,37	11,07	11,78	11,78	11,78	
	180	140	10,23	10,23	10,23	11,00	11,77	12,54	12,54	12,54	
	200	160	10,23	10,23	10,23	11,25	12,27	13,29	13,29	13,29	

 $[\]epsilon$ = Winkel zwischen Schraube und Faserrichtung

■ STATISCHE WERTE | STAHL-HOLZ

			SCHERWERT								
	Geometrie			Stahl - Holz dünne Platte ε=0°		mittler	- Holz e Platte :0°	Stahl - Holz dicke Platte ε=0°			
			□ □ S _{PLATE}				S _{PLATE}	S _{PLATE}			
d ₁	L	b		R _{V,0,k}			7,0,k		R _{V,0,k}		
[mm]	[mm] S _{PLATE}	[mm]	2 mm	[kN] 3 mm	4 mm	5 mm	N] 6 mm	8 mm	[kN] 10 mm	12 mm	
	60	52	1,26	1,23	1,21	1,54	1,82	2,38	2,38	2,38	
	80	55	1,69	1,67	1,65	1,94	2,19	2,70	2,70	2,70	
	100	75	2,12	2,10	2,08	2,39	2,65	3,18	3,18	3,18	
8	120	95	2,56	2,53	2,51	2,84	3,13	3,70	3,70	3,70	
	140	110	2,99	2,97	2,95	3,22	3,46	3,93	3,93	3,93	
	160	130	3,17	3,17	3,17	3,40	3,62	4,08	4,08	4,08	
	S _{PLATE}		3 mm	4 mm	5 mm	6 mm	8 mm	10 mm	12 mm	16 mm	
	80	60	1,95	1,92	1,90	2,22	2,77	3,32	3,32	3,32	
	100	75	2,46	2,43	2,41	2,73	3,28	3,83	3,83	3,83	
10	120	95	2,96	2,94	2,91	3,26	3,84	4,43	4,43	4,43	
10	140	110	3,47	3,44	3,42	3,76	4,34	4,92	4,92	4,92	
	160	130	3,97	3,95	3,92	4,20	4,66	5,11	5,11	5,11	
	180	150	4,17	4,17	4,17	4,39	4,85	5,30	5,30	5,30	
	S _{PLATE}		4 mm	5 mm	6 mm	8 mm	10 mm	12 mm	16 mm	20 mm	
	100	75	2,76	2,73	2,70	3,31	3,86	4,40	4,40	4,40	
	120	90	3,34	3,31	3,28	3,90	4,47	5,03	5,03	5,03	
12	140	110	3,91	3,88	3,85	4,53	5,14	5,76	5,76	5,76	
12	160	120	4,49	4,46	4,43	4,97	5,45	5,94	5,94	5,94	
	180	140	4,83	4,83	4,83	5,27	5,72	6,16	6,16	6,16	
	200	160	5,05	5,05	5,05	5,50	5,95	6,39	6,39	6,39	

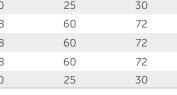
 $[\]epsilon$ = Winkel zwischen Schraube und Faserrichtung

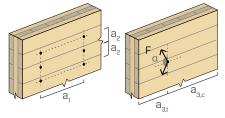
					SCHERWER	Т			ZUGKI	RÄFTE	
	Geon	netrie		Holz-Holz ε=90°	Holz-Holz ε=0°		kstoffplatte- Holz	Gewindeauszug ε=90°	Gewindeauszug ε=0°	Kopfdurchzug	Zugtragfähigkeit Stahl
	d ₁		A		—————————————————————————————————————	Span	←				↑
d ₁ [mm]	L [mm]	b [mm]	A [mm]	R_{V,90,k} [kN]	R _{V,0,k} [kN]	S _{PAN} [mm]	R _{V,k} [kN]	R _{ax,90,k} [kN]	R_{ax,0,k} [kN]	R _{head,k} [kN]	R _{tens,k} [kN]
8	60 80 100 120 140 160 80	52 55 75 95 110 130 60	8 25 25 25 30 30	1,62 2,83 2,83 2,83 2,93 2,93 3,16	1,35 1,70 2,13 2,33 2,42 2,42 2,07	22	2,40 2,94 2,94 2,94 2,94 2,94 3,76	4,85 5,56 7,58 9,60 11,11 13,13 7,58	1,45 1,67 2,27 2,88 3,33 3,94 2,27	2,07 2,07 2,07 2,07 2,07 2,07 3,09	32,00
10	100 120 140 160 180	75 95 110 130 150	25 25 30 30 30	3,65 3,65 3,75 3,75 3,75	2,59 3,01 3,11 3,11 3,11	25	3,76 3,76 3,76 3,76 3,76	9,47 12,00 13,89 16,42 18,94	2,84 3,60 4,17 4,92 5,68	3,09 3,09 3,09 3,09 3,09	40,00
12	100 120 140 160 180 200	75 90 110 120 140 160	25 30 30 40 40 40	4,34 4,45 4,45 4,77 4,77	2,99 3,54 3,70 4,00 4,00 4,00	25	4,39 4,39 4,39 4,39 4,39 4,39	11,36 13,64 16,67 18,18 21,21 24,24	3,41 4,09 5,00 5,45 6,36 7,27	3,88 3,88 3,88 3,88 3,88 3,88	48,00

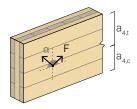
 $[\]epsilon$ = Winkel zwischen Schraube und Faserrichtung

						SCHE	RWERT				ZUGKF	RÄFTE
	Geometrie			Stahl-BSP lateral face							Gewindeauszug lateral face	Zugtragfähigkeit Stahl
								S _{PLATE}				↑ ↑ ↑ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
d ₁	L	b					,90,k				R _{ax,90,k}	R _{tens,k}
[mm]	[mm] S _{PLATE}	[mm]	2 mm	3 mm	4 mm	5 mm	[N] 6 mm	8 mm	10 mm	12 mm	[kN] -	[kN] -
	60	52	2,85	2,81	2,76	3,33	3,80	4,75	4,75	4,75	4,49	
	80	55	3,84	3,79	3,74	4,31	4,78	5,72	5,72	5,72	5,15	
	100	75	4,82	4,77	4,72	5,22	5,62	6,42	6,42	6,42	7,02	
8	120	95	5,52	5,52	5,52	5,86	6,20	6,89	6,89	6,89	8,89	32,00
	140	110	5,87	5,87	5,87	6,21	6,55	7,24	7,24	7,24	10,30	
	160	130	6,34	6,34	6,34	6,68	7,02	7,70	7,70	7,70	12,17	
	S _{PLATE}		3 mm	4 mm	5 mm	6 mm	8 mm	10 mm	12 mm	16 mm	-	-
	80	60	4,43	4,37	4,32	4,94	5,97	7,00	7,00	7,00	7,02	
	100	75	5,58	5,52	5,47	6,07	7,06	8,05	8,05	8,05	8,78	
10	120	95	6,73	6,67	6,62	7,11	7,87	8,63	8,63	8,63	11,12	40,00
10	140	110	7,36	7,36	7,36	7,70	8,38	9,07	9,07	9,07	12,87	40,00
	160	130	7,94	7,94	7,94	8,28	8,97	9,65	9,65	9,65	15,21	
	180	150	8,28	8,28	8,28	8,67	9,45	10,24	10,24	10,24	17,55	
	S _{PLATE}		4 mm	5 mm	6 mm	8 mm	10 mm	12 mm	16 mm	20 mm	-	-
	100	75	6,28	6,21	6,14	7,36	8,44	9,53	9,53	9,53	10,53	
	120	90	7,58	7,52	7,45	8,41	9,23	10,05	10,05	10,05	12,64	
12	140	110	8,74	8,74	8,74	9,41	10,08	10,76	10,76	10,76	15,44	48,00
12	160	120	9,09	9,09	9,09	9,76	10,43	11,11	11,11	11,11	16,85	48,00
	180	140	9,75	9,75	9,75	10,44	11,12	11,81	11,81	11,81	19,66	
	200	160	9,75	9,75	9,75	10,67	11,59	12,51	12,51	12,51	22,46	

■ MINDESTABSTÄNDE DER SCHRAUBEN BEI SCHERBEANSPRUCHUNG UND AXIALER BEANSPRUCHUNG | BSP



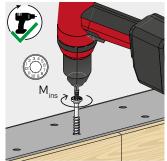

Schraubenabstände OHNE Vorbohrung



lateral face

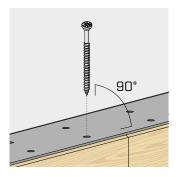
d_1	[mm]		8	10	12
a ₁	[mm]	4·d	32	40	48
a ₂	[mm]	2,5·d	20	25	30
a _{3,t}	[mm]	6·d	48	60	72
a _{3,c}	[mm]	6·d	48	60	72
a _{4,t}	[mm]	6·d	48	60	72
a _{4,c}	[mm]	2,5·d	20	25	30

ANM. und ALLGEMEINE GRUNDLAGEN auf Seite 221.

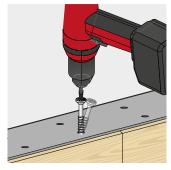

 $d = d_1 = Nenndurchmesser Schraube$

MONTAGE

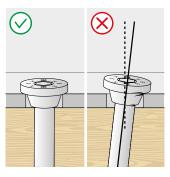
Keine Impuls-/Schlagschrauber verwenden.

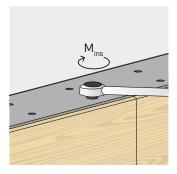


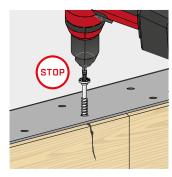
M_{ins} M_{ins}

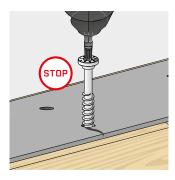

HBSPL	d ₁	M _{ins,rec}
	[mm]	[Nm]
Ø8	8	18
Ø10	10	25
Ø12	12	40

Den korrekten Anzug sicherstellen.

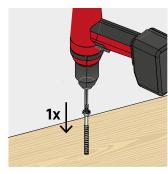

Möglichst Schrauber mit Drehmomentkontrolle verwenden, z. B. mittels TORQUE LIMITER. Wahlweise mit einem Drehmomentschlüssel anziehen.


Auf den Eindrehwinkel achten. Für sehr präzise Neigungen empfiehlt sich die Verwendung von Lochführungen oder Vorbohrungen.

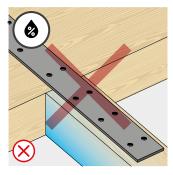

Nicht verbiegen.

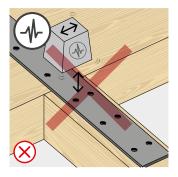

Vollständigen Kontakt zwischen gesamter Schraubenkopffläche und Metallelement sicherstellen.

Nach der Montage können die Befestigungselemente mit einem Drehmomentschlüssel überprüft werden.


Bei erkennbaren Beschädigungen an der Befestigung oder am Holz die Montage unterbrechen.


Die Montage bei erkennbaren Beschädigungen an der Befestigung oder an den Metallplatten unterbrechen.


Schraubenkopf nicht in das Holz einhämmern.


Schrauben in nur einem Durchgang montieren.

Unbeabsichtigte Beanspruchungen während der Montage vermeiden.

Verbindung schützen, Feuchtigkeitsschwankungen sowie Schrumpfungs- und Quellverformungsphänomene des Holzes vermeiden.

Nicht für dynamische Belastungen verwenden.

Größenveränderungen des Metalls vermeiden.

STATISCHE WERTE

ALLGEMEINE GRUNDLAGEN

- Die charakteristischen Werte werden gemäß der Norm EN 1995:2014 und in Übereinstimmung mit ETA-11/0030 berechnet.
- Die Bemessungswerte werden aus den charakteristischen Werten wie folgt berechnet:

$$R_d = \frac{R_k \cdot k_{mod}}{\gamma_M}$$

Die Beiwerte γ_M und $k_{\mbox{mod}}$ sind aus der entsprechenden geltenden Norm zu übernehmen, die für die Berechnung verwendet wird.

 Die bei der Planung berücksichtigte Zugfestigkeit des Verbinders entspricht dem kleineren Wert zwischen dem berücksichtigten Widerstand auf Holzseite (R_{ax,d}) und dem berücksichtigten Widerstand auf Stahlseite (R_{tens,d}).

$$R_{ax,d} = min \begin{cases} \frac{R_{ax,k} \cdot k_{mod}}{\gamma_M} \\ \frac{R_{tens,k}}{\gamma_{M2}} \end{cases}$$

- Bei den Werten für die mechanische Festigkeit und die Geometrie der Schrauben wurde auf die Angaben in der ETA-11/0030 Bezug genommen.
- Die Bemessung und Überprüfung der Holzelemente und Metallplatten müssen separat durchgeführt werden.
- Für die Positionierung der Schrauben sind die Mindestabstände zu berücksichtigen.
- Die charakteristischen Scherfestigkeitswerte wurden bei eingeschraubten Schrauben ohne Vorbohrung bewertet. Mit vorgebohrten Schrauben können höhere Festigkeitswerte erreicht werden.
- Die Scherfestigkeitswerte wurden unter Berücksichtigung des vollständig in das zweite Element eingedrehten Gewindeteils berechnet.
- Die charakteristischen Scherfestigkeitswerte werden für Platten mit einer Stärke = S_{PLATE} bewertet, wobei auf eine dünne (S_{PLATE} ≤ 0,5 d₁), eine mittlere (0,5 d₁ < S_{PLATE} < d₁) oder eine dicke Platte (S_{PLATE} ≥ d₁) Bezug genommen wurde.
- Bei kombinierten Scher- und Zugbeanspruchungen muss folgender Nachweis erbracht sein:

$$\left(\frac{F_{v,d}}{R_{v,d}}\right)^2 + \left(\frac{F_{ax,d}}{R_{ax,d}}\right)^2 \le 1$$

- Bei Stahl-Holz-Verbindungen ist in Bezug auf den Abreiß- oder Durchzugswiderstand des Schraubenkopfes für gewöhnlich die Zugfestigkeit des Stahls ausschlaggebend.
- Die charakteristischen Gewindeauszugswerte wurden unter Berücksichtigung einer Einschraubtiefe b berechnet.
- Bei Stahl-Holz-Verbindungen mit dickem Blech müssen die Auswirkungen der Verformung des Holzes berechnet und die Verbinder gemäß den Montageanleitungen eingebaut werden.
- Die aufgelisteten Werte werden unter Berücksichtigung der Parameter für die mechanische Festigkeit der Schrauben HBS PLATE Ø 10 und Ø 12 bewertet, die analytisch ermittelt und durch experimentelle Prüfungen validiert wurden.
- Für weitere Berechnungen steht die kostenlose Software MyProject zur Verfügung (www.rothoblaas.de).

ANMERKUNGEN | HOLZ

- Die charakteristischen Holz-Holz-Scherfestigkeitswerte wurden unter Berücksichtigung eines Winkels ε sowohl von 90° (R_{V,90,k}) als auch 0° (R_{V,0,k}) zwischen den Fasern des zweiten Elements und dem Verbinder berechnet.
- Die charakteristischen Gewindeauszugswerte wurden unter Berücksichtigung eines Winkels ϵ sowohl von 90° ($R_{ax,90,k}$) als auch 0° ($R_{ax,0,k}$) zwischen Fasern und dem Verbinder berechnet.
- * Bei der Berechnung wurde eine Rohdichte der Holzelemente von ρ_k = 385 $\mbox{kg/m}^3$ berücksichtigt.

Für andere ρ_{k} -Werte können die aufgelisteten Festigkeiten mithilfe des k_{dens} -Beiwerts umgerechnet werden.

$$R'_{V,k} = k_{dens,v} \cdot R_{V,k}$$

$$R'_{ax,k} = k_{dens,ax} \cdot R_{ax,k}$$

$$R'_{head,k} = k_{dens,ax} \cdot R_{head,k}$$

ρ _k [kg/m³]	350	380	385	405	425	430	440
C-GL	C24	C30	GL24h	GL26h	GL28h	GL30h	GL32h
k _{dens,v}	0,90	0,98	1,00	1,02	1,05	1,05	1,07
k _{dens,ax}	0,92	0,98	1,00	1,04	1,08	1,09	1,11

Die so ermittelten Festigkeitswerte können zugunsten der Sicherheit von denen abweichen, die sich aus einer genauen Berechnung ergeben.

ANMERKUNGEN | BSP

- Die charakteristischen Werte entsprechen den nationalen Spezifikationen ÖNORM EN 1995 - Annex K.
- Bei der Berechnung wurde eine Rohdichte der BSP-Elemente von ρ_k = 350 kg/m³ berücksichtigt.
- $\qquad \bullet \quad \text{Die charakteristischen Scherfestigkeitswerte berechnen sich unter Berücksichtigung der minimalen Eindringtiefe der Schraube von <math>4\cdot d_1.$
- Der charakteristische Scherfestigkeitswert ist unabhängig von der Faserrichtung der äußeren Holzschicht der BSP-Platte.

MINDESTABSTÄNDE

ANMERKUNGEN | HOLZ

- Die Mindestabstände werden gemäß der Normen EN 1995:2014 und in Übereinstimmung mit ETA-11/0030 berechnet.
- Bei Holz-Holz-Verbindungen müssen die Mindestabstände (a₁, a₂) mit einem Koeffizienten von 1,5 multipliziert werden.
- Bei Verbindungen von Elementen aus Douglasienholz (Pseudotsuga menziesii) müssen die Mindestabstände und die minimalen, parallelen Abstände zur Faser mit dem Koeffizienten 1,5 multipliziert werden.
- Der Abstand a_1 , aufgelistet für Schrauben mit Spitze 3 THORNS, eingeschraubt ohne Vorbohrung in Holzelemente mit Dichte $\rho_k \le 420~kg/m^3$ und

Winkel zwischen Kraft- und Faserrichtung α = 0°, wurde auf der Grundlage experimenteller Untersuchungen mit 10-d angenommen; wahlweise können 12-d gemäß EN 1995:2014 übernommen werden.

ANMERKUNGEN | BSP

- Die Mindestabstände sind gemäß ETA-11/0030 und sind gültig, falls keine anderen Angaben in den technischen Unterlagen der BSP-Bretter angegeben sind.
- Die Mindestabstände gelten für die Mindestdicke BSP $t_{CLT,min}$ = 10 d1.
- Die Mindestabstände für die Anwendung auf "narrow face" sind verfügbar auf Seite 39.

Theorie, Praxis und Versuchsreihen: Unsere Erfahrung in Ihren Händen.

Zum Download SMARTBOOK SCHRAUBEN.

I HBS PLATE EVO

SCHRAUBE MIT KEGELUNTERKOPF

BESCHICHTUNG C4 EVO

HBS PLATE Ausführung EVO für Stahl-Holz-Verbindungen im Außenbereich. Die Korrosivitätskategorie (C4) wurde vom Research Institutes of Sweden - RISE geprüft. Für Anwendungen auf Hölzern mit einem Säuregehalt (pH-Wert) von mehr als 4, wie Tanne, Lärche und Kiefer, geeignete Beschichtung (siehe S. 314).

NEUE GEOMETRIE

Der innere Kerndurchmesser der Schrauben Ø 8, Ø 10 und Ø 12 mm wurde erhöht, um eine höhere Leistung bei Anwendungen an dicken Platten zu gewährleisten. Bei den Stahl-Holz-Verbindungen ermöglicht die neue Geometrie eine Steigerung der Festigkeit von über 15 %.

BEFESTIGUNG VON PLATTEN

Durch den Kegelunterkopf entsteht ein Steckverbindungseffekt mit der runden Bohrung der Platte und garantiert ausgezeichnete statische Leistungen. Die kantenlose Geometrie des Kopfes reduziert die Spannungskonzentrationspunkte und verleiht der Schraube Festigkeit.

ANWENDUNGSGEBIETE

- Holzwerkstoffplatten
- Massiv- und Brettschichtholz
- BSP und LVL
- Harthölzer
- ACQ-, CCA-behandelte Hölzer

ARTIKELNUMMERN UND ABMESSUNGEN

HBS P EVO

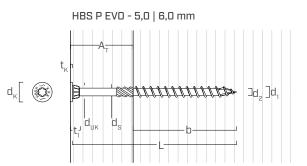
	d_1	ARTNR.	L	b	A_{T}	A_{P}	Stk.
	[mm]		[mm]	[mm]	[mm]	[mm]	
		HBSPEVO550	50	30	20	1÷10	200
	5	HBSPEVO560	60	35	25	1÷10	200
7	TX 25	HBSPEVO570	70	40	30	1÷10	100
7		HBSPEVO580	80	50	30	1÷10	100
	6	HBSPEVO680	80	50	30	1÷10	100
¥	TX 30	HBSPEVO690	90	55	35	1÷10	100

RAPTOR

TRANSPORTANKER FÜR HOLZELEMENTE

Seite 408

METAL-to-TIMBER recommended use:





HBS PLATE EVO

7	d_1	ARTNR.	L	b	A_T	A_{P}	Stk.
	[mm]		[mm]	[mm]	[mm]	[mm]	
		HBSPLEVO840	40	32	8	1÷10	100
		HBSPLEVO860	60	52	8	1÷15	100
*		HBSPLEVO880	80	55	25	1÷15	100
Ī	8 TX 40	HBSPLEVO8100	100	75	25	1÷15	100
•	17.40	HBSPLEVO8120	120	95	25	1÷15	100
>		HBSPLEVO8140	140	110	30	1÷20	100
, ,		HBSPLEVO8160	160	130	30	1÷20	100
>		HBSPLEVO1060	60	52	8	1÷15	50
>		HBSPLEVO1080	80	60	20	1÷15	50
	10	HBSPLEVO10100	100	75	25	1÷15	50
	10 TX 40	HBSPLEVO10120	120	95	25	1÷15	50
	17.40	HBSPLEVO10140	140	110	30	1÷20	50
		HBSPLEVO10160	160	130	30	1÷20	50
		HBSPLEVO10180	180	150	30	1÷20	50
		HBSPLEVO12120	120	90	30	1÷15	25
	12	HBSPLEVO12140	140	110	30	1÷20	25
	12 TX 50	HBSPLEVO12160	160	120	40	1÷20	25
	17.30	HBSPLEVO12180	180	140	40	1÷30	25
		HBSPLEVO12200	200	160	40	1÷30	25

GEOMETRIE UND MECHANISCHE EIGENSCHAFTEN

Nenndurchmesser	d_1	[mm]	5	6	8	10	12
Kopfdurchmesser	d _K	[mm]	9,65	12,00	13,50	16,50	18,50
Kerndurchmesser	d_2	[mm]	3,40	3,95	5,90	6,60	7,30
Schaftdurchmesser	d_S	[mm]	3,65	4,30	6,30	7,20	8,55
Kopfstärke	t_1	[mm]	5,50	6,50	13,50	16,50	19,50
Stärke Beilagscheibe	t_K	[mm]	1,00	1,50	4,50	5,00	5,50
Unterkopfdurchmesser	d_{UK}	[mm]	6,00	8,00	10,00	12,00	13,00
Bohrdurchmesser auf Stahlplatte	$d_{V,steel}$	[mm]	7,0	9,0	11,0	13,0	14,0
Vorbohrdurchmesser ⁽¹⁾	$d_{V,S}$	[mm]	3,0	4,0	5,0	6,0	7,0
Vorbohrdurchmesser ⁽²⁾	d _{V,H}	[mm]	4,0	5,0	6,0	7,0	8,0
Charakteristischer Zugwiderstand	f _{tens,k}	[kN]	7,9	11,3	32,0	40,0	48,0
Charakteristisches Fließmoment	$M_{y,k}$	[Nm]	5,4	9,5	33,4	45,0	55,0

Die mechanischen Parameter werden analytisch ermittelt und durch experimentelle Prüfungen validiert (HBS PLATE EVO Ø 10 und Ø 12).

			Nadelholz (Softwood)	LVL aus Nadelholz (LVL Softwood)	LVL aus Buche, vorgebohrt (Beech LVL predrilled)
Charakteristischer Wert der Ausziehfestigkeit	$f_{ax,k}$	[N/mm ²]	11,7	15,0	29,0
Charakteristischer Durchziehparameter	$f_{\text{head},k}$	[N/mm ²]	10,5	20,0	-
Assoziierte Dichte	ρ_{a}	[kg/m ³]	350	500	730
Rohdichte	$ ho_k$	[kg/m³]	≤ 440	410 ÷ 550	590 ÷ 750

Für Anwendungen mit anderen Materialien siehe ETA-11/0030.

⁽¹⁾ Vorbohrung gültig für Nadelholz (Softwood).
(2) Vorbohrung gültig für Harthölzer (Hardwood) und für LVL aus Buchenholz.

MINDESTABSTÄNDE DER SCHRAUBEN BEI ABSCHERBEANSPRUCHUNG

 d_1

 a_1 a_2

a_{3,t}

a_{3,c}

 $a_{4,t}$ **a**_{4,c} [mm]

[mm]

[mm]

[mm]

[mm]

[mm]

[mm]

10·d

5-d

15·d

10·d

Schraubenabstände OHNE Vorbohrung

 $\rho_k \leq 420 \; kg/m^3$

,		y		
5	6	8	10	12
50	60	80	100	120
25	30	40	50	60
75	90	120	150	180

80

40

40

100

50

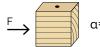
50

120

60

60

d_1	[mm]		5	6	8	10	12
a ₁	[mm]	5·d	25	30	40	50	60
a ₂	[mm]	5·d	25	30	40	50	60
a _{3,t}	[mm]	10 ⋅d	50	60	80	100	120
a _{3,c}	[mm]	10 ⋅d	50	60	80	100	120
a _{4,t}	[mm]	10 ⋅d	50	60	80	100	120
a _{4,c}	[mm]	5·d	25	30	40	50	60

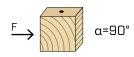

Schraubenabstände OHNE Vorbohrung

50

25

25

 $420 \text{ kg/m}^3 < \rho_k \le 500 \text{ kg/m}^3$



60

30

30

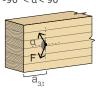
d ₁	[mm]		5	6	8	10	12
a ₁	[mm]	15 ⋅d	75	90	120	150	180
a ₂	[mm]	7·d	35	42	56	70	84
a _{3,t}	[mm]	20·d	100	120	160	200	240
a _{3,c}	[mm]	15·d	75	90	120	150	180
a _{4,t}	[mm]	7·d	35	42	56	70	84
a _{4,c}	[mm]	7·d	35	42	56	70	84

d_1	[mm]		5	6	8	10	12
a ₁	[mm]	7·d	35	42	56	70	84
a ₂	[mm]	7·d	35	42	56	70	84
a _{3,t}	[mm]	15·d	75	90	120	150	180
a _{3,c}	[mm]	15·d	75	90	120	150	180
a _{4,t}	[mm]	12·d	60	72	96	120	144
a _{4,c}	[mm]	7·d	35	42	56	70	84

Schraubenabstände VORGEBOHRT

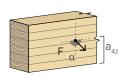
	α=90°
--	-------

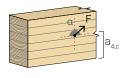
d_1	[mm]		5	6	8	10	12
a ₁	[mm]	5·d	25	30	40	50	60
a ₂	[mm]	3·d	15	18	24	30	36
a _{3,t}	[mm]	12·d	60	72	96	120	144
a _{3,c}	[mm]	7∙d	35	42	56	70	84
a _{4,t}	[mm]	3·d	15	18	24	30	36
a _{4,c}	[mm]	3·d	15	18	24	30	36


a ₁ [mm] 4·d 20 24 32 40 48 a ₂ [mm] 4·d 20 24 32 40 48 a _{3,t} [mm] 7·d 35 42 56 70 84 a _{7,c} [mm] 7·d 35 42 56 70 84	d_1	[mm]]	5	6	8	10	12
a _{3,t} [mm] 7.d 35 42 56 70 84	a ₁	[mm]] 4·d	20	24	32	40	48
3,0	a ₂	[mm]] 4·d	20	24	32	40	48
a _{7,6} [mm] 7 ·d 35 42 56 70 84	a _{3,t}	[mm]] 7⋅d	35	42	56	70	84
23,0	a _{3,c}	[mm]] 7⋅d	35	42	56	70	84
a _{4,t} [mm] 7·d 35 42 56 70 84	a _{4,t}	[mm]] 7⋅d	35	42	56	70	84
a_{4,c} [mm] 3·d 15 18 24 30 36	a _{4,c}	[mm]] 3⋅d	15	18	24	30	36

 α = Winkel zwischen Kraft- und Faserrichtung

 $d = d_1 = Nenndurchmesser Schraube$


beanspruchtes . Hirnholzende -90° < α < 90°


unbeanspruchtes . Hirnholzende 90° < α < 270°

beanspruchter Rand 0° < α < 180°

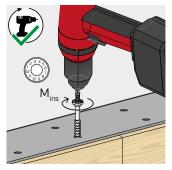
unbeanspruchter Rand 180° < α < 360°

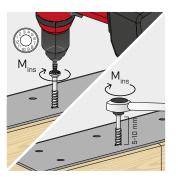
ANMERKUNGEN

- Die Mindestabstände werden gemäß der Normen EN 1995:2014 und in Übereinstimmung mit ETA-11/0030 berechnet.
- Bei Stahl-Holz-Verbindungen können die Mindestabstände (a₁, a₂) mit einem Koeffizienten von 0,7 multipliziert werden.
- Bei Holzwerkstoffplatten-Verbindungen können die Mindestabstände (a_1 , a_2) mit einem Koeffizienten von 0,85 multipliziert werden.
- Bei Verbindungen von Elementen aus Douglasienholz (Pseudotsuga men-
- ziesii) müssen die Mindestabstände und die minimalen, parallelen Abstände zur Faser mit dem Koeffizienten 1,5 multipliziert werden.
- Der Abstand a_1 , aufgelistet für Schrauben mit Spitze 3 THORNS, eingeschraubt ohne Vorbohrung in Holzelemente mit Dichte $\rho_k \leq 420 \text{ kg/m}^3$ und Winkel zwischen Kraft- und Faserrichtung $\alpha=0^\circ$, wurde auf der Grundlage experimenteller Untersuchungen mit 10-d angenommen; wahlweise können 12 d gemäß EN 1995:2014 übernommen werden.

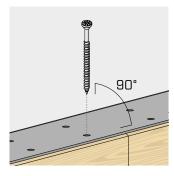
STATISCHE WERTE

				SCHERWERT							ZUGKRÄFTE		
Geometrie		Holz-Holz ε=90°	Holzwerkstoffplat- Stahl-Holz Stahl-Holz dünnes Blech dickes Blech		Gewindeauszug ε=90°	Gewindeauszug ε=0°	Kopfdurchzug						
	d,		A		Spari		SPICIFIC		Splate	←	↑ ¶ ↑		
d_1	L	b	Α	$R_{V,k}$	S _{PAN}	$R_{V,k}$	S _{PLATE}	$R_{V,k}$	S _{PLATE}	$R_{V,k}$	R _{ax,90,k}	R _{ax,0,k}	$R_{head,k}$
[mm]	[mm]	[mm]	[mm]	[kN]	[mm]	[kN]	[mm]	[kN]	[mm]	[kN]	[kN]	[kN]	[kN]
	50	30	20	1,20		1,10		1,65		2,14	1,89	0,57	1,06
5	60	35	25	1,33	12	1,10	2.5	1,73	5	2,22	2,21	0,66	1,06
Э	70	40	30	1,44	12	1,10	2,5	1,81	5	2,30	2,53	0,76	1,06
	80	50	30	1,44		1,10		1,97		2,46	3,16	0,95	1,06
6	80	50	30	1,88	15	1,55	3	2,61	6	3,31	3,79	1,14	1,63
	90	55	35	2,03	13	1,55	3	2,71	0	3,40	4,17	1,25	1,63

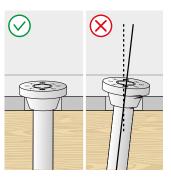

					SCHE	RWERT				ZUGKRÄFTE		
	Geom	ietrie		Holz-Holz ε=90°			Stahl-Holz Stahl-Holz dünnes Blech dickes Blech		Gewindeauszug ε=90°	Gewindeauszug ε=0°	Kopfdurchzug	
	d ₁					S SPARE T		Splate		↑ ¬ ↑		
d_1	L	b	Α	$R_{V,k}$	$R_{V,k}$	S _{PLATE}	$R_{V,k}$	S _{PLATE}	$R_{V,k}$	R _{ax,90,k}	R _{ax,0,k}	$R_{head,k}$
[mm]	[mm]	[mm]	[mm]	[kN]	[kN]	[mm]	[kN]	[mm]	[kN]	[kN]	[kN]	[kN]
	40	32	8	1,62	0,85		1,95		3,83	2,83	0,85	2,07
	60	52	8	1,62	1,35		3,03		5,00	4,85	1,45	2,07
	80	55	25	2,83	1,70		4,11		6,07	5,56	1,67	2,07
8	100	75	25	2,83	2,13	4	5,20	8	6,78	7,58	2,27	2,07
	120	95	25	2,83	2,33		5,86		7,29	9,60	2,88	2,07
	140	110	30	2,93	2,42		6,24		7,67	11,11	3,33	2,07
	160	130	30	2,93	2,42		6,74		8,17	13,13	3,94	2,07
	60	52	8	2,37	1,56		3,48		5,91	5,68	1,70	3,09
	80	60	20	3,16	2,07		4,75		7,37	7,58	2,27	3,09
	100	75	25	3,65	2,59		6,01		8,50	9,47	2,84	3,09
10	120	95	25	3,65	3,01	5	7,28	10	9,14	12,00	3,60	3,09
	140	110	30	3,75	3,11		7,81		9,61	13,89	4,17	3,09
	160	130	30	3,75	3,11		8,44		10,24	16,42	4,92	3,09
	180	150	30	3,75	3,11		8,68		10,87	18,94	5,68	3,09
	120	90	30	4,45	3,54		8,20		10,64	13,64	4,09	3,88
	140	110	30	4,45	3,70		9,28		11,40	16,67	5,00	3,88
12	160	120	40	4,77	4,00	6	9,66	12	11,78	18,18	5,45	3,88
	180	140	40	4,77	4,00		10,23		12,54	21,21	6,36	3,88
	200	160	40	4,77	4,00		10,23		13,29	24,24	7,27	3,88


 $[\]epsilon$ = Winkel zwischen Schraube und Faserrichtung

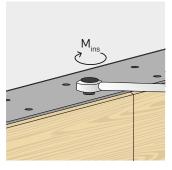
MONTAGE

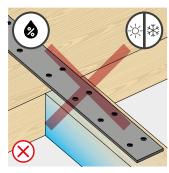


HBSP HBSPL	d ₁ [mm]	M _{ins,rec} [Nm]
Ø8	8	18
Ø10	10	25
Ø12	12	40


Keine Impuls-/Schlagschrauber verwenden.

Den korrekten Anzug sicherstellen.


Möglichst Schrauber mit Drehmomentkontrolle verwenden, z.B. mittels TORQUE LIMITER. Wahlweise mit einem Drehmomentschlüssel anziehen.


Auf den Eindrehwinkel achten. Für sehr präzise Neigungen empfiehlt sich die Verwendung von Lochführungen oder Vorbohrungen.

Vollständigen Kontakt zwischen gesamter Schraubenkopffläche und Metallelement sicherstellen.

Nach der Montage können die Befestigungselemente mit einem Drehmomentschlüssel überprüft werden.

Maßabweichungen des Metalls und Schrumpfungs- und Quellverformungsphänomene des Holzes vermeiden.

STATISCHE WERTE

ALLGEMEINE GRUNDLAGEN

- Die charakteristischen Werte werden gemäß der Norm EN 1995:2014 und in Übereinstimmung mit ETA-11/0030 berechnet.
- Die Bemessungswerte werden aus den charakteristischen Werten wie folgt berechnet:

$$R_d = \frac{R_k \cdot k_{mod}}{\gamma_M}$$

- Die Beiwerte γ_M und k_{mod} sind aus der entsprechenden geltenden Norm zu übernehmen, die für die Berechnung verwendet wird.
- Bei den Werten für die mechanische Festigkeit und die Geometrie der Schrauben wurde auf die Angaben in der ETA-11/0030 Bezug genommen.
- Die Bemessung und Überprüfung der Holzelemente, der Platten und Metallplatten müssen separat durchgeführt werden.
- Für die Positionierung der Schrauben sind die Mindestabstände zu berücksichtigen.
- Die charakteristischen Scherfestigkeitswerte wurden bei eingeschraubten Schrauben ohne Vorbohrung bewertet. Mit vorgebohrten Schrauben können höhere Festigkeitswerte erreicht werden.
- Die Scherfestigkeitswerte wurden unter Berücksichtigung des vollständig in das zweite Element eingedrehten Gewindeteils berechnet.
- Die charakteristischen Holzwerkstoffplatte-Holz-Scherfestigkeitswerte wurden für eine OSB3- oder OSB4-Platte gemäß EN 300 oder für eine Spanplatte gemäß EN 312 mit einer Stärke Span und Dichte 500 kg/m³ berechnet.
- Die charakteristischen Gewindeauszugswerte wurden unter Berücksichtigung einer Einschraubtiefe b berechnet.
- Die charakteristische Kopfdurchzugsfestigkeit wurden für ein Element aus Holz oder auf Holzbasis berechnet.
 Bei Stahl-Holz-Verbindungen ist in Bezug auf den Abreiß- oder Durchzugswiderstand des Schraubenkopfes für gewöhnlich die Zugfestigkeit des
- Stahls ausschlaggebend.
 Bei kombinierten Scher- und Zugbeanspruchungen muss folgender Nachweis erhracht sein:

$$\left(\frac{F_{v,d}}{R_{v,d}}\right)^2 + \left(\frac{F_{ax,d}}{R_{ax,d}}\right)^2 \le 1$$

- Bei Stahl-Holz-Verbindungen mit dickem Blech müssen die Auswirkungen der Verformung des Holzes berechnet und die Verbinder gemäß den Montageanleitungen eingebaut werden.
- Die aufgelisteten Werte werden unter Berücksichtigung der Parameter für die mechanische Festigkeit der Schrauben HBS PLATE EVO Ø 10 und Ø 12 bewertet, die analytisch ermittelt und durch experimentelle Prüfungen validiert wurden.
- Für weitere Berechnungen steht die kostenlose Software MyProject zur Verfügung (www.rothoblaas.de).

ANMERKUNGEN

- Die charakteristischen Holz-Holz-Scherfestigkeitswerte wurden unter Berücksichtigung eines Winkels ϵ sowohl von 90° (R_{V,90,k}) als auch 0° (R_{V,0,k}) zwischen den Fasern des zweiten Elements und dem Verbinder berechnet.
- Die charakteristischen Holzwerkstoffplatte-Holz- und Stahl-Holz-Scherfestigkeitswerte wurden unter Berücksichtigung eines Winkels ϵ von 90° zwischen Fasern des Holzelements und dem Verbinder berechnet.
- Die charakteristischen Scherfestigkeitswerte auf Platte wurden für eine dünne Platte (S_{PLATE} = 0,5 d₁) und für eine dicke Platte (S_{PLATE} = d₁) berechnet.
- Die charakteristischen Gewindeauszugswerte wurden unter Berücksichtigung eines Winkels ε sowohl von 90° (R_{ax,90,k}) als auch 0° (R_{ax,0,k}) zwischen den Fasern des Holzelements und dem Verbinder berechnet.
- Bei der Berechnung wurde eine Rohdichte der Holzelemente von $\rho_k=385 \ kg/m^3$ berücksichtigt.
- Für andere ho_k -Werte können die aufgelisteten Festigkeitswerte (Holz-Holz-Scherfestigkeit, Stahl-Holz Scherfestigkeit und Zugkraft) mithilfe des k_{dens}-Beiwerts umgerechnet werden (siehe S. 215).
- Für weitere Berechnungskonfigurationen und Anwendungen auf verschiedenen Materialien siehe S. 212.

HBS PLATE A4

A4 | AISI316

HBS PLATE Ausführung aus austenitischem Edelstahl A4 | AlSI316 mit ausgezeichneter Korrosionsfestigkeit. Ideal für Meeresklima in der Korrosivitätskategorie C5 und zum Einschrauben in besonders aggressive Hölzer der Klasse T5.

STAHL-HOLZ-VERBINDUNGEN

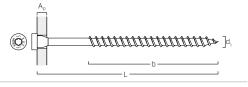
Durch den Kegelunterkopf entsteht ein Steckverbindungseffekt mit der runden Bohrung der Platte und garantiert ausgezeichnete statische Leistungen. Die kantenlose Geometrie des Kopfes reduziert die Spannungskonzentrationspunkte und verleiht der Schraube Festigkeit.

KORROSIVITÄT DES HOLZES T5

Für Anwendungen auf aggressiven Hölzern mit einem Säuregehalt (pH-Wert) unter 4, wie Eiche, Douglasie und Kastanie, und bei einer Holzfeuchtigkeit über 20 %.

ARTIKELNUMMERN UND ABMESSUNGEN

d_1	ARTNR.	L	b	A_{P}	Stk.
[mm]		[mm]	[mm]	[mm]	
	HBSPL860A4	60	52	1÷10	100
	HBSPL880A4	80	55	1÷15	100
8	HBSPL8100A4	100	75	1÷15	100
TX 40	HBSPL8120A4	120	95	1÷15	100
	HBSPL8140A4	140	110	1÷20	100
	HBSPL8160A4	160	130	1÷20	100
	HBSPL1080A4	80	60	1÷10	50
	HBSPL10100A4	100	75	1÷15	50
10	HBSPL10120A4	120	95	1÷15	50
TX 40	HBSPL10140A4	140	110	1÷20	50
	HBSPL10160A4	160	130	1÷20	50
	HBSPL10180A4	180	150	1÷20	50
	HBSPL12100A4	100	75	1÷15	25
	HBSPL12120A4	120	90	1÷20	25
12	HBSPL12140A4	140	110	1÷20	25
TX 50	HBSPL12160A4	160	120	1÷30	25
	HBSPL12180A4	180	140	1÷30	25
	HBSPL12200A4	200	160	1÷30	25


3,5 (

12)12

GEOMETRIE

DURCHMESSER [mm]

LÄNGE [mm]		
25	(60	200)200

(B

NUTZUNGSKLASSE

ATMOSPHÄRISCHE KORROSIVITÄT

KORROSIVITÄT DES HOLZES

MATERIAL

Austenitischer Edelstahl A4 | AISI316 (CRC III)

LBS

UK CA UKTA-0836

RUNDKOPFSCHRAUBE FÜR PLATTEN

LOCHBLECHSCHRAUBE

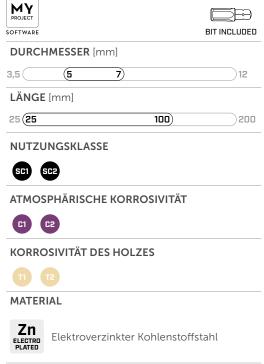
Durch den zylinderförmigen Unterkopf dürfen alle Lochbleche als dicke Bleche berechnet werden, Der Steckverbindungseffekt mit der Plattenbohrung garantiert ausgezeichnete statische Leistungen.

STATIK

Berechenbar gemäß Eurocode 5 bei Stahl-Holz-Verbindungen mit dickem Blech auch mit dünnen Metallelementen. Ausgezeichnete Scherfestigkeitswerte.

HÖLZER DER NEUEN GENERATION

Geprüft und zertifiziert für den Einsatz auf einer Vielzahl von Holzwerkstoffen wie BSP, GL, LVL, OSB und Beech LVL.


Die Ausführung LBS5 ist bis zu einer Länge von 40 mm vollständig ohne Vorbohrung auf Beech LVL zugelassen.

DUKTILITÄT

Ausgezeichnetes Duktilitätsverhalten, nachgewiesen durch zyklische SEISMIC-REV Prüfungen gemäß EN 12512.

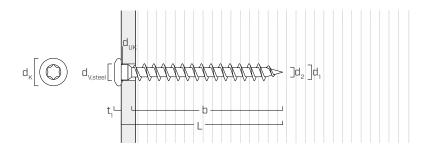
ANWENDUNGSGEBIETE

- Holzwerkstoffplatten
- Massivholz
- Brettschichtholz
- BSP und LVL
- Harthölzer

ARTIKELNUMMERN UND ABMESSUNGEN

d ₁	ARTNR.	L	b	Stk.
[mm]		[mm]	[mm]	
	LBS525	25	21	500
_	LBS540	40	36	500
5 TX 20	LBS550	50	46	200
	LBS560	60	56	200
	LBS570	70	66	200
_	LBS760	60	55	100
7 TX 30	LBS780	80	75	100
	LBS7100	100	95	100

■ LBS HARDWOOD EVO


RUNDKOPFSCHRAUBE FÜR LOCHBLECHE AUF HARTHÖLZERN

DURCHMESSER [mm]	3	(5 7)	12
LÄNGE [mm]	25	(60	200) 200

Auch in der LBS HARDWOOD EVO-Version erhältlich, L von 80 bis 200 mm, Durchmesser Ø5 und Ø7 mm, entdecken Sie es auf Seite 244.

GEOMETRIE UND MECHANISCHE EIGENSCHAFTEN

GEOMETRIE

Nenndurchmesser	d_1	[mm]	5	7
Kopfdurchmesser	d_K	[mm]	7,80	11,00
Kerndurchmesser	d_2	[mm]	3,00	4,40
Unterkopfdurchmesser	d_{UK}	[mm]	4,90	7,00
Kopfstärke	t_1	[mm]	2,40	3,50
Bohrdurchmesser auf Stahlplatte	$d_{V,steel}$	[mm]	5,0÷5,5	7,5÷8,0
Vorbohrdurchmesser ⁽¹⁾	$d_{V,S}$	[mm]	3,0	4,0
Vorbohrdurchmesser ⁽²⁾	d _{V,H}	[mm]	3,5	5,0

⁽¹⁾ Vorbohrung gültig für Nadelholz (Softwood).

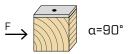
MECHANISCHE KENNGRÖSSEN

Nenndurchmesser	d_1	[mm]	5	7
Zugfestigkeit	$f_{\text{tens,k}}$	[kN]	7,9	15,4
Fließmoment	$M_{y,k}$	[Nm]	5,4	14,2

			Nadelholz (Softwood)	LVL aus Nadelholz (LVL Softwood)	LVL aus vorgebohrter Buche (Beech LVL predrilled)	LVL aus Buche ⁽³⁾ (Beech LVL)
Charakteristischer Wert der Ausziehfestigkeit	f _{ax,k}	[N/mm ²]	11,7	15,0	29,0	42,0
Charakteristischer Durchziehparameter	f _{head,k}	[N/mm ²]	10,5	20,0	-	-
Assoziierte Dichte	ρ_{a}	[kg/m ³]	350	500	730	730
Rohdichte	ρ_k	[kg/m³]	≤ 440	410 ÷ 550	590 ÷ 750	590 ÷ 750

 $^{^{(3)}}$ Gültig für d $_1$ = 5 mm und l $_{ef}$ \leq 34 mm

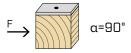
Für Anwendungen mit anderen Materialien siehe ETA-11/0030.


⁽²⁾ Vorbohrung gültig für Harthölzer (Hardwood) und für LVL aus Buchenholz.

MINDESTABSTÄNDE DER SCHRAUBEN BEI ABSCHERBEANSPRUCHUNG | STAHL-HOLZ

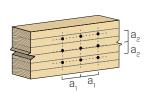
Schraubenabstände OHNE Vorbohrung

 $\rho_k \leq 420 \; kg/m^3$


d_1	[mm]		5	7
a ₁	[mm]	12·d·0,7	42	59
a ₂	[mm]	5·d·0,7	18	25
a _{3,t}	[mm]	15·d	75	105
a _{3,c}	[mm]	10·d	50	70
	[mm]	5·d	25	35
a _{4,c}	[mm]	5·d	25	35

d_1	[mm]		5	7
a ₁	[mm]	5·d·0,7	18	25
a ₂	[mm]	5·d·0,7	18	25
a _{3,t}	[mm]	10 ⋅d	50	70
a _{3,c}	[mm]	10 ⋅d	50	70
$a_{4,t}$	[mm]	10 ⋅d	50	70
a _{4,c}	[mm]	5·d	25	35

Schraubenabstände VORGEBOHRT

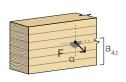


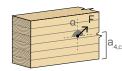
d_1	[mm]		5	7
a ₁	[mm]	5·d·0,7	18	25
a ₂	[mm]	3·d·0,7	11	15
a _{3,t}	[mm]	12·d	60	84
a _{3,c}	[mm]	7⋅d	35	49
a _{4,t}	[mm]	3·d	15	21
a _{4,c}	[mm]	3·d	15	21

d_1	[mm]		5	7
a_1	[mm]	4·d·0,7	14	20
a ₂	[mm]	4·d·0,7	14	20
a _{3,t}	[mm]	7⋅d	35	49
a _{3,c}	[mm]	7⋅d	35	49
$a_{4,t}$	[mm]	7⋅d	35	49
a _{4,c}	[mm]	3·d	15	21

 α = Winkel zwischen Kraft- und Faserrichtung

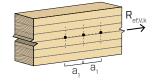
 $d = d_1 = Nenndurchmesser Schraube$




unbeanspruchtes Hirnholzende 90° < α < 270°

beanspruchter Rand $0^{\circ} < \alpha < 180^{\circ}$

unbeanspruchter Rand . 180° < α < 360°



ANMERKUNGEN

- Die Mindestabstände werden gemäß der Normen EN 1995:2014 und in Übereinstimmung mit ETA-11/0030 berechnet.
- Bei Holz-Holz-Verbindungen müssen die Mindestabstände (a₁, a₂) mit einem Koeffizienten von 1,5 multipliziert werden.
- Bei Verbindungen von Elementen aus Douglasienholz (Pseudotsuga menziesii) müssen die Mindestabstände und die minimalen, parallelen Abstände zur Faser mit dem Koeffizienten 1,5 multipliziert werden.

WIRKSAME SCHRAUBENANZAHL BEI ABSCHERBEANSPRUCHUNG

Die Tragfähigkeit einer Verbindung mit mehreren Schrauben vom gleichen Typ und mit gleicher Größe kann kleiner sein als die Summe der Tragfähigkeiten des einzelnen Verbindungsmittels. Für eine Reihe von n parallel zur Faserrichtung des Holzes in einem Abstand a₁ angeordnete Schrauben entspricht die effektive charakteristische Tragfähigkeit:

$$R_{ef,V,k} = n_{ef} \cdot R_{V,k}$$

Der Wert von n_{ef} ist in der folgenden Tabelle abhängig von n und a₁ aufgeführt.

							a ₁ (*)					
		4·d	5·d	6·d	7·d	8·d	9·d	10 ⋅d	11·d	12·d	13·d	≥ 14·d
	2	1,41	1,48	1,55	1,62	1,68	1,74	1,80	1,85	1,90	1,95	2,00
n	3	1,73	1,86	2,01	2,16	2,28	2,41	2,54	2,65	2,76	2,88	3,00
"	4	2,00	2,19	2,41	2,64	2,83	3,03	3,25	3,42	3,61	3,80	4,00
	5	2.24	2,49	2.77	3.09	3,34	3.62	3.93	4.17	4.43	4.71	5.00

 $^{^{(\}star)}$ Für Zwischenwerte \mathbf{a}_1 ist eine lineare Interpolation möglich.

■ STATISCHE WERTE | HOLZ

					5	CHERWER	Т			ZUGKRÄFTE
	Geometrie					Stahl - Holz ε=90°				Gewindeauszug ε=90°
					-	→	J S _{plate}			
d_1	L	b				R _{V,90,k}				R _{ax,90,k}
[mm]	[mm]	[mm]				[kN]				[kN]
[mm]	[mm] S _{PLATE}	[mm]	1,5 mm	2,0 mm	2,5 mm		4,0 mm	5,0 mm	6,0 mm	
[mm]		[mm] 21	1,5 mm 1,59	2,0 mm 1,58	2,5 mm 1,56	[kN]	4,0 mm	5,0 mm -	6,0 mm -	[kN]
[mm]	S _{PLATE}					[kN] 3,0 mm	4,0 mm - 2,23	5,0 mm - 2,18	6,0 mm - 2,13	[kN] -
[mm] 5	S _{PLATE}	21	1,59	1,58	1,56	[kN] 3,0 mm	-	-	-	[kN] - 1,33
	S _{PLATE} 25 40	21 36	1,59 2,24	1,58 2,24	1,56 2,24	[kN] 3,0 mm - 2,24	- 2,23	- 2,18	- 2,13	[kN] - 1,33 2,27
	\$ _{PLATE} 25 40 50	21 36 46	1,59 2,24 2,39	1,58 2,24 2,39	1,56 2,24 2,39	[kN] 3,0 mm - 2,24 2,39	- 2,23 2,39	- 2,18 2,38	- 2,13 2,36	[kN] - 1,33 2,27 2,90
	\$PLATE 25 40 50 60	21 36 46 56	1,59 2,24 2,39 2,55	1,58 2,24 2,39 2,55	1,56 2,24 2,39 2,55	[kN] 3,0 mm - 2,24 2,39 2,55	- 2,23 2,39 2,55	- 2,18 2,38 2,54 2,69	- 2,13 2,36 2,52	[kN] - 1,33 2,27 2,90 3,54
	\$PLATE 25 40 50 60 70	21 36 46 56	1,59 2,24 2,39 2,55 2,71	1,58 2,24 2,39 2,55 2,71	1,56 2,24 2,39 2,55 2,71	[kN] 3,0 mm - 2,24 2,39 2,55 2,71	- 2,23 2,39 2,55 2,71	- 2,18 2,38 2,54 2,69	- 2,13 2,36 2,52 2,68	[kN] - 1,33 2,27 2,90 3,54 4,17
	\$PLATE 25 40 50 60 70 \$PLATE	21 36 46 56 66	1,59 2,24 2,39 2,55 2,71 3,0 mm	1,58 2,24 2,39 2,55 2,71 4,0 mm	1,56 2,24 2,39 2,55 2,71 5,0 mm	[kN] 3,0 mm - 2,24 2,39 2,55 2,71 6,0 mm	- 2,23 2,39 2,55 2,71 8,0 mm	- 2,18 2,38 2,54 2,69 10,0 mm	- 2,13 2,36 2,52 2,68 12,0 mm	[kN] - 1,33 2,27 2,90 3,54 4,17

 $[\]epsilon$ = Winkel zwischen Schraube und Faserrichtung

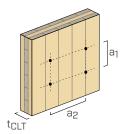
					S	CHERWER	Т			ZUGKRÄFTE
	Geometrie					Stahl - Holz ε=0°				Gewindeauszug ε=0°
						*************************************	J S _{PLATE}			
d ₁ [mm]	L [mm]	b [mm]				R_{V,0,k} [kN]				R _{ax,0,k} [kN]
[[[]]]		[111111]				[KIN]				[KIN]
	SPLATE		1,5 mm	2,0 mm	2,5 mm	3,0 mm	4,0 mm	5,0 mm	6,0 mm	-
	S _{PLATE}	21	1,5 mm 0,77	2,0 mm	2,5 mm 0,77	3,0 mm 0,76	4,0 mm 0,76	5,0 mm 0,75	6,0 mm	- 0,40
		21 36								
5	25		0,77	0,77	0,77	0,76	0,76	0,75	0,74	0,40
5	25 40	36	0,77	0,77	0,77 0,97	0,76 0,96	0,76 0,95	0,75 0,94	0,74 0,92	0,40 0,68
5	25 40 50	36 46	0,77 0,98 1,15	0,77 0,98 1,15	0,77 0,97 1,14	0,76 0,96 1,13	0,76 0,95 1,12	0,75 0,94 1,10	0,74 0,92 1,09	0,40 0,68 0,87
5	25 40 50 60	36 46 56	0,77 0,98 1,15 1,32	0,77 0,98 1,15 1,32	0,77 0,97 1,14 1,32	0,76 0,96 1,13 1,32	0,76 0,95 1,12 1,30	0,75 0,94 1,10 1,28 1,36	0,74 0,92 1,09 1,27	0,40 0,68 0,87 1,06
5	25 40 50 60 70	36 46 56	0,77 0,98 1,15 1,32 1,37	0,77 0,98 1,15 1,32 1,37	0,77 0,97 1,14 1,32 1,37	0,76 0,96 1,13 1,32 1,37	0,76 0,95 1,12 1,30 1,37	0,75 0,94 1,10 1,28 1,36	0,74 0,92 1,09 1,27 1,36	0,40 0,68 0,87 1,06 1,25
7	25 40 50 60 70 S _{PLATE}	36 46 56 66	0,77 0,98 1,15 1,32 1,37 3,0 mm	0,77 0,98 1,15 1,32 1,37 4,0 mm	0,77 0,97 1,14 1,32 1,37 5,0 mm	0,76 0,96 1,13 1,32 1,37 6,0 mm	0,76 0,95 1,12 1,30 1,37 8,0 mm	0,75 0,94 1,10 1,28 1,36 10,0 mm	0,74 0,92 1,09 1,27 1,36 12,0 mm	0,40 0,68 0,87 1,06 1,25

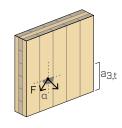
 $[\]epsilon$ = Winkel zwischen Schraube und Faserrichtung

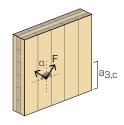
ANM. und ALLGEMEINE GRUNDLAGEN auf Seite 233.

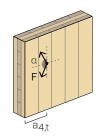
					5	CHERWER	Т			ZUGKRÄFTE
	Geometrie					Stahl-BSP lateral face				Gewindeauszug lateral face
					<u> </u>	→	I S _{plate}			
d ₁	L	b				R _{V,90,k}				$R_{ax,90,k}$
[mm]	[mm]	[mm]				[kN]				[kN]
	S _{PLATE}		1,5 mm	2,0 mm	2,5 mm	3,0 mm	4.0 00000	5,0 mm	6,0 mm	-
	25			, -	_, -, -, -, -, -, -, -, -, -, -, -, -, -,	5,0 111111	4,0 mm	3,0 111111	0,0 111111	-
	25	21	1,48	1,47	1,45	1,44	1,42	1,38	1,35	1,23
	40	21 36	1,48 2,12							
5				1,47	1,45	1,44	1,42	1,38	1,35	1,23
5	40	36	2,12	1,47 2,12	1,45 2,10	1,44 2,09	1,42 2,05	1,38 2,01	1,35 1,96	1,23 2,11
5	40 50	36 46	2,12 2,26	1,47 2,12 2,26	1,45 2,10 2,26	1,44 2,09 2,26	1,42 2,05 2,26	1,38 2,01 2,25	1,35 1,96 2,23	1,23 2,11 2,69
5	40 50 60 70	36 46 56	2,12 2,26 2,41	1,47 2,12 2,26 2,41	1,45 2,10 2,26 2,41	1,44 2,09 2,26 2,41	1,42 2,05 2,26 2,41	1,38 2,01 2,25 2,39	1,35 1,96 2,23 2,38 2,53	1,23 2,11 2,69 3,28
5	40 50 60	36 46 56	2,12 2,26 2,41 2,56	1,47 2,12 2,26 2,41 2,56	1,45 2,10 2,26 2,41 2,56	1,44 2,09 2,26 2,41 2,56	1,42 2,05 2,26 2,41 2,56	1,38 2,01 2,25 2,39 2,54	1,35 1,96 2,23 2,38	1,23 2,11 2,69 3,28 3,86
5 	40 50 60 70 S _{PLATE}	36 46 56 66	2,12 2,26 2,41 2,56 3,0 mm	1,47 2,12 2,26 2,41 2,56 4,0 mm	1,45 2,10 2,26 2,41 2,56 5,0 mm	1,44 2,09 2,26 2,41 2,56 6,0 mm	1,42 2,05 2,26 2,41 2,56 8,0 mm	1,38 2,01 2,25 2,39 2,54 10,0 mm	1,35 1,96 2,23 2,38 2,53 12,0 mm	1,23 2,11 2,69 3,28 3,86

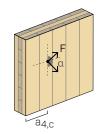
ANM. und ALLGEMEINE GRUNDLAGEN auf Seite 233.


■ MINDESTABSTÄNDE DER SCHRAUBEN BEI SCHERBEANSPRUCHUNG UND AXIALER BEANSPRUCHUNG | BSP






5 7 d_1 [mm] [mm] 4·d 20 28 a_1 13 18 [mm] 2,5·d 30 42 [mm] 6·d $a_{3,t}$ 30 42 6·d [mm] $a_{3,c}$ [mm] 6·d 30 42 2,5·d 13 18 [mm]


 $d = d_1 = Nenndurchmesser Schraube$

ANMERKUNGEN

- Die Mindestabstände sind gemäß ETA-11/0030 und sind gültig, falls keine anderen Angaben in den technischen Unterlagen der BSP-Bretter angegeben sind
- Die Mindestabstände gelten für die Mindestdicke BSP $t_{CLT,min} = 10 \cdot d_1$.

					5	SCHERWER	Т			ZUGKRÄFTE
	Geometrie					Stahl-LVL				Gewindeauszug flat
						→ 	I S _{plate}			
d ₁	L	b				$R_{V,90,k}$				R _{ax,90,k}
d₁ [mm]	L [mm]	b [mm]				R _{V,90,k} [kN]				R _{ax,90,k} [kN]
_			1,5 mm	2,0 mm	2,5 mm		4,0 mm	5,0 mm	6,0 mm	
_	[mm]		1,5 mm	2,0 mm 1,58	2,5 mm 1,56	[kN]	4,0 mm	5,0 mm	6,0 mm	[kN]
_	[mm] S _{PLATE}	[mm]				[kN] 3,0 mm				[kN] -
_	[mm] S _{PLATE} 25	[mm]	1,59	1,58	1,56	[kN] 3,0 mm -	-	-	-	[kN] - 1,33
[mm]	[mm] S _{PLATE} 25 40	[mm] 21 36	1,59 2,24	1,58 2,24	1,56 2,24	[kN] 3,0 mm - 2,24	- 2,23	- 2,18	- 2,13	[kN] - 1,33 2,27
[mm]	[mm] S _{PLATE} 25 40 50	[mm] 21 36 46	1,59 2,24 2,39	1,58 2,24 2,39	1,56 2,24 2,39	[kN] 3,0 mm - 2,24 2,39	- 2,23 2,39	- 2,18 2,38	- 2,13 2,36	[kN] - 1,33 2,27 2,90
[mm]	[mm] SPLATE 25 40 50 60 70	[mm] 21 36 46 56	1,59 2,24 2,39 2,55 2,71	1,58 2,24 2,39 2,55 2,71	1,56 2,24 2,39 2,55 2,71	[kN] 3,0 mm - 2,24 2,39 2,55 2,71	- 2,23 2,39 2,55 2,71	- 2,18 2,38 2,54 2,69	- 2,13 2,36 2,52 2,68	[kN] - 1,33 2,27 2,90 3,54
[mm]	[mm] S _{PLATE} 25 40 50 60	[mm] 21 36 46 56	1,59 2,24 2,39 2,55 2,71 3,0 mm	1,58 2,24 2,39 2,55 2,71 4,0 mm	1,56 2,24 2,39 2,55 2,71 5,0 mm	[kN] 3,0 mm - 2,24 2,39 2,55 2,71 6,0 mm	- 2,23 2,39 2,55 2,71 8,0 mm	- 2,18 2,38 2,54 2,69 10,0 mm	- 2,13 2,36 2,52 2,68 12,0 mm	[kN] - 1,33 2,27 2,90 3,54 4,17
[mm]	[mm] SPLATE 25 40 50 60 70 SPLATE	21 36 46 56 66	1,59 2,24 2,39 2,55 2,71	1,58 2,24 2,39 2,55 2,71	1,56 2,24 2,39 2,55 2,71	[kN] 3,0 mm - 2,24 2,39 2,55 2,71	- 2,23 2,39 2,55 2,71	- 2,18 2,38 2,54 2,69	- 2,13 2,36 2,52 2,68	[kN] - 1,33 2,27 2,90 3,54 4,17

STATISCHE WERTE

ALLGEMEINE GRUNDLAGEN

- Die charakteristischen Werte werden gemäß der Norm EN 1995:2014 und in Übereinstimmung mit ETA-11/0030 berechnet.
- Die Bemessungswerte werden aus den charakteristischen Werten wie folgt berechnet:

$$R_d = \frac{R_k \cdot K_{mod}}{\gamma_M}$$

Die Beiwerte γ_M und $k_{\mbox{\scriptsize mod}}$ sind aus der entsprechenden geltenden Norm zu übernehmen, die für die Berechnung verwendet wird.

- Bei den Werten für die mechanische Festigkeit und die Geometrie der Schrauben wurde auf die Angaben in der ETA-11/0030 Bezug genommen.
- Die Bemessung und Überprüfung der Holzelemente und Metallplatten müssen separat durchgeführt werden.
- Die charakteristischen Scherfestigkeitswerte wurden bei eingeschraubten Schrauben ohne Vorbohrung bewertet. Mit vorgebohrten Schrauben können höhere Festigkeitswerte erreicht werden.
- Für die Positionierung der Schrauben sind die Mindestabstände zu berücksichtigen.
- Die charakteristischen Gewindeauszugswerte wurden unter Berücksichtigung einer Einschraubtiefe b berechnet.
- Die charakteristischen Scherfestigkeitswerte für LBS-Schrauben Ø5 wurden für eine Platte mit einer Stärke = S_{PLATE} bewertet, wobei immer auf eine dicke Platte gemäß ETA-11/0030 (S_{PLATE} ≥ 1,5 mm) Bezug genommen wird.
- Die charakteristischen Scherfestigkeitswerte für LBS-Schrauben Ø 7 wurden für eine Platte mit einer Stärke = S_{PLATE} berechnet, wobei auf eine dünne (S_{PLATE} ≤ 3,5 mm), eine mittlere Platte (3,5 mm < S_{PLATE} < 7,0 mm) oder eine dicke Platte (S_{PLATE} ≥ 7 mm) Bezug genommen wird.
- Bei kombinierten Scher- und Zugbeanspruchungen muss folgender Nachweis erbracht sein:

$$\left(\frac{F_{v,d}}{R_{v,d}}\right)^2 + \left(\frac{F_{ax,d}}{R_{ax,d}}\right)^2 \le 1$$

 Bei Stahl-Holz-Verbindungen mit dickem Blech müssen die Auswirkungen der Verformung des Holzes berechnet und die Verbinder gemäß den Montageanleitungen eingebaut werden.

ANMERKUNGEN | HOLZ

- Die charakteristischen Stahl-Holz-Scherfestigkeitswerte wurden unter Berücksichtigung eines Winkels ε sowohl von 90° (R_{V,90,k}) als auch 0° (R_{V,0,k}) zwischen Fasern des Holzelements und dem Verbinder berechnet.
- Die charakteristischen Holz-Holz-Scherfestigkeitswerte sind verfügbar auf Seite 237.

- Die charakteristischen Gewindeauszugswerte wurden unter Berücksichtigung eines Winkels ϵ sowohl von 90° ($R_{ax,90,k}$) als auch 0° ($R_{ax,0,k}$) zwischen Fasern und dem Verbinder berechnet.
- Bei der Berechnung wurde eine Rohdichte der Holzelemente von ρ_k = 385 kg/m 3 berücksichtigt.

Für andere ρ_k -Werte können die aufgelisteten Festigkeitswerte (Holz-Holz-Scherfestigkeit, Stahl-Holz Scherfestigkeit und Zugkraft) mithilfe des k_{dens} -Beiwerts umgerechnet werden.

$$\begin{aligned} R'_{V,k} &= k_{dens,v} \cdot R_{V,k} \\ R'_{ax,k} &= k_{dens,ax} \cdot R_{ax,k} \end{aligned}$$

ρ _k [kg/m³]	350	380	385	405	425	430	440
C-GL	C24	C30	GL24h	GL26h	GL28h	GL30h	GL32h
k _{dens,v}	0,90	0,98	1,00	1,02	1,05	1,05	1,07
k _{dens av}	0,92	0,98	1,00	1,04	1,08	1,09	1,11

Die so ermittelten Festigkeitswerte können zugunsten der Sicherheit von denen abweichen, die sich aus einer genauen Berechnung ergeben.

ANMERKUNGEN | BSP

- Die charakteristischen Werte entsprechen den nationalen Spezifikationen ÖNORM EN 1995 - Annex K.
- Bei der Berechnung wurde eine Rohdichte der BSP-Elemente von ρ_k = 350 kg/m³ berücksichtigt.
- * Die charakteristischen Scherfestigkeitswerte berechnen sich unter Berücksichtigung der minimalen Eindringtiefe der Schraube von $4\cdot d_1$.
- Der charakteristische Scherfestigkeitswert ist unabhängig von der Faserrichtung der äußeren Holzschicht der BSP-Platte.
- Die axiale Auszugsfestigkeit des Gewindes gilt unter Einhaltung der BSP-Mindeststärke von $t_{CLT,min}=10\cdot d_1$.

ANMERKUNGEN | LVL

- Bei der Berechnung wurde eine Rohdichte der LVL-Elemente aus Nadelholz (Softwood) von $\rho_k=480\ kg/m^3$ berücksichtigt.
- Der Gewindeauszugswert wurde mit einem Winkel von 90° zwischen Fasern und Verbinder berechnet.
- Die charakteristischen Scherfestigkeitswerte werden für Verbinder berechnet, die auf der Seitenfläche (wide face) eingesetzt werden, wobei für die einzelnen Holzelemente ein Winkel von 90° zwischen dem Verbinder und der Faser, ein Winkel von 90° zwischen Verbinder und Seitenfläche des LVL-Elements und ein Winkel von 0° zwischen der Kraft- und Faserrichtung berücksichtigt wird.

LBS EVO

RUNDKOPFSCHRAUBE FÜR PLATTEN

SCHRAUBE FÜR LOCHBLECH FÜR DEN AUSSENBEREICH

LBS Ausführung EVO für Stahl-Holz-Verbindungen im Außenbereich. Der Steckverbindungseffekt mit der Plattenbohrung garantiert ausgezeichnete statische Leistungen.

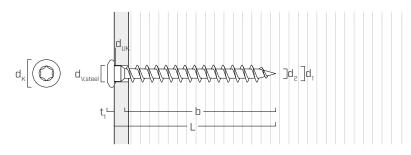
BESCHICHTUNG C4 EVO

Die Korrosivitätskategorie (C4) der Beschichtung C4 EVO wurde vom Research Institutes of Sweden - RISE geprüft. Für Anwendungen auf Hölzern mit einem Säuregehalt (pH-Wert) über 4, wie Tanne, Lärche und Kiefer, geeignete Beschichtung (siehe S. 314).

STATIK

Berechenbar gemäß Eurocode 5 bei Stahl-Holz-Verbindungen mit dickem Blech auch mit dünnen Metallelementen. Ausgezeichnete Scherfestigkeitswerte.

ANWENDUNGSGEBIETE


- Holzwerkstoffplatten
- Massiv- und Brettschichtholz
- BSP und LVL
- Harthölzer
- ACQ-, CCA-behandelte Hölzer

ARTIKELNUMMERN UND ABMESSUNGEN

d ₁	ARTNR.	L	b	Stk.
[mm]		[mm]	[mm]	
	LBSEVO540	40	36	500
5	LBSEVO550	50	46	200
TX 20	LBSEVO560	60	56	200
	LBSEVO570	70	66	200

d ₁	ARTNR.	L	b	Stk.
[mm]		[mm]	[mm]	
7	LBSEVO780	80	75	100
TX 30	LBSEVO7100	100	95	100

■ GEOMETRIE UND MECHANISCHE EIGENSCHAFTEN

Nenndurchmesser	d_1	[mm]	5	7
Kopfdurchmesser	d_K	[mm]	7,80	11,00
Kerndurchmesser	d_2	[mm]	3,00	4,40
Unterkopfdurchmesser	d_{UK}	[mm]	4,90	7,00
Kopfstärke	t_1	[mm]	2,40	3,50
Bohrdurchmesser auf Stahlplatte	$d_{V,steel}$	[mm]	5,0÷5,5	7,5÷8,0
Vorbohrdurchmesser ⁽¹⁾	$d_{V,S}$	[mm]	3,0	4,0
Vorbohrdurchmesser ⁽²⁾	$d_{V,H}$	[mm]	3,5	5,0
Charakteristischer Zugwiderstand	$f_{\text{tens},k}$	[kN]	7,9	15,4
Charakteristisches Fließmoment	$M_{y,k}$	[Nm]	5,4	14,2

⁽¹⁾ Vorbohrung gültig für Nadelholz (Softwood).

⁽²⁾ Vorbohrung gültig für Harthölzer (Hardwood) und für LVL aus Buchenholz.

			Nadelholz (Softwood)	LVL aus Nadelholz (LVL Softwood)	LVL aus vorgebohrter Buche (Beech LVL predrilled)	LVL aus Buche ⁽³⁾ (Beech LVL)
Charakteristischer Wert der Ausziehfestigkeit	$f_{ax,k}$	[N/mm ²]	11,7	15,0	29,0	42,0
Charakteristischer Durchziehparameter	$f_{\text{head},k}$	[N/mm ²]	10,5	20,0	-	-
Assoziierte Dichte	ρ_{a}	[kg/m ³]	350	500	730	730
Rohdichte	ρ_k	[kg/m³]	≤ 440	410 ÷ 550	590 ÷ 750	590 ÷ 750

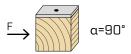
 $^{^{(3)}}$ Gültig für d $_1$ = 5 mm und l $_{ef}$ \leq 34 mm

Für Anwendungen mit anderen Materialien siehe ETA-11/0030.

KORROSIVITÄT DES HOLZES T3

Für Anwendungen auf Hölzern mit einem Säuregehalt (pH-Wert) über 4, wie Tanne, Lärche, Kiefer, Esche und Birke geeignete Beschichtung (siehe S. 314).

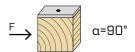
STAHL-HOLZ HYBRID


Die Schraube LBSEVO mit Durchmesser 7 eignet sich besonders für maßgefertigte Verbindungen, wie sie für Stahlkonstruktionen charakteristisch sind.

MINDESTABSTÄNDE DER SCHRAUBEN BEI ABSCHERBEANSPRUCHUNG | STAHL-HOLZ

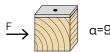
Schraubenabstände OHNE Vorbohrung

 $\rho_k \leq 420 \; kg/m^3$


d_1	[mm]		5	7
a ₁	[mm]	12·d·0,7	42	59
a ₂	[mm]	5·d·0,7	18	25
a _{3,t}	[mm]	15·d	75	105
a _{3,c}	[mm]	10·d	50	70
a _{4,t}	[mm]	5·d	25	35
a _{4,c}	[mm]	5·d	25	35

d_1	[mm]		5	7
a ₁	[mm]	5·d·0,7	18	25
a ₂	[mm]	5·d·0,7	18	25
a _{3,t}	[mm]	10·d	50	70
a _{3,c}	[mm]	10·d	50	70
a _{4,t}	[mm]	10·d	50	70
a _{4,c}	[mm]	5·d	25	35

 $420 \; kg/m^3 \! < \rho_k \! \le \! 500 \; kg/m^3$

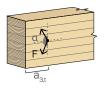

d_1	[mm]		5	7
a ₁	[mm]	15·d·0,7	53	74
a ₂	[mm]	7·d·0,7	25	34
a _{3,t}	[mm]	20·d	100	140
a _{3,c}	[mm]	15 ⋅d	75	105
a _{4,t}	[mm]	7·d	35	49
a _{4,c}	[mm]	7∙d	35	49

d_1	[mm]		5	7
a ₁	[mm]	7·d·0,7	25	34
a ₂	[mm]	7·d·0,7	25	34
a _{3,t}	[mm]	15 ⋅d	75	105
a _{3,c}	[mm]	1 5⋅d	75	105
a _{4,t}	[mm]	12·d	60	84
a _{4,c}	[mm]	7∙d	35	49

Schraubenabstände VORGEBOHRT

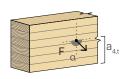
	-	
F		α=90°

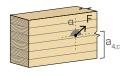
d_1	[mm]		5	7
a ₁	[mm]	5·d·0,7	18	25
a ₂	[mm]	3·d·0,7	11	15
a _{3,t}	[mm]	12·d	60	84
a _{3,c}	[mm]	7·d	35	49
a _{4,t}	[mm]	3·d	15	21
a ₄ c	[mm]	3·d	15	21


d_1	[mm]		5	7
a ₁	[mm]	4·d·0,7	14	20
a ₂	[mm]	4·d·0,7	14	20
a _{3,t}	[mm]	7·d	35	49
a _{3,c}	[mm]	7·d	35	49
a _{4,t}	[mm]	7·d	35	49
a _{4,c}	[mm]	3·d	15	21

 α = Winkel zwischen Kraft- und Faserrichtung

 $d = d_1 = Nenndurchmesser Schraube$


beanspruchtes Hirnholzende -90° < α < 90°


unbeanspruchtes . Hirnholzende 90° < α < 270°

beanspruchter Rand 0° < α < 180°

unbeanspruchter Rand 180° < α < 360°

ANMERKUNGEN

- Die Mindestabstände werden gemäß der Normen EN 1995:2014 und in Übereinstimmung mit ETA-11/0030 berechnet.
- Bei Holz-Holz-Verbindungen müssen die Mindestabstände (a₁, a₂) mit einem Koeffizienten von 1,5 multipliziert werden.
- Bei Verbindungen von Elementen aus Douglasienholz (Pseudotsuga menziesii) müssen die Mindestabstände und die minimalen, parallelen Abstände zur Faser mit dem Koeffizienten 1,5 multipliziert werden.

STATISCHE WERTE | HOLZ

CHARAKTERISTISCHE WERTE EN 1995:2014

		SCHERWERT								SCHERWERT						
	Geometri	e	Stahl - Holz ε=90°					Stahl - Holz ε=0°								
		→ S _{PLATE}					J S _{PLATE}									
d ₁ [mm]	L [mm]	b [mm]				R _{V,90,k} [kN]				R_{V,0,k} [kN]						
[111111]	S _{PLATE} [mi		1,5	2,0	2,5	3,0	4,0	5,0	6,0	1,5	2,0	2,5	3,0	4,0	5,0	6,0
	40	36	2,24	2,24	2,24	2,24	2,23	2,18	2,13	0,98	0,98	0,97	0,96	0,95	0,94	0,92
5	50	46	2,39	2,39	2,39	2,39	2,39	2,38	2,36	1,15	1,15	1,14	1,13	1,12	1,10	1,09
Э	60	56	2,55	2,55	2,55	2,55	2,55	2,54	2,52	1,32	1,32	1,32	1,32	1,30	1,28	1,27
	70	66	2,71	2,71	2,71	2,71	2,71	2,69	2,68	1,37	1,37	1,37	1,37	1,37	1,36	1,36
S _{PLATE} [mm]			3,0	4,0	5,0	6,0	8,0	10,0	12,0	3,0	4,0	5,0	6,0	8,0	10,0	12,0
7	80	75	3,80	3,88	4,13	4,40	4,63	4,59	4,55	1,52	1,61	1,83	2,04	2,22	2,17	2,13
	100	95	4,25	4,38	4,63	4,87	5,08	5,03	4,99	1,91	1,99	2,17	2,35	2,53	2,52	2,51

				SCHER	WERT	ZUGKRÄFTE			
Geometrie				Holz-Holz ε=90°	Holz-Holz ε=0°	Gewindeauszug ε=90°	Gewindeauszug ε=0°		
			A						
d_1	L	b	Α	R _{V,90,k}	R _{V,0,k}	R _{ax,90,k}	R _{ax,0,k}		
[mm]	[mm]	[mm]	[mm]	[kN]	[kN]	[kN]	[kN]		
	40	36	-	1,01	0,59	2,27	0,68		
5	50	46	20	1,19	0,75	2,90	0,87		
3	60	56	25	1,40	0,88	3,54	1,06		
	70	66	30	1,59	0,96	4,17	1,25		
7	80	75	35	2,57	1,54	6,63	1,99		
	100	95	45	3,04	1,74	8,40	2,52		

ε = Winkel zwischen Schraube und Faserrichtung

ALLGEMEINE GRUNDLAGEN

- Die charakteristischen Werte werden gemäß der Norm EN 1995:2014 und in Übereinstimmung mit ETA-11/0030 berechnet.
- Die Bemessungswerte werden aus den charakteristischen Werten wie folgt berechnet:

$$R_d = \frac{R_k \cdot k_{mod}}{\gamma_M}$$

Die Beiwerte γ_M und $k_{\mbox{mod}}$ sind aus der entsprechenden geltenden Norm zu übernehmen, die für die Berechnung verwendet wird.

- Bei den Werten für die mechanische Festigkeit und die Geometrie der Schrauben wurde auf die Angaben in der ETA-11/0030 Bezug genommen.
- Die Bemessung und Überprüfung der Holzelemente und Metallplatten müssen separat durchgeführt werden.
- Die charakteristischen Scherfestigkeitswerte wurden bei eingeschraubten Schrauben ohne Vorbohrung bewertet. Mit vorgebohrten Schrauben können höhere Festigkeitswerte erreicht werden.
- Für die Positionierung der Schrauben sind die Mindestabstände zu berücksichtigen.
- Die charakteristischen Gewindeauszugswerte wurden unter Berücksichtigung einer Einschraubtiefe b berechnet.
- Die charakteristischen Scherfestigkeitswerte für LBS-Schrauben Ø5 wurden für eine Platte mit einer Stärke = S_{PLATE} bewertet, wobei immer auf eine dicke Platte gemäß ETA-11/0030 (S_{PLATE} ≥ 1,5 mm) Bezug genommen wird.
- Die charakteristischen Scherfestigkeitswerte für LBS-Schrauben Ø 7 wurden für eine Platte mit einer Stärke = SpLATE berechnet, wobei auf eine dünne (SpLATE ≤ 3,5 mm), eine mittlere Platte (3,5 mm < SpLATE < 7,0 mm) oder eine dicke Platte (SpLATE ≥ 7 mm) Bezug genommen wird.

ANMERKUNGEN

- Die charakteristischen Scherfestigkeitswerte wurden unter Berücksichtigung eines Winkels ϵ sowohl von 90° $(R_{V,90,k})$ als auch 0° $(R_{V,0,k})$ zwischen Fasern des Holzelements und dem Verbinder berechnet.
- Die charakteristischen Gewindeauszugswerte wurden unter Berücksichtigung eines Winkels ϵ sowohl von 90° (R $_{ax,90,k}$) als auch 0° (R $_{ax,0,k}$) zwischen Fasern und dem Verbinder berechnet.
- Bei der Berechnung wurde eine Rohdichte der Holzelemente von ρ_k = 385 kg/m³ berücksichtigt.

Für andere ρ_k -Werte können die aufgelisteten Festigkeiten mithilfe des $k_{\mbox{\scriptsize dens}}\text{-}\mbox{Beiwerts}$ umgerechnet werden.

$$\begin{aligned} R'_{V,k} &= k_{dens,v} \cdot R_{V,k} \\ R'_{ax,k} &= k_{dens,ax} \cdot R_{ax,k} \end{aligned}$$

ρ _k [kg/m³]	350	380	385	405	425	430	440
C-GL	C24	C30	GL24h	GL26h	GL28h	GL30h	GL32h
k _{dens,v}	0,90	0,98	1,00	1,02	1,05	1,05	1,07
k _{dens,ax}	0,92	0,98	1,00	1,04	1,08	1,09	1,11

Die so ermittelten Festigkeitswerte können zugunsten der Sicherheit von denen abweichen, die sich aus einer genauen Berechnung ergeben.

 Für eine Reihe von n parallel zur Faserrichtung des Holzes in einem Abstand a₁ angeordnete Schrauben kann die effektive charakteristische Tragfähigkeit R_{ef,V,k} mittels der wirksamen Anzahl n_{ef} berechnet werden (siehe S. 230).

LBS HARDWOOD

RUNDKOPFSCHRAUBE FÜR LOCHBLECHE AUF HARTHÖLZERN

ZERTIFIZIERUNG FÜR HARTHÖLZER

Spezielle Spitze mit geprägten Spaltelementen. Die Zertifizierung ETA 11/0030 erlaubt die Verwendung für Harthölzer, vollständig ohne Vorbohren. Für die Verwendung bei statisch tragenden Verbindungen zugelassen, bei denen die Schraube in jeder Richtung zur Faser beansprucht wird.

GRÖSSERER DURCHMESSER

Durch den erhöhten internen Kerndurchmesser der Schraube im Vergleich zur LBS-Ausführung wird das Einschrauben in Harthölzer ermöglicht. Bei den Stahl-Holz-Verbindungen erlaubt das Produkt eine Steigerung der Festigkeit von über 15 %.

LOCHBLECHSCHRAUBE

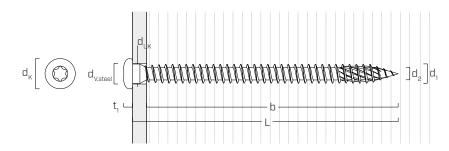
Durch den zylinderförmigen Unterkopf dürfen alle Lochbleche als dicke Bleche berechnet werden, Der Steckverbindungseffekt mit der Plattenbohrung garantiert ausgezeichnete statische Leistungen.

ANWENDUNGSGEBIETE

- Holzwerkstoffplatten
- Massiv- und Brettschichtholz
- BSP und LVL
- Harthölzer
- Buche, Eiche, Zypresse, Esche, Eukalyptus, Bambus

ARTIKELNUMMERN UND ABMESSUNGEN

d_1	ARTNR.	L	b	Stk.
[mm]		[mm]	[mm]	
	LBSH540	40	36	500
5	LBSH550	50	46	200
TX 20	LBSH560	60	56	200
	LBSH570	70	66	200


LBS HARDWOOD EVO

RUNDKOPFSCHRAUBE FÜR LOCHBLECHE AUF HARTHÖLZERN

DURCHMESSER [mm]	3 ((5 7)	12
LÄNGE [mm]	25	(60	200 200

Auch in der LBS HARDWOOD EVO-Version erhältlich, L von 80 bis 200 mm, Durchmesser Ø5 und Ø7 mm, entdecken Sie es auf Seite 244.

GEOMETRIE UND MECHANISCHE EIGENSCHAFTEN

Nenndurchmesser	d_1	[mm]	5
Kopfdurchmesser	d_K	[mm]	7,80
Kerndurchmesser	d_2	[mm]	3,48
Unterkopfdurchmesser	d_UK	[mm]	4,90
Kopfstärke	t_1	[mm]	2,45
Bohrdurchmesser auf Stahlplatte	$d_{V,steel}$	[mm]	5,0÷5,5
Vorbohrdurchmesser ⁽¹⁾	$d_{V,S}$	[mm]	3,0
Vorbohrdurchmesser ⁽²⁾	$d_{V,H}$	[mm]	3,5
Charakteristischer Zugwiderstand	$f_{\text{tens},k}$	[kN]	11,5
Charakteristisches Fließmoment	$M_{y,k}$	[Nm]	9,0

⁽¹⁾ Vorbohrung gültig für Nadelholz (Softwood).

⁽²⁾ Vorbohrung gültig für Harthölzer (Hardwood) und für LVL aus Buchenholz.

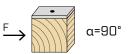
			Nadelholz (Softwood)	Eiche, Buche (Hardwood)	Esche (Hardwood)	LVL Buche (Beech LVL)
Charakteristischer Wert der Ausziehfestigkeit	$f_{ax,k}$	[N/mm ²]	11,7	22,0	30,0	42,0
Charakteristischer Durchziehparameter	$f_{head,k}$	[N/mm ²]	10,5	-	-	-
Assoziierte Dichte	ρ_{a}	[kg/m ³]	350	530	530	730
Rohdichte	$ ho_k$	[kg/m ³]	≤ 440	≤ 590	≤ 590	590 ÷ 750

Für Anwendungen mit anderen Materialien siehe ETA-11/0030.

HARDWOOD PERFORMANCE

Spezielle Geometrie für hohe Leistungen und für die Anwendung ohne Vorbohren in Hölzern wie Buche, Eiche, Zypresse, Esche, Eukalyptus und Bambus.

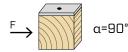
BEECH LVL


Werte auch für Harthölzer, wie Furnierschichtholz (LVL) aus Buche geprüft, zertifiziert und berechnet, für Anwendungen ohne Vorbohren bis zu einer Dichte von 800 kg/m³.

■ MINDESTABSTÄNDE DER SCHRAUBEN BEI ABSCHERBEANSPRUCHUNG | STAHL-HOLZ

Schraubenabstände OHNE Vorbohrung

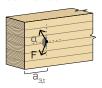
 $\rho_k > 420 \text{ kg/m}^3$


d_1	[mm]		5
a ₁	[mm]	15·d·0,7	53
a ₂	[mm]	7·d·0,7	25
a _{3,t}	[mm]	20·d	100
a _{3,c}	[mm]	15·d	75
a _{4,t}	[mm]	7·d	35
a _{4.c}	[mm]	7·d	35

d_1	[mm]		5
a ₁	[mm]	7·d·0,7	25
a ₂	[mm]	7·d·0,7	25
a _{3,t}	[mm]	15·d	75
a _{3,c}	[mm]	15·d	75
a _{4,t}	[mm]	12·d	60
a _{4,c}	[mm]	7·d	35

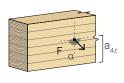
Schraubenabstände VORGEBOHRT

d_1	[mm]		5
a ₁	[mm]	5·d·0,7	18
a ₂	[mm]	3·d·0,7	11
a _{3,t}	[mm]	12·d	60
a _{3,c}	[mm]	7⋅d	35
a _{4,t}	[mm]	3·d	15
a _{4,c}	[mm]	3·d	15


d_1	[mm]		5
a ₁	[mm]	4·d·0,7	14
a ₂	[mm]	4·d·0,7	14
a _{3,t}	[mm]	7·d	35
a _{3,c}	[mm]	7·d	35
a _{4,t}	[mm]	7·d	35
a _{4,c}	[mm]	3·d	15

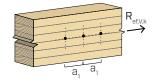
 α = Winkel zwischen Kraft- und Faserrichtung

 $d = d_1 = Nenndurchmesser Schraube$



unbeanspruchtes Hirnholzende $90^{\circ} < \alpha < 270^{\circ}$

beanspruchter Rand $0^{\circ} < \alpha < 180^{\circ}$


unbeanspruchter Rand $180^{\circ} < \alpha < 360^{\circ}$

ANMERKUNGEN auf Seite 243.

■ WIRKSAME SCHRAUBENANZAHL BEI ABSCHERBEANSPRUCHUNG

Die Tragfähigkeit einer Verbindung mit mehreren Schrauben vom gleichen Typ und mit gleicher Größe kann kleiner sein als die Summe der Tragfähigkeiten des einzelnen Verbindungsmittels. Für eine Reihe von n parallel zur Faserrichtung des Holzes in einem Abstand a_1 angeordnete Schrauben entspricht die effektive charakteristische Tragfähigkeit:

$$R_{ef,V,k} = n_{ef} \cdot R_{V,k}$$

Der Wert von n_{ef} ist in der folgenden Tabelle abhängig von n und a₁ aufgeführt.

							a ₁ (*)					
		4·d	5·d	6·d	7⋅d	8·d	9·d	10·d	11-d	12·d	13·d	≥ 14·d
n	2	1,41	1,48	1,55	1,62	1,68	1,74	1,80	1,85	1,90	1,95	2,00
	3	1,73	1,86	2,01	2,16	2,28	2,41	2,54	2,65	2,76	2,88	3,00
"	4	2,00	2,19	2,41	2,64	2,83	3,03	3,25	3,42	3,61	3,80	4,00
	5	2,24	2,49	2,77	3,09	3,34	3,62	3,93	4,17	4,43	4,71	5,00

(*)Für Zwischenwerte a₁ ist eine lineare Interpolation möglich.

					SI	CHERWE	₹T			ZUGKI	RÄFTE
	Geometrie		Stahl - Holz ε=90°							Gewindeauszug ε=90°	Zugtragfähigkeit Stahl
				→ Splate							
d₁ [mm]	L [mm]	b [mm]				R _{V,90,k} [kN]				R _{ax,90,k} [kN]	R _{tens,k} [kN]
	S_{PLATE}		1,5 mm	2,0 mm	2,5 mm	3,0 mm	4,0 mm	5,0 mm	6,0 mm	-	-
	40	36	2,44	2,43	2,41	2,39	2,36	2,32	2,27	2,27	
5	50	46	2,88	2,88	2,88	2,88	2,85	2,80	2,75	2,90	11,50
5	60	56	3,04	3,04	3,04	3,04	3,04	3,02	3,01	3,54	11,50
	70	66	3,20	3,20	3,20	3,20	3,20	3,18	3,16	4,17	

 ϵ = Winkel zwischen Schraube und Faserrichtung

				SCHERWERT							RÄFTE
Geometrie $ \begin{array}{c} \text{Stahl - Holz} \\ \epsilon = 0^{\circ} \end{array}$								Gewindeauszug ε=0°	Zugtragfähigkeit Stahl		
				S _{PLATE}							
d₁ [mm]	L [mm]	b [mm]				R_{V,0,k} [kN]				R _{ax,0,k} [kN]	R _{tens,k} [kN]
	S _{PLATE}		1,5 mm	2,0 mm	2,5 mm	3,0 mm	4,0 mm	5,0 mm	6,0 mm	-	-
	40	36	1,10	1,10	1,09	1,09	1,08	1,07	1,05	0,68	
5	50	46	1,25	1,25	1,24	1,23	1,22	1,21	1,19	0,87	11,50
5	60	56	1,42	1,41	1,41	1,40	1,39	1,37	1,35	1,06	11,50
	70	66	1,60	1,59	1,59	1,58	1,57	1,55	1,53	1,25	

 $[\]epsilon$ = Winkel zwischen Schraube und Faserrichtung

■ STATISCHE WERTE | HARDWOOD

CHARAKTERISTISCHE WERTE EN 1995:2014

					S	CHERWER	RT.			ZUGKF	RÄFTE
	Geometrie		Stahl-Hartholz ε=90°							Gewindeauszug ε=90°	Zugtragfähigkeit Stahl
					-		∃S _{plate}				
d_1	L	b				$R_{V,90,k}$				R _{ax,90,k}	$R_{tens,k}$
[mm]	[mm]	[mm]				[kN]				[kN]	[kN]
	S _{PLATE}		1,5 mm	2,0 mm	2,5 mm	3,0 mm	4,0 mm	5,0 mm	6,0 mm	-	-
	40	36	3,56	3,54	3,51	3,49	3,44	3,36	3,29	4,08	
5	50	46	3,88	3,88	3,88	3,88	3,88	3,85	3,82	5,21	11 50
5	60	56	4,16	4,16	4,16	4,16	4,16	4,13	4,10	6,35	11,50
	70	66	4,44	4,44	4,44	4,44	4,44	4,42	4,39	7,48	

					SI	CHERWER	T F			ZUGKF	RÄFTE
	Geometrie		Stahl-Hartholz ε=0°							Gewindeauszug ε=0°	Zugtragfähigkeit Stahl
			→ Splate								
d₁ [mm]	L [mm]	b [mm]				R_{V,0,k} [kN]				R _{ax,0,k} [kN]	R _{tens,k} [kN]
	S _{PLATE}		1,5 mm	2,0 mm	2,5 mm	3,0 mm	4,0 mm	5,0 mm	6,0 mm	-	-
	40	36	1,51	1,50	1,49	1,48	1,47	1,45	1,42	1,22	
5	50	46	1,76	1,75	1,74	1,74	1,72	1,69	1,67	1,56	11,50
3	60	56	2,04	2,03	2,02	2,01	1,99	1,96	1,93	1,90	11,50
	70	66	2,19	2,19	2,19	2,19	2,19	2,18	2,17	2,24	

 $[\]epsilon$ = Winkel zwischen Schraube und Faserrichtung

■ STATISCHE WERTE | BEECH LVL

					S	CHERWER	RT			ZUGKF	RÄFTE
	Geometrie		Stahl-Beech LVL							Gewindeauszug flat	Zugtragfähigkeit Stahl
							⊒ S _{plate}				
d₁ [mm]	L [mm]	b [mm]				R_{V,90,k} [kN]				R _{ax,90,k} [kN]	R _{tens,k} [kN]
	S _{PLATE}	. ,	1,5 mm	2,0 mm	2,5 mm		4,0 mm	5,0 mm	6,0 mm	-	-
	40	36	5,24	5,24	5,24	5,24	5,24	5,18	5,13	7,56	
5	50	46	5,76	5,76	5,76	5,76	5,76	5,71	5,66	9,66	11,50
5	60	56	6,22	6,22	6,22	6,22	6,22	6,22	6,18	11,76	11,50
	70	66	6,22	6,22	6,22	6,22	6,22	6,22	6,22	13,86	

ANM. und ALLGEMEINE GRUNDLAGEN auf Seite 243.

STATISCHE WERTE

ALLGEMEINE GRUNDLAGEN

- Die charakteristischen Werte werden gemäß der Norm EN 1995:2014 und in Übereinstimmung mit ETA-11/0030 berechnet
- Die Bemessungswerte werden aus den charakteristischen Werten wie folgt berechnet:

$$R_d = \frac{R_k \cdot k_{mod}}{\gamma_M}$$

Die Beiwerte γ_M und $k_{\mbox{mod}}$ sind aus der entsprechenden geltenden Norm zu übernehmen, die für die Berechnung verwendet wird.

Die bei der Planung berücksichtigte Zugfestigkeit des Verbinders entspricht dem kleineren Wert zwischen dem berücksichtigten Widerstand auf Holzseite (R_{ax,d}) und dem berücksichtigten Widerstand auf Stahlseite (R_{tens,d}).

$$R_{ax,d} = min \begin{cases} \frac{R_{ax,k} \cdot k_{mod}}{Y_M} \\ \frac{R_{tens,k}}{Y_{M2}} \end{cases}$$

- Bei den Werten für die mechanische Festigkeit und die Geometrie der Schrauben wurde auf die Angaben in der ETA-11/0030 Bezug genommen.
- Die Bemessung und Überprüfung der Holzelemente und Metallplatten müssen separat durchgeführt werden.
- Die charakteristischen Scherfestigkeitswerte wurden bei eingeschraubten Schrauben ohne Vorbohrung berechnet.
- Für die Positionierung der Schrauben sind die Mindestabstände zu berück-
- Die charakteristischen Gewindeauszugswerte wurden unter Berücksichtigung einer Einschraubtiefe b berechnet.
- Die charakteristischen Scherfestigkeitswerte für LBSH-Schrauben Ø 5 wurden für eine Platte mit einer Stärke = S_{PLATE} bewertet, wobei immer auf eine dicke Platte gemäß ETA-11/0030 (S_{PLATE} ≥ 1,5 mm) Bezug genommen wird.
- Bei kombinierten Scher- und Zugbeanspruchungen muss folgender Nach-

$$\left(\frac{F_{v,d}}{R_{v,d}}\right)^2 + \left(\frac{F_{ax,d}}{R_{ax,d}}\right)^2 \le 1$$

Bei Stahl-Holz-Verbindungen mit dickem Blech müssen die Auswirkungen der Verformung des Holzes berechnet und die Verbinder gemäß den Montageanleitungen eingebaut werden

ANMERKUNGEN | HARDWOOD

- Die charakteristischen Stahl-Holz-Scherfestigkeitswerte wurden unter Berücksichtigung eines Winkels ϵ sowohl von 90° ($R_{V,90,k}$) als auch 0° ($R_{V,0,k}$) zwischen Fasern des zweiten Elements und dem Verbinder berechnet.
- Bei vorgebohrten Schrauben können hohe Festigkeitswerte erzielt werden
- Die charakteristischen Gewindeauszugswerte wurden unter Berücksichtigung eines Winkels ϵ sowohl von 90° (R $_{ax,90,k}$) als auch 0° (R $_{ax,0,k}$) zwischen Fasern und dem Verbinder berechnet
- Bei der Berechnung wurde eine Rohdichte der Holzelemente aus Hardwood (Eiche) von $\rho_k=550\ kg/m^3$ berücksichtigt.

ANMERKUNGEN | HOLZ (SOFTWOOD)

- Die charakteristischen Stahl-Holz-Scherfestigkeitswerte wurden unter Berücksichtigung eines Winkels ϵ sowohl von 90° (R_{V,90,k}) als auch 0° (R_{V,0,k}) zwischen Fasern des zweiten Elements und dem Verbinder berechnet.
- Die charakteristischen Gewindeauszugswerte wurden unter Berücksichtigung eines Winkels ϵ sowohl von 90° ($R_{ax,90,k}$) als auch 0° ($R_{ax,0,k}$) zwischen Fasern und dem Verbinder berechnet
- Bei der Berechnung wurde eine Rohdichte der Holzelemente von ρ_k = 385 kg/m³ berücksichtigt.

Für andere ρ_k-Werte können die aufgelisteten Festigkeitswerte (Holz-Holz-Scherfestigkeit, Stahl-Holz Scherfestigkeit und Zugkraft) mithilfe des k_{dens}-Beiwerts umgerechnet werden.

$$\begin{aligned} R'_{V,k} &= k_{dens,v} \cdot R_{V,k} \\ R'_{ax,k} &= k_{dens,ax} \cdot R_{ax,k} \end{aligned}$$

ρ_k [kg/m³]	350	380	385	405	425	430	440
C-GL	C24	C30	GL24h	GL26h	GL28h	GL30h	GL32h
k _{dens,v}	0,90	0,98	1,00	1,02	1,05	1,05	1,07
k _{dens.ax}	0,92	0,98	1,00	1,04	1,08	1,09	1,11

Die so ermittelten Festigkeitswerte können zugunsten der Sicherheit von denen abweichen, die sich aus einer genauen Berechnung ergeben.

ANMERKUNGEN | BEECH LVL

- Bei der Berechnung wurde eine Rohdichte der LVL-Elemente aus Buchenholz von $\rho_k = 730 \text{ kg/m}^3 \text{ berücksichtigt.}$
- Bei der Berechnung wurde für die einzelnen Holzelemente ein Winkel von 90° zwischen dem Verbinder und der Faser, ein Winkel von 90° zwischen Verbinder und Seitenfläche des LVL-Elements und ein Winkel von 0° zwischen der Kraft- und Faserrichtung berücksichtigt.

MINDESTABSTÄNDE

ANMERKUNGEN | HOLZ

- Die Mindestabstände wurden nach EN 1995:2014 und in Übereinstimmung mit der ETA-11/0030 berechnet und beziehen sich auf eine Rohdichte der Holzelemente von 420 kg/m³ < $\rho_k \le 500$ kg/m³
- Bei Holz-Holz-Verbindungen müssen die Mindestabstände (a_1 , a_2) mit einem Koeffizienten von 1,5 multipliziert werden
- Bei Verbindungen von Elementen aus Douglasienholz (Pseudotsuga menziesii) müssen die Mindestabstände und die minimalen, parallelen Abstände zur Faser mit dem Koeffizienten 1,5 multipliziert werden

LBS HARDWOOD EVO

RUNDKOPFSCHRAUBE FÜR LOCHBLECHE AUF HARTHÖLZERN

BESCHICHTUNG C4 EVO

Die Korrosivitätskategorie (C4) der Beschichtung C4 EVO wurde vom Research Institutes of Sweden - RISE geprüft. Für Anwendungen auf Hölzern mit einem Säuregehalt (pH-Wert) über 4, wie Tanne, Lärche und Kiefer, geeignete Beschichtung (siehe S. 314).

ZERTIFIZIERUNG FÜR HARTHÖLZER

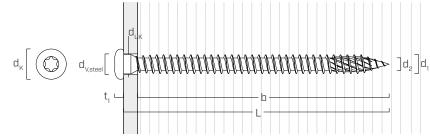
Spezielle Spitze mit geprägten Spaltelementen. Zertifizierung ETA-11/0030 für Harthölzer, vollständig ohne Vorbohren.

Für die Verwendung bei statisch tragenden Verbindungen zugelassen, bei denen die Schraube in jeder Richtung zur Faser beansprucht wird.

ROBUST

Durch den erhöhten internen Kerndurchmesser der Schraube im Vergleich zur LBS-Ausführung wird das Einschrauben in Harthölzer ermöglicht. Der zylindrische Unterkopf wurde für die Befestigung von mechanischen Elementen entwickelt. Der Steckverbindungseffekt mit dem Loch des Lochblechs garantiert ausgezeichnete statische Leistungen.

ANWENDUNGSGEBIETE


- Holzwerkstoffplatten
- Massiv- und Brettschichtholz
- BSP und LVL
- Harthölzer
- ACQ-, CCA-behandelte Hölzer

ARTIKELNUMMERN UND ABMESSUNGEN

d_1	ARTNR.	L	b	Stk.
[mm]		[mm]	[mm]	
	LBSHEVO580	80	76	200
5 TX 20	LBSHEVO5100	100	96	200
17.20	LBSHEVO5120	120	116	200

d_1	ARTNR.	L	b	Stk.
[mm]		[mm]	[mm]	
	LBSHEVO760	60	55	100
	LBSHEVO780	80	75	100
7	LBSHEVO7100	100	95	100
TX 30	LBSHEVO7120	120	115	100
	LBSHEVO7160	160	155	100
	LBSHEVO7200	200	195	100

GEOMETRIE UND MECHANISCHE EIGENSCHAFTEN

Nenndurchmesser	d_1	[mm]	5	7
Kopfdurchmesser	d _K	[mm]	7,80	11,00
Kerndurchmesser	d ₂	[mm]	3,48	4,85
Unterkopfdurchmesser	d_UK	[mm]	4,90	7,00
Kopfstärke	t_1	[mm]	2,45	3,50
Bohrdurchmesser auf Stahlplatte	$d_{V,steel}$	[mm]	5,0÷5,5	7,5÷8,0
Vorbohrdurchmesser ⁽¹⁾	d _{V,S}	[mm]	3,0	4,0
Vorbohrdurchmesser ⁽²⁾	d _{V,H}	[mm]	3,5	5,0
Charakteristischer Zugwiderstand	f _{tens,k}	[kN]	11,5	21,5
Charakteristisches Fließmoment	$M_{y,k}$	[Nm]	9,0	21,5

⁽¹⁾ Vorbohrung gültig für Nadelholz (Softwood).
(2) Vorbohrung gültig für Harthölzer (Hardwood) und für LVL aus Buchenholz.
Die mechanischen Parameter werden analytisch ermittelt und durch experimentelle Prüfungen validiert (LBS H EVO Ø 7).

			Nadelholz (Softwood)	Eiche, Buche (Hardwood)	Esche (Hardwood)	LVL Buche (Beech LVL)
Charakteristischer Wert der Ausziehfestigkeit	$f_{ax,k}$	[N/mm²]	11,7	22,0	30,0	42,0
Charakteristischer Durchziehparameter	$f_{\text{head},k}$	[N/mm ²]	10,5	-	-	-
Assoziierte Dichte	ρ_{a}	[kg/m ³]	350	530	530	730
Rohdichte	$ ho_k$	[kg/m³]	≤ 440	≤ 590	≤ 590	590 ÷ 750

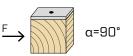
Für Anwendungen mit anderen Materialien siehe ETA-11/0030.

STAHL-HOLZ-HYBRIDKONSTRUK-TIONEN

Die Schrauben LBSEVO mit Ø 7 eignen sich besonders für maßgefertigte Verbindungen, wie sie für Stahlkonstruktionen charakteristisch sind. Höchstleistung in Harthölzern kombiniert mit der Festigkeit von Stahlplatten.

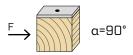
KORROSIVITÄT DES HOLZES T3

Für Anwendungen auf Hölzern mit einem Säuregehalt (pH-Wert) über 4, wie Tanne, Lärche, Kiefer, Esche und Birke geeignete Beschichtung (siehe S. 314).


MINDESTABSTÄNDE DER SCHRAUBEN BEI ABSCHERBEANSPRUCHUNG | STAHL-HOLZ

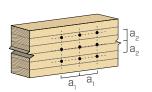
Schraubenabstände OHNE Vorbohrung

 $\rho_k > 420 \text{ kg/m}^3$


d_1	[mm]		5	7
a ₁	[mm]	15·d·0,7	53	74
a ₂	[mm]	7·d·0,7	25	34
a _{3,t}	[mm]	20·d	100	140
a _{3,c}	[mm]	15·d	75	105
	[mm]	7⋅d	35	49
a _{4,c}	[mm]	7·d	35	49

d_1	[mm]		5	7
a ₁	[mm]	7·d·0,7	25	34
a ₂	[mm]	7·d·0,7	25	34
a _{3,t}	[mm]	15·d	75	105
a _{3,c}	[mm]	15 ⋅d	75	105
$a_{4,t}$	[mm]	12·d	60	84
a _{4,c}	[mm]	7·d	35	49

Schraubenabstände VORGEBOHRT

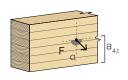


d_1	[mm]		5	7
a ₁	[mm]	5·d·0,7	18	25
a ₂	[mm]	3·d·0,7	11	15
$a_{3,t}$	[mm]	12·d	60	84
a _{3,c}	[mm]	7·d	35	49
	[mm]	3·d	15	21
	[mm]	3·d	15	21

d_1	[mm]		5	7
a_1	[mm]	4·d·0,7	14	20
a ₂	[mm]	4·d·0,7	14	20
a _{3,t}	[mm]	7⋅d	35	49
a _{3,c}	[mm]	7⋅d	35	49
a _{4,t}	[mm]	7·d	35	49
a _{4,c}	[mm]	3·d	15	21

α = Winkel zwischen Kraft- und Faserrichtung

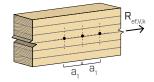
 $d = d_1 = Nenndurchmesser Schraube$



unbeanspruchtes . Hirnholzende 90° < α < 270°

beanspruchter Rand 0° < α < 180°

unbeanspruchter Rand



ANMERKUNGEN

- Die Mindestabstände wurden nach EN 1995:2014 und in Übereinstimmung mit der ETA-11/0030 berechnet und beziehen sich auf eine Rohdichte der Holzelemente von 420 kg/m³ < $\rho_k \le 500$ kg/m³.
- Bei Holz-Holz-Verbindungen müssen die Mindestabstände (a₁, a₂) mit einem Koeffizienten von 1,5 multipliziert werden.
- Bei Verbindungen von Elementen aus Douglasienholz (Pseudotsuga menziesii) müssen die Mindestabstände und die minimalen, parallelen Abstände zur Faser mit dem Koeffizienten 1,5 multipliziert werden.

WIRKSAME SCHRAUBENANZAHL BEI ABSCHERBEANSPRUCHUNG

Die Tragfähigkeit einer Verbindung mit mehreren Schrauben vom gleichen Typ und mit gleicher Größe kann kleiner sein als die Summe der Tragfähigkeiten des einzelnen Verbindungsmittels. Für eine Reihe von n parallel zur Faserrichtung des Holzes in einem Abstand a₁ angeordnete Schrauben entspricht die effektive charakteristische Tragfähigkeit:

$$R_{ef,V,k} = n_{ef} \cdot R_{V,k}$$

Der Wert von n_{ef} ist in der folgenden Tabelle abhängig von n und a₁ aufgeführt.

							a ₁ (*)					
		4·d	5·d	6·d	7·d	8·d	9·d	10 ⋅d	11-d	12·d	13·d	≥ 14·d
	2	1,41	1,48	1,55	1,62	1,68	1,74	1,80	1,85	1,90	1,95	2,00
n	3	1,73	1,86	2,01	2,16	2,28	2,41	2,54	2,65	2,76	2,88	3,00
"	4	2,00	2,19	2,41	2,64	2,83	3,03	3,25	3,42	3,61	3,80	4,00
	5	2,24	2,49	2,77	3,09	3,34	3,62	3,93	4,17	4,43	4,71	5,00

 $^{^{(\}star)}$ Für Zwischenwerte \mathbf{a}_1 ist eine lineare Interpolation möglich.

					S	CHERWER		ZUGKRÄFTE			
	Geometrie					Gewindeauszug ε=90°	Zugtragfähigkeit Stahl				
			→ J S _{PLATE}								
d ₁ [mm]	L [mm]	b [mm]				R_{V,90,k} [kN]				R _{ax,90,k} [kN]	R _{tens,k} [kN]
	S _{PLATE}		1,5 mm	2,0 mm	2,5 mm	3,0 mm	4,0 mm	5,0 mm	6,0 mm	-	-
	80	76	3,35	3,35	3,35	3,35	3,35	3,34	3,32	4,80	
5	100	96	3,67	3,67	3,67	3,67	3,67	3,65	3,64	6,06	11,50
	120	116	3,98	3,98	3,98	3,98	3,98	3,97	3,95	7,32	
	S _{PLATE}		3,0 mm	4,0 mm	5,0 mm	6,0 mm	8,0 mm	10,0 mm	12,0 mm	-	-
	60	55	2,81	3,02	3,50	3,99	4,37	4,25	4,12	4,86	
	80	75	3,80	3,98	4,43	4,90	5,34	5,29	5,25	6,63	
7	100	95	4,75	4,89	5,18	5,50	5,78	5,73	5,69	8,40	24.50
/	120	115	5,19	5,35	5,66	5,96	6,22	6,17	6,13	10,16	21,50
	160	155	5,30	5,56	6,10	6,62	7,10	7,06	7,01	13,70	

 ε = Winkel zwischen Schraube und Faserrichtung

					S	CHERWER		ZUGKRÄFTE			
	Geometrie						Gewindeauszug ε=0°	Zugtragfähigkeit Stahl			
			□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □								
d₁ [mm]	L [mm]	b [mm]				R_{V,90,k} [kN]				R _{ax,90,k} [kN]	R _{tens,k} [kN]
	_		1								
	S_{PLATE}		1,5 mm	2,0 mm	2,5 mm	3,0 mm	4,0 mm	5,0 mm	6,0 mm	-	-
	S _{PLATE}	76	1,5 mm	2,0 mm	2,5 mm	3,0 mm	4,0 mm	5,0 mm	6,0 mm	1,44	-
5		76 96	_								11,50
5	80		1,72	1,72	1,72	1,72	1,72	1,72	1,71	1,44	
5	80 100 120	96	1,72 1,82	1,72 1,82	1,72 1,82	1,72 1,82	1,72 1,82 1,91	1,72 1,81 1,91	1,71 1,81	1,44 1,82	
5	80 100	96	1,72 1,82 1,91	1,72 1,82 1,91	1,72 1,82 1,91	1,72 1,82 1,91	1,72 1,82 1,91	1,72 1,81 1,91	1,71 1,81 1,90	1,44 1,82 2,20	11,50
5	80 100 120 S _{PLATE}	96 116	1,72 1,82 1,91 3,0 mm	1,72 1,82 1,91 4,0 mm	1,72 1,82 1,91 5,0 mm	1,72 1,82 1,91 6,0 mm	1,72 1,82 1,91 8,0 mm	1,72 1,81 1,91 10,0 mm	1,71 1,81 1,90 12,0 mm	1,44 1,82 2,20	11,50
	80 100 120 S _{PLATE} 60	96 116 55	1,72 1,82 1,91 3,0 mm 1,12	1,72 1,82 1,91 4,0 mm 1,23	1,72 1,82 1,91 5,0 mm 1,48	1,72 1,82 1,91 6,0 mm 1,73	1,72 1,82 1,91 8,0 mm 1,95	1,72 1,81 1,91 10,0 mm 1,92	1,71 1,81 1,90 12,0 mm 1,88	1,44 1,82 2,20 - 1,46	11,50
7	80 100 120 S_{PLATE} 60 80	96 116 55 75	1,72 1,82 1,91 3,0 mm 1,12 1,52	1,72 1,82 1,91 4,0 mm 1,23 1,63	1,72 1,82 1,91 5,0 mm 1,48 1,88	1,72 1,82 1,91 6,0 mm 1,73 2,14	1,72 1,82 1,91 8,0 mm 1,95 2,35	1,72 1,81 1,91 10,0 mm 1,92 2,31	1,71 1,81 1,90 12,0 mm 1,88 2,27	1,44 1,82 2,20 - 1,46 1,99	11,50
	80 100 120 S_{PLATE} 60 80 100	96 116 55 75 95	1,72 1,82 1,91 3,0 mm 1,12 1,52 1,91	1,72 1,82 1,91 4,0 mm 1,23 1,63 2,04	1,72 1,82 1,91 5,0 mm 1,48 1,88 2,31	1,72 1,82 1,91 6,0 mm 1,73 2,14 2,58	1,72 1,82 1,91 8,0 mm 1,95 2,35 2,81	1,72 1,81 1,91 10,0 mm 1,92 2,31 2,76	1,71 1,81 1,90 12,0 mm 1,88 2,27 2,72	1,44 1,82 2,20 - 1,46 1,99 2,52	11,50

 $[\]varepsilon$ = Winkel zwischen Schraube und Faserrichtung

ANM. und ALLGEMEINE GRUNDLAGEN auf Seite 249.

					S	CHERWER	RT			ZUGKF	RÄFTE	
	Geometrie		Stahl - Holz ε=90°							Gewindeauszug Zugtragfähigl ε=90° Stahl		
					-		⊐S _{plate}					
d ₁	L	b				R _{V,90,k}				R _{ax,90,k}	R _{tens,k}	
[mm]	[mm] S _{PLATE}	[mm]	1,5 mm	2,0 mm	2,5 mm	[kN] 3,0 mm	4,0 mm	5,0 mm	6,0 mm	[kN]	[kN]	
	80	76					•		0,0 111111			
			4/5	4 73	4 73	4 73	4 73	4 70	4 67	8 61		
5	100		4,73 5.15	4,73 5.15	4,73 5.15	4,73 5.15	4,73 5.15	4,70 5.15	4,67 5.15	8,61 10.88	11 50	
5	100 120	96 116	5,15	4,73 5,15 5,15	5,15	5,15	5,15	5,15	5,15	10,88	11,50	
5	120	96		5,15			5,15 5,15		5,15 5,15		11,50	
5		96	5,15 5,15	5,15 5,15	5,15 5,15	5,15 5,15	5,15 5,15	5,15 5,15	5,15 5,15	10,88 13,14		
5	120 S _{PLATE}	96 116	5,15 5,15 3,0 mm	5,15 5,15 4,0 mm	5,15 5,15 5,0 mm	5,15 5,15 6,0 mm	5,15 5,15 8,0 mm	5,15 5,15 10,0 mm	5,15 5,15 12,0 mm	10,88 13,14 -		
	120 S_{PLATE} 60	96 116 55	5,15 5,15 3,0 mm 4,01	5,15 5,15 4,0 mm 4,33	5,15 5,15 5,0 mm 5,07	5,15 5,15 6,0 mm 5,83	5,15 5,15 8,0 mm 6,43	5,15 5,15 10,0 mm 6,22	5,15 5,15 12,0 mm 6,02	10,88 13,14 - 8,72	-	
7	120 S _{PLATE} 60 80	96 116 55 75	5,15 5,15 3,0 mm 4,01 5,42	5,15 5,15 4,0 mm 4,33 5,65	5,15 5,15 5,0 mm 5,07 6,21	5,15 5,15 6,0 mm 5,83 6,80	5,15 5,15 8,0 mm 6,43 7,33	5,15 5,15 10,0 mm 6,22 7,25	5,15 5,15 12,0 mm 6,02 7,17	10,88 13,14 - 8,72 11,90		
	120 S _{PLATE} 60 80 100	96 116 55 75 95	5,15 5,15 3,0 mm 4,01 5,42 6,33	5,15 5,15 4,0 mm 4,33 5,65 6,60	5,15 5,15 5,0 mm 5,07 6,21 7,15	5,15 5,15 6,0 mm 5,83 6,80 7,67	5,15 5,15 8,0 mm 6,43 7,33 8,12	5,15 5,15 10,0 mm 6,22 7,25 8,04	5,15 5,15 12,0 mm 6,02 7,17 7,97	10,88 13,14 - 8,72 11,90 15,07	-	

 $[\]epsilon$ = Winkel zwischen Schraube und Faserrichtung

					S		ZUGKRÄFTE				
	Geometrie						Gewindeauszug ε=0°	Zugtragfähigkeit Stahl			
			□ S _{PLATE}								
d₁ [mm]	L [mm]	b [mm]				R_{V,90,k} [kN]				R _{ax,90,k} [kN]	R _{tens,k} [kN]
	S		4	2 0	2,5 mm	3,0 mm	4,0 mm	5,0 mm	6 0		
	S_{PLATE}		1,5 mm	2,0 mm	2,5 11111	3,0 11111	4,0 mm	5,0 11111	6,0 mm	-	-
	80	76	2,27	2,0 mm	2,27	2,27	2,27	2,27	2,26	2,58	-
5		76 96					•		-		11,50
5	80		2,27	2,27	2,27	2,27	2,27	2,27	2,26	2,58	
5	80 100	96	2,27	2,27 2,44	2,27	2,27 2,44	2,27 2,44 2,61	2,27 2,44	2,26 2,43 2,60	2,58 3,26	
5	80 100 120	96	2,27 2,44 2,61	2,27 2,44 2,61	2,27 2,44 2,61	2,27 2,44 2,61	2,27 2,44 2,61	2,27 2,44 2,61	2,26 2,43 2,60	2,58 3,26 3,94	11,50
5	80 100 120 S _{PLATE}	96 116	2,27 2,44 2,61 3,0 mm	2,27 2,44 2,61 4,0 mm	2,27 2,44 2,61 5,0 mm	2,27 2,44 2,61 6,0 mm	2,27 2,44 2,61 8,0 mm	2,27 2,44 2,61 10,0 mm	2,26 2,43 2,60 12,0 mm	2,58 3,26 3,94	11,50
	80 100 120 S_{PLATE} 60	96 116 55	2,27 2,44 2,61 3,0 mm 1,61	2,27 2,44 2,61 4,0 mm 1,75	2,27 2,44 2,61 5,0 mm 2,08	2,27 2,44 2,61 6,0 mm 2,41	2,27 2,44 2,61 8,0 mm 2,69	2,27 2,44 2,61 10,0 mm 2,63	2,26 2,43 2,60 12,0 mm 2,57	2,58 3,26 3,94 - 2,62	11,50
7	80 100 120 S_{PLATE} 60 80	96 116 55 75	2,27 2,44 2,61 3,0 mm 1,61 2,17	2,27 2,44 2,61 4,0 mm 1,75 2,34	2,27 2,44 2,61 5,0 mm 2,08 2,70	2,27 2,44 2,61 6,0 mm 2,41 3,06	2,27 2,44 2,61 8,0 mm 2,69 3,37	2,27 2,44 2,61 10,0 mm 2,63 3,30	2,26 2,43 2,60 12,0 mm 2,57 3,23	2,58 3,26 3,94 - 2,62 3,57	11,50
	80 100 120 S_{PLATE} 60 80 100	96 116 55 75 95	2,27 2,44 2,61 3,0 mm 1,61 2,17 2,73	2,27 2,44 2,61 4,0 mm 1,75 2,34 2,88	2,27 2,44 2,61 5,0 mm 2,08 2,70 3,23	2,27 2,44 2,61 6,0 mm 2,41 3,06 3,59	2,27 2,44 2,61 8,0 mm 2,69 3,37 3,92	2,27 2,44 2,61 10,0 mm 2,63 3,30 3,90	2,26 2,43 2,60 12,0 mm 2,57 3,23 3,88	2,58 3,26 3,94 - 2,62 3,57 4,52	11,50

 $[\]epsilon$ = Winkel zwischen Schraube und Faserrichtung

					S	CHERWER		ZUGKRÄFTE			
	Geometrie		Stahl-Beech LVL							Gewindeauszug flat	Zugtragfähigkeit Stahl
			→ JS _{PLATE}								
d₁ [mm]	L [mm]	b				R _{V,90,k}				R _{ax,90,k}	R _{tens,k}
		ITTITTII				IKINI				IKINI	IKNI
[11111]	S _{PLATE}	[mm]	1,5 mm	2,0 mm	2,5 mm	[kN] 3,0 mm	4,0 mm	5,0 mm	6,0 mm	[kN] -	[kN] -
[11111]		76	1,5 mm 6,22	2,0 mm 6,22	2,5 mm 6,22		4,0 mm 6,22	5,0 mm 6,22	6,0 mm 6,22		
5	S _{PLATE}		,			3,0 mm			•	-	
	S _{PLATE}	76	6,22	6,22	6,22	3,0 mm 6,22	6,22	6,22	6,22	- 15,96	-
	S _{PLATE} 80 100	76 96	6,22 6,22	6,22 6,22	6,22 6,22	3,0 mm 6,22 6,22	6,22 6,22 6,22	6,22 6,22	6,22 6,22 6,22	- 15,96 20,16	-
	S _{PLATE} 80 100 120	76 96	6,22 6,22 6,22	6,22 6,22 6,22	6,22 6,22 6,22	3,0 mm 6,22 6,22 6,22	6,22 6,22 6,22	6,22 6,22 6,22	6,22 6,22 6,22	- 15,96 20,16 24,36	11,50
	\$PLATE 80 100 120 \$PLATE	76 96 116	6,22 6,22 6,22 3,0 mm	6,22 6,22 6,22 4,0 mm	6,22 6,22 6,22 5,0 mm	3,0 mm 6,22 6,22 6,22 6,0 mm	6,22 6,22 6,22 8,0 mm	6,22 6,22 6,22 10,0 mm	6,22 6,22 6,22 12,0 mm	- 15,96 20,16 24,36	11,50
5	\$PLATE 80 100 120 \$PLATE 60	76 96 116	6,22 6,22 6,22 3,0 mm	6,22 6,22 6,22 4,0 mm 7,44	6,22 6,22 6,22 5,0 mm 8,22	3,0 mm 6,22 6,22 6,22 6,0 mm 9,06	6,22 6,22 6,22 8,0 mm 9,79	6,22 6,22 6,22 10,0 mm 9,64	6,22 6,22 6,22 12,0 mm 9,49	- 15,96 20,16 24,36 - 16,17	11,50
	\$PLATE 80 100 120 \$PLATE 60 80	76 96 116 55 75	6,22 6,22 6,22 3,0 mm 7,14 8,44	6,22 6,22 6,22 4,0 mm 7,44 8,85	6,22 6,22 6,22 5,0 mm 8,22 9,68	3,0 mm 6,22 6,22 6,22 6,0 mm 9,06 10,51	6,22 6,22 6,22 8,0 mm 9,79 11,26	6,22 6,22 6,22 10,0 mm 9,64 11,11	6,22 6,22 6,22 12,0 mm 9,49 10,96	- 15,96 20,16 24,36 - 16,17 22,05	11,50
5	S _{PLATE} 80 100 120 S _{PLATE} 60 80 100	76 96 116 55 75 95	6,22 6,22 6,22 3,0 mm 7,14 8,44 8,44	6,22 6,22 6,22 4,0 mm 7,44 8,85 8,85	6,22 6,22 6,22 5,0 mm 8,22 9,68 9,68	3,0 mm 6,22 6,22 6,22 6,0 mm 9,06 10,51 10,51	6,22 6,22 6,22 8,0 mm 9,79 11,26 11,34	6,22 6,22 6,22 10,0 mm 9,64 11,11 11,93	6,22 6,22 6,22 12,0 mm 9,49 10,96 11,93	- 15,96 20,16 24,36 - 16,17 22,05 27,93	11,50

ε = Winkel zwischen Schraube und Faserrichtung

STATISCHE WERTE

ALLGEMEINE GRUNDLAGEN

- Die charakteristischen Werte werden gemäß der Norm EN 1995:2014 und in Übereinstimmung mit ETA-11/0030 berechnet.
- Die Bemessungswerte werden aus den charakteristischen Werten wie folgt

$$R_d = \frac{R_k \cdot k_{mod}}{\gamma_M}$$

Die Beiwerte γ_M und $k_{\mbox{mod}}$ sind aus der entsprechenden geltenden Norm zu übernehmen, die für die Berechnung verwendet wird.

Die bei der Planung berücksichtigte Zugfestigkeit des Verbinders entspricht dem kleineren Wert zwischen dem berücksichtigten Widerstand auf Holzseite (R_{ax,d}) und dem berücksichtigten Widerstand auf Stahlseite (R_{tens,d}).

$$R_{ax,d} = min \begin{cases} \frac{R_{ax,k} \cdot k_{mod}}{\gamma_M} \\ \frac{R_{tens,k}}{\gamma_{M2}} \end{cases}$$

- Bei den Werten für die mechanische Festigkeit und die Geometrie der Schrauben wurde auf die Angaben in der ETA-11/0030 Bezug genommen.
- Die Bemessung und Überprüfung der Holzelemente und Metallplatten müssen separat durchgeführt werden.
- Die charakteristischen Scherfestigkeitswerte wurden bei eingeschraubten Schrauben ohne Vorbohrung berechnet.
- Für die Positionierung der Schrauben sind die Mindestabstände zu berücksichtigen.
- Die charakteristischen Gewindeauszugswerte wurden unter Berücksichtigung einer Einschraubtiefe b berechnet.
- Die charakteristischen Scherfestigkeitswerte für LBSH EVO-Schrauben \varnothing 5 wurden für eine Platte mit einer Stärke = S_{PLATE} bewertet, wobei immer auf eine dicke Platte gemäß ETA-11/0030 (S_{PLATE} \geq 1,5 mm) Bezug genommen wird.
- Die charakteristischen Scherfestigkeitswerte für LBSH EVO Schrauben Ø 7 wurden für eine Platte mit einer Stärke = S_{PLATE} bewertet, wobei auf eine dünne ($S_{PLATE} \le 3.5$ mm), eine mittlere Platte (3.5 mm < $S_{PLATE} \le 7.0$ mm) oder eine dicke Platte (S_{PLATE} ≥ 7 mm) Bezug genommen wird
- Bei kombinierten Scher- und Zugbeanspruchungen muss folgender Nach-

$$\left(\frac{F_{v,d}}{R_{v,d}}\right)^2 + \left(\frac{F_{ax,d}}{R_{ax,d}}\right)^2 \le 1$$

- Bei Stahl-Holz-Verbindungen mit dickem Blech müssen die Auswirkungen der Verformung des Holzes berechnet und die Verbinder gemäß den Montageanleitungen eingebaut werden.
- Die angegebenen Werte werden unter Berücksichtigung der Parameter für die mechanische Festigkeit der Schrauben LBS H EVO Ø 7 bewertet, die analytisch ermittelt und durch experimentelle Prüfungen validiert wurden.

ANMERKUNGEN | HOLZ

- Die charakteristischen Holz-Holz-Scherfestigkeitswerte wurden unter Berücksichtigung eines Winkels ϵ sowohl von 90° ($R_{V,90,k}$) als auch 0° ($R_{V,0,k}$) zwischen den Fasern des zweiten Elements und dem Verbinder berechnet.
- Bei vorgebohrten Schrauben können hohe Festigkeitswerte erzielt werden.
- Die charakteristischen Gewindeauszugswerte wurden unter Berücksichtigung eines Winkels ϵ sowohl von 90° ($R_{ax,90,k}$) als auch 0° ($R_{ax,0,k}$) zwischen Fasern und dem Verbinder berechnet.
- Bei der Berechnung wurde eine Rohdichte der Holzelemente von ρ_k = 385 kg/m³ berücksichtigt.

Für andere ρ_k -Werte können die aufgelisteten Festigkeitswerte (Holz-Holz-Scherfestigkeit, Stahl-Holz Scher- und Zugfestigkeit) mithilfe des k_{dens} -Beiwerts umgerechnet werden (siehe Seite 243).

ANMERKUNGEN | HARDWOOD

• Bei der Berechnung wurde eine Rohdichte der Holzelemente aus Hardwood (Eiche) von ρ_k = 550 kg/m³ berücksichtigt.

ANMERKUNGEN | BEECH LVL

- Bei der Berechnung wurde eine Rohdichte der LVL-Elemente aus Buchenholz von $\rho_k = 730 \text{ kg/m}^3 \text{ berücksichtigt.}$
- Bei der Berechnung wurde für die einzelnen Holzelemente ein Winkel von 90° zwischen dem Verbinder und der Faser, ein Winkel von 90° zwischen Verbinder und Seitenfläche des LVL-Elements und ein Winkel von 0° zwischen der Kraft- und Faserrichtung berücksichtigt.

ANKERNAGEL

AUSGEZEICHNETE LEISTUNGEN

Die neuen LBA Nagelschrauben zeichnen sich durch ihre Scherfestigkeitswerte aus, die zu den höchsten des Marktes zählen. Sie ermöglichen die Zertifizierung charakteristischer Nagelstärken, die den tatsächlichen experimentellen Stärken am nächsten kommen.

ZERTIFIZIERT AUF BSP UND LVL

Geprüfte und zertifizierte Werte für Platten auf BSP-Untergrund. Die Verwendung ist außerdem auf LVL zertifiziert.

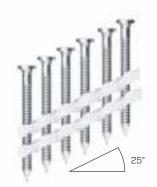
LBA GEBUNDENE AUSFÜHRUNG

Der Nagel ist auch in der gebundenen Ausführung erhältlich, die über die gleiche ETA-Zertifizierung verfügt und daher genauso leistungsstark ist.

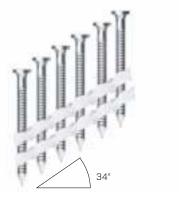
EDELSTAHLAUSFÜHRUNG

Die Nägel sind mit der gleichen ETA-Zertifizierung auch aus Edelstahl A4|AISI316 für Außenbereiche erhältlich und weisen dabei sehr hohe Festigkeitswerte auf.

MATERIAL

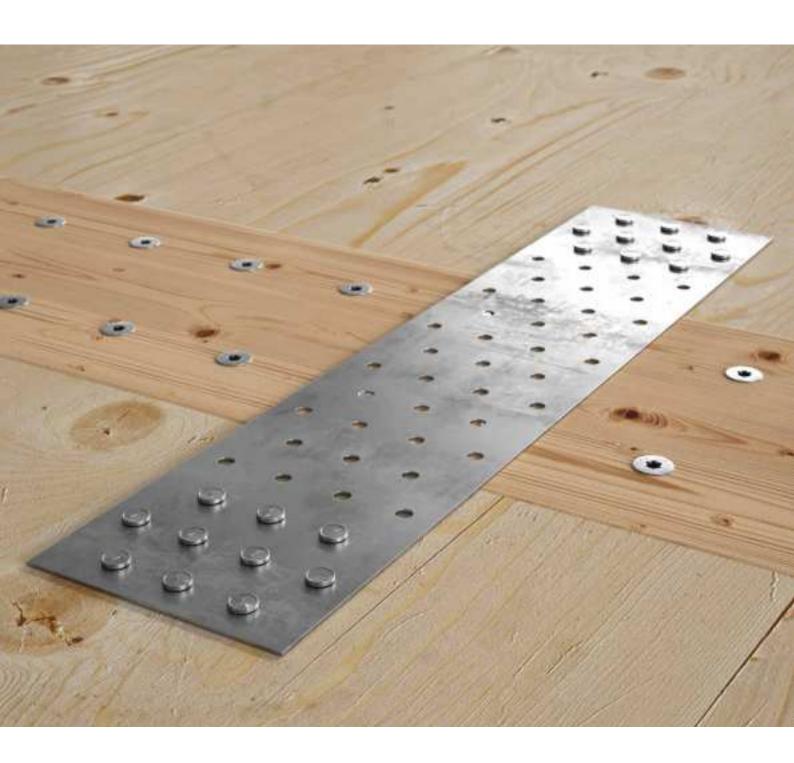

MY SOFTWARE

> Zn Elektroverzinkter Kohlenstoffstahl



LBA 25 PLA

LBA 34 PLA



LBA COIL

ANWENDUNGSGEBIETE

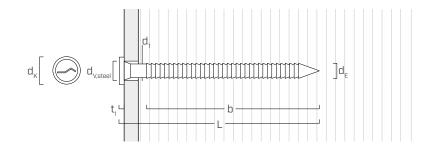
- Holzwerkstoffplatten
- Span- und MDF-Platten
- Massivholz
- Brettschichtholz
- BSP, LVL

CAPACITY DESIGN

Die Nagelstärken kommen den tatsächlichen experimentellen Stärken sehr viel näher, sodass die Leistungen zuverlässiger geplant werden können.

WKR

Werte auch zur Befestigung von Rothoblaas-Verbindern getestet, zertifiziert und berechnet. Die Verwendung eines Naglers beschleunigt und erleichtert die Montage.



Die Verwendung mit den Winkelverbindern NINO bietet besonders vielseitige Anwendungsmöglichkeiten, beispielsweise auch für Balken-Balken-Verbindungen.

Die höchsten Leistungen erreicht LBA zusammen mit dem Winkelverbinder WKR mit den spezifischen Festigkeitswerten auf BSP.

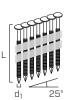
GEOMETRIE UND MECHANISCHE EIGENSCHAFTEN

			LBA	LBAI	
Nenndurchmesser	d_1	[mm]	4	6	4
Kopfdurchmesser	d_K	[mm]	8,00	12,00	8,00
Außendurchmesser	d_E	[mm]	4,40	6,60	4,40
Kopfstärke	t_1	[mm]	1,50	2,00	1,50
Bohrdurchmesser auf Stahlplatte	$d_{V,steel}$	[mm]	5,0÷5,5	7,0÷7,5	5,0÷5,5
Vorbohrdurchmesser ⁽¹⁾	d_V	[mm]	3,0	4,5	3,0
Charakteristisches Fließmoment	$M_{y,k}$	[Nm]	6,68	20,20	7,18
Charakteristischer Wert der Ausziehfestigkeit ⁽²⁾⁽³⁾	$f_{ax,k}$	[N/mm ²]	6,43	8,37	6,42
Charakteristischer Zugwiderstand	f _{tens,k}	[kN]	6,5	17,0	6,5

ARTIKELNUMMERN UND ABMESSUNGEN

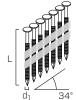
LOSE NÄGEL **LBA**

d ₁ [mm]	ARTNR.	L [mm]	b [mm]	Stk.
	LBA440	40	30	250
	LBA450	50	40	250
4	LBA460	60	50	250
	LBA475	75	65	250
	LBA4100	100	85	250
	LBA660	60	50	250
6	LBA680	80	70	250
	LBA6100	100	85	250


LBAI A4 | AISI316

d_1	ARTNR.	L	b	Stk.
[mm]		[mm]	[mm]	
4	LBAI450	50	40	250

NÄGEL, STREIFENMAGAZIN LBA 25 PLA - Kunststoffbindung 25°



d_1	ARTNR.	L	b	Stk.
[mm]		[mm]	[mm]	
	LBA25PLA440	40	30	2000
4	LBA25PLA450	50	40	2000
	LBA25PLA460	60	50	2000

Kompatibel mit Ankernagler 25° HH3522.

d_1	ARTNR.	L	b	Stk.
[mm]		[mm]	[mm]	
	LBA34PLA440	40	30	2000
4	LBA34PLA450	50	40	2000
	LBA34PLA460	60	50	2000

Kompatibel mit Streifenmagazin-Nagler 34° ATEU0116 und Gasnagler HH12100700.

NÄGEL AUF ROLLEN

d_1	ARTNR.	L	b	Stk.
[mm]		[mm]	[mm]	
	LBACOIL440	40	30	1600
4	LBACOIL450	50	40	1600
	LBACOIL460	60	50	1600

Kompatibel mit Nagler TJ100091.

ANMERKUNG: LBA, LBA 25 PLA, LBA 34 PLA und LBA COIL auf Anfrage in feuerverzinkter Ausführung (HOT-DIP) erhältlich.

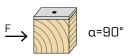
■ ZUGEHÖRIGE PRODUKTE

ARTNR.	Beschreibung	d _{1 NAGEL} [mm]	L _{NAGEL} [mm]	Stk.
HH3731	Faustnagler	4÷6	-	1
HH3522	Ankernagler 25°	4	40÷60	1
ATEU0116	Streifenmagazin-Nagler 34°	4	40÷60	1
HH12100700	Gas-Ankernagler 34°	4	40÷60	1
TJ100091	Rundmagazin-Ankernagler 15°	4	40÷60	1

Für weitere Informationen zum Nagler siehe S 406.

HH3731

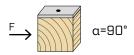
HH3522


HH12100700

■ MINDESTABSTÄNDE DER NÄGEL BEI ABSCHERBEANSPRUCHUNG | STAHL-HOLZ

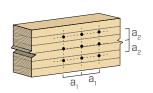
Nägel **OHNE Vorbohren**

 $\rho_k \leq 420 \; kg/m^3$


d_1	[mm]		4		6
a ₁	[mm]	10·d·0,7	28	12·d·0,7	50
a ₂	[mm]	5·d·0,7	14	5·d·0,7	21
a _{3,t}	[mm]	15·d	60	1 5⋅d	90
a _{3,c}	[mm]	10·d	40	10 ⋅d	60
a _{4.t}	[mm]	5·d	20	5·d	30
a _{4,c}	[mm]	5·d	20	5·d	30

d_1	[mm]		4		6
a ₁	[mm]	5·d·0,7	14	5·d·0,7	21
a ₂	[mm]	5·d·0,7	14	5·d·0,7	21
a _{3,t}	[mm]	10·d	40	10 ⋅d	60
a _{3,c}	[mm]	10·d	40	10 ⋅d	60
a _{4,t}	[mm]	7⋅d	28	10·d	60
a _{4,c}	[mm]	5·d	20	5·d	30

Nägel MIT Vorbohren

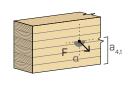


d_1	[mm]		4		6
a_1	[mm]	5·d·0,7	14	5·d·0,7	21
a ₂	[mm]	3·d·0,7	8	3·d·0,7	13
$a_{3,t}$	[mm]	12·d	48	12·d	72
a _{3,c}	[mm]	7⋅d	28	7⋅d	42
a _{4,t}	[mm]	3·d	12	3·d	18
a _{4,c}	[mm]	3·d	12	3·d	18

d_1	[mm]		4		6
a ₁	[mm]	4·d·0,7	11	4·d·0,7	17
a ₂	[mm]	4·d·0,7	11	4·d·0,7	17
a _{3,t}	[mm]	7·d	28	7⋅d	42
a _{3.c}	[mm]	7·d	28	7⋅d	42
a _{4,t}	[mm]	5·d	20	7·d	42
a _{4,c}	[mm]	3·d	12	3·d	18

α = Winkel zwischen Kraft- und Faserrichtung

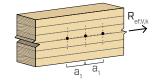
 $d = d_1 = Nenndurchmesser des Nagels$


beanspruchtes Hirnholzende $-90^{\circ} < \alpha < 90^{\circ}$

unbeanspruchtes Hirnholzende 90° < α < 270°

beanspruchter Rand 0° < α < 180°

unbeanspruchter Rand $180^{\circ} < \alpha < 360^{\circ}$



ANMERKUNGEN

- Die Mindestabstände werden gemäß der Normen EN 1995:2014 und in Übereinstimmung mit ETA-22/0002 berechnet.
- Bei Holz-Holz-Verbindungen müssen die Mindestabstände (a_1 , a_2) mit einem Koeffizienten von 1,5 multipliziert werden.

■ WIRKSAME NAGELANZAHL BEI ABSCHERBEANSPRUCHUNG

Die Tragfähigkeit einer Verbindung mit mehreren Nägeln vom gleichen Typ und mit gleicher Größe kann kleiner sein als die Summe der Tragfähigkeiten des einzelnen Verbindungsmittels. Für eine Reihe von n parallel zur Faserrichtung des Holzes in einem Abstand a_1 angeordneter Nägel beträgt die effektive charakteristische Tragfähigkeit:

$$R_{ef,V,k} = n_{ef} \cdot R_{V,k}$$

Der Wert von n_{ef} ist in der folgenden Tabelle abhängig von n und a₁ aufgeführt.

							a ₁ (*)					
		4·d	5·d	6·d	7·d	8·d	9·d	10 ⋅d	11-d	12·d	13·d	≥ 14·d
	2	1,41	1,48	1,55	1,62	1,68	1,74	1,80	1,85	1,90	1,95	2,00
n	3	1,73	1,86	2,01	2,16	2,28	2,41	2,54	2,65	2,76	2,88	3,00
	4	2,00	2,19	2,41	2,64	2,83	3,03	3,25	3,42	3,61	3,80	4,00
	5	2,24	2,49	2,77	3,09	3,34	3,62	3,93	4,17	4,43	4,71	5,00

^(*)Für Zwischenwerte a_1 ist eine lineare Interpolation möglich.

LBA Ø4-Ø6

					5	CHERWER	Т			ZUGKRÄFTE
	Geometrie					Stahl - Holz				Gewindeauszug
						→	S _{plate}			
d ₁	L	b				$R_{V,k}$				R _{ax,k}
[mm]	[mm]	[mm]				[kN]				[kN]
[mm]	[mm] S _{PLATE}	[mm]	1,5 mm	2,0 mm	2,5 mm	[kN] 3,0 mm	4,0 mm	5,0 mm	6,0 mm	[kN] -
[mm]		[mm] 30	1,5 mm 2,19	2,0 mm 2,17	2,5 mm 2,16		4,0 mm 2,11	5,0 mm 2,09	6,0 mm 2,06	
[mm]	S _{PLATE}					3,0 mm				-
[mm]	S _{PLATE}	30	2,19	2,17	2,16	3,0 mm 2,14	2,11	2,09	2,06	- 0,77
	S _{PLATE} 40 50	30 40	2,19 2,58	2,17 2,58	2,16 2,58	3,0 mm 2,14 2,58	2,11 2,58	2,09 2,58	2,06 2,58	- 0,77 1,08
	\$ _{PLATE} 40 50 60	30 40 50	2,19 2,58 2,83	2,17 2,58 2,83	2,16 2,58 2,83	3,0 mm 2,14 2,58 2,83	2,11 2,58 2,83	2,09 2,58 2,83	2,06 2,58 2,83	- 0,77 1,08 1,39
	\$PLATE 40 50 60 75	30 40 50 65	2,19 2,58 2,83 3,20	2,17 2,58 2,83 3,20	2,16 2,58 2,83 3,20	3,0 mm 2,14 2,58 2,83 3,20	2,11 2,58 2,83 3,20	2,09 2,58 2,83 3,20 3,69	2,06 2,58 2,83 3,20	- 0,77 1,08 1,39 1,85
	\$PLATE 40 50 60 75 100	30 40 50 65	2,19 2,58 2,83 3,20 3,69	2,17 2,58 2,83 3,20 3,69	2,16 2,58 2,83 3,20 3,69	3,0 mm 2,14 2,58 2,83 3,20 3,69	2,11 2,58 2,83 3,20 3,69	2,09 2,58 2,83 3,20 3,69	2,06 2,58 2,83 3,20 3,69	- 0,77 1,08 1,39 1,85 2,47
	\$PLATE 40 50 60 75 100 \$PLATE	30 40 50 65 85	2,19 2,58 2,83 3,20 3,69 3,0 mm	2,17 2,58 2,83 3,20 3,69 4,0 mm	2,16 2,58 2,83 3,20 3,69 5,0 mm	3,0 mm 2,14 2,58 2,83 3,20 3,69 6,0 mm	2,11 2,58 2,83 3,20 3,69 8,0 mm	2,09 2,58 2,83 3,20 3,69 10,0 mm	2,06 2,58 2,83 3,20 3,69 12,0 mm	- 0,77 1,08 1,39 1,85 2,47

LBAI Ø4

					ZUGKRÄFTE					
	Geometrie		Stahl - Holz						Gewindeauszug	
						→	Splate			
d ₁	L	b				R _{V,k}				R _{ax,k}
[mm]	[mm] S _{PLATE}	[mm]	1,5 mm	2,0 mm	2,5 mm	[kN] 3,0 mm	4,0 mm	5,0 mm	6,0 mm	[kN] -
4	50	40	2,67	2,67	2,67	2,67	2,67	2,66	2,63	1,11

ANMERKUNGEN

• Bei der Berechnung wurde eine Rohdichte der Holzelemente von ρ_k = 385 kg/m³ berücksichtigt. Für andere ρ_k -Werte können die aufgelisteten Festigkeiten mithilfe des k_{dens} -Beiwerts umgerechnet werden.

$$\begin{aligned} R'_{V,k} &= k_{dens,v} \cdot R_{V,k} \\ R'_{ax,k} &= k_{dens,ax} \cdot R_{ax,k} \end{aligned}$$

ρ _k [kg/m³]	350	380	385	405	425	430	440
C-GL	C24	C30	GL24h	GL26h	GL28h	GL30h	GL32h
k _{dens,v}	0,90	0,98	1,00	1,02	1,05	1,05	1,07
k _{dens.ax}	0,92	0,98	1,00	1,04	1,08	1,09	1,11

Die so ermittelten Festigkeitswerte können zugunsten der Sicherheit von denen abweichen, die sich aus einer genauen Berechnung ergeben.

ALLGEMEINE GRUNDLAGEN auf Seite 257.

LBA Ø4-Ø6

						ZUGKRÄFTE				
	Geometrie		Stahl-BSP							Gewindeauszug
				Splate						
d ₁	L	b				$R_{V,k}$				R _{ax,k}
[mm]	[mm]	[mm]				[kN]				[kN]
[mm]	[mm] S _{PLATE}	[mm]	1,5 mm	2,0 mm	2,5 mm	[kN] 3,0 mm	4,0 mm	5,0 mm	6,0 mm	[kN] -
[mm]		[mm] 30	1,5 mm 2,19	2,0 mm 2,17	2,5 mm 2,16		4,0 mm 2,11	5,0 mm 2,09	6,0 mm 2,06	
[mm]	S _{PLATE}					3,0 mm				-
[mm]	S _{PLATE}	30	2,19	2,17	2,16	3,0 mm 2,14	2,11	2,09	2,06	- 0,77
	S _{PLATE} 40 50	30 40	2,19 2,58	2,17 2,58	2,16 2,58	3,0 mm 2,14 2,58	2,11 2,58	2,09 2,58	2,06 2,58	- 0,77 1,08
	\$ _{PLATE} 40 50 60	30 40 50	2,19 2,58 2,83	2,17 2,58 2,83	2,16 2,58 2,83	3,0 mm 2,14 2,58 2,83	2,11 2,58 2,83	2,09 2,58 2,83	2,06 2,58 2,83	- 0,77 1,08 1,39
	\$PLATE 40 50 60 75	30 40 50 65	2,19 2,58 2,83 3,20	2,17 2,58 2,83 3,20	2,16 2,58 2,83 3,20	3,0 mm 2,14 2,58 2,83 3,20	2,11 2,58 2,83 3,20	2,09 2,58 2,83 3,20 3,69	2,06 2,58 2,83 3,20	- 0,77 1,08 1,39 1,85
	\$PLATE 40 50 60 75 100	30 40 50 65	2,19 2,58 2,83 3,20 3,69	2,17 2,58 2,83 3,20 3,69	2,16 2,58 2,83 3,20 3,69	3,0 mm 2,14 2,58 2,83 3,20 3,69	2,11 2,58 2,83 3,20 3,69	2,09 2,58 2,83 3,20 3,69	2,06 2,58 2,83 3,20 3,69	- 0,77 1,08 1,39 1,85 2,47
	\$PLATE 40 50 60 75 100 \$PLATE	30 40 50 65 85	2,19 2,58 2,83 3,20 3,69 3,0 mm	2,17 2,58 2,83 3,20 3,69 4,0 mm	2,16 2,58 2,83 3,20 3,69 5,0 mm	3,0 mm 2,14 2,58 2,83 3,20 3,69 6,0 mm	2,11 2,58 2,83 3,20 3,69 8,0 mm	2,09 2,58 2,83 3,20 3,69 10,0 mm	2,06 2,58 2,83 3,20 3,69 12,0 mm	- 0,77 1,08 1,39 1,85 2,47

LBAI Ø4

Ceometrie Stahl-BSP Gewindeauszug						ZUGKRÄFTE					
d1 L b R _{V,k} R _{ax,k} [mm] [mm] [kN] [kN] S _{PLATE} 1,5 mm 2,0 mm 2,5 mm 3,0 mm 4,0 mm 5,0 mm 6,0 mm -		Geometrie		Stahl-BSP						Gewindeauszug	
[mm] [mm] [mm] [kN] [kN] [kN] S _{PLATE} 1,5 mm 2,0 mm 2,5 mm 3,0 mm 4,0 mm 5,0 mm 6,0 mm -											
S _{PLATE} 1,5 mm 2,0 mm 2,5 mm 3,0 mm 4,0 mm 5,0 mm 6,0 mm -	d ₁	L	b				$R_{V,k}$				R _{ax,k}
	[mm]	[mm]	[mm]				[kN]				[kN]
4 50 40 2,67 2,67 2,67 2,67 2,67 2,66 2,63 1,11		S_{PLATE}		1,5 mm	2,0 mm	2,5 mm	3,0 mm	4,0 mm	5,0 mm	6,0 mm	-
	4	50	40	2,67	2,67	2,67	2,67	2,67	2,66	2,63	1,11

ANMERKUNGEN | BSP

- Die charakteristischen Werte entsprechen den nationalen Spezifikationen ÖNORM EN 1995 - Annex K.
- Bei der Berechnung wurde eine Rohdichte der Bretter, aus denen die BSP-Platte besteht, von $\rho_k=350\ kg/m^3$ berücksichtigt.
- Die angegebenen charakteristischen Widerstände gelten für Nägel, die in die Seitenfläche der BSP-Platte (Wide Face) eingesetzt sind und mehr als eine Schicht durchdringen.

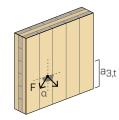
ALLGEMEINE GRUNDLAGEN auf Seite 257.

■ MINDESTABSTÄNDE DER NÄGEL BEI ABSCHERBEANSPRUCHUNG | BSP

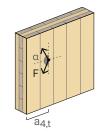
Nägel OHNE Vorbohren

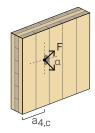
lateral face

	kuuz	7	
\xrightarrow{F}	1		α=90°


lateral face


d_1	[mm]		4	6
a ₁	[mm]	6·d	24	36
a ₂	[mm]	3·d	12	18
a _{3,t}	[mm]	10·d	40	60
a _{3,c}	[mm]	6·d	24	36
a _{4,t}	[mm]	3·d	12	18
a _{4,c}	[mm]	3·d	12	18


d ₁	[mm]		4	6
a ₁	[mm]	3·d	12	18
a ₂	[mm]	3·d	12	18
a _{3,t}	[mm]	7·d	28	42
a _{3,c}	[mm]	6·d	24	36
a _{4,t}	[mm]	7·d	28	42
a _{4,c}	[mm]	3·d	12	18


A= Winkel zwischen Kraft und Faserrichtung der äußeren Holzschicht der BSP-Platte $d=d_1=$ Nenndurchmesser des Nagels

ANMERKUNGEN

- Die Mindestabstände richten sich nach den nationalen Vorgaben der ÖNORM EN 1995-1-1 - Anhang K, die als gültig anzusehen sind, falls keine anderen Angaben in den technischen Unterlagen für BSP-Platten angegeben sind.
- Die Mindestabstände gelten für die min. BSP-Stärke $t_{CLT,min} = 10 \cdot d_1$ und für die Mindeststärke der einzelnen Schicht $t_{i,min} = 9$ mm.

STATISCHE WERTE

ALLGEMEINE GRUNDLAGEN

- Die charakteristischen Werte werden gemäß der Norm EN 1995:2014 und in Übereinstimmung mit ETA-22/0002 berechnet.
- Die Bemessungswerte werden aus den charakteristischen Werten wie folgt berechnet:

$$R_d = \frac{R_k \cdot k_{mod}}{\gamma_M}$$

Die Beiwerte γ_M und $k_{\mbox{mod}}$ sind aus der entsprechenden geltenden Norm zu übernehmen, die für die Berechnung verwendet wird.

- Bei den Werten für die mechanische Festigkeit und die Geometrie der Nägel wurde auf die Angaben in der ETA-22/0002 Bezug genommen.
- Die Bemessung und Überprüfung der Holzelemente und Metallplatten müssen separat durchgeführt werden.
- Die charakteristischen Scherfestigkeitswerte wurden bei eingeschraubten Nägel ohne Vorbohrung berechnet.
- Für die Positionierung der Nägel sind die Mindestabstände zu berücksichtigen.

- Die tabellarischen Werte sind unabhängig vom Kraft-Faser-Winkel.
- Die axialen charakteristischen Gewindeauszugswerte wurden mit einem Winkel ϵ von 90° zwischen den Fasern und dem Verbinder und einer Einschraubtiefe gleich "b" berechnet.
- Die charakteristischen Scherfestigkeitswerte für LBA/LBAI-Nagelschrauben
 Ø 4 wurden für eine Platte mit einer Stärke = S_{PLATE} bewertet, wobei immer auf eine dicke Platte gemäß ETA-22/0002 (S_{PLATE} ≥ 1,5 mm) Bezug genommen wird
- Die charakteristischen Scherfestigkeitswerte für LBA-Schrauben Ø 6 wurden für eine Platte mit einer Stärke = S_{PLATE} bewertet, wobei immer auf eine dicke Platte gemäß ETA-22/0002 (S_{PLATE} ≥ 2,0 mm) Bezug genommen wird.
- Bei kombinierten Scher- und Zugbeanspruchungen muss folgender Nachweis erbracht sein:

$$\left(\frac{F_{v,d}}{R_{v,d}}\right)^2 + \left(\frac{F_{ax,d}}{R_{ax,d}}\right)^2 \le 1$$

LBA Ø4-Ø6

	00					ZUGKRÄFTE				
	Geometrie				Gewindeauszug					
			→ S _{PLATE}							
d ₁ [mm]	L [mm]	b [mm]				R _{V,90,k} [kN]				R _{ax,90,k} [kN]
	S_{PLATE}		1,5 mm	2,0 mm	2,5 mm	3,0 mm	4,0 mm	5,0 mm	6,0 mm	-
	40	30	2,63	2,61	2.60					
			2,05	2,01	2,60	2,58	2,54	2,51	2,47	0,92
	50	40	2,95	2,95	2,60	2,58 2,95	2,54 2,95	2,51 2,95	2,47 2,95	0,92 1,29
4	50 60	40 50								
4			2,95	2,95	2,95	2,95	2,95	2,95	2,95	1,29
4	60	50	2,95 3,24	2,95 3,24	2,95 3,24	2,95 3,24	2,95 3,24	2,95 3,24	2,95 3,24	1,29 1,66
4	60 75	50 65	2,95 3,24 3,68	2,95 3,24 3,68	2,95 3,24 3,68	2,95 3,24 3,68	2,95 3,24 3,68	2,95 3,24 3,68	2,95 3,24 3,68	1,29 1,66 2,21
4	60 75 100	50 65	2,95 3,24 3,68 4,27	2,95 3,24 3,68 4,27	2,95 3,24 3,68 4,27	2,95 3,24 3,68 4,27	2,95 3,24 3,68 4,27	2,95 3,24 3,68 4,27	2,95 3,24 3,68 4,27	1,29 1,66 2,21 2,94
6	60 75 100 S _{PLATE}	50 65 85	2,95 3,24 3,68 4,27 3,0 mm	2,95 3,24 3,68 4,27 4,0 mm	2,95 3,24 3,68 4,27 5,0 mm	2,95 3,24 3,68 4,27 6,0 mm	2,95 3,24 3,68 4,27 8,0 mm	2,95 3,24 3,68 4,27 10,0 mm	2,95 3,24 3,68 4,27 12,0 mm	1,29 1,66 2,21 2,94

LBAI Ø4

			SCHERWERT						ZUGKRÄFTE	
Geometrie			Stahl-LVL							Gewindeauszug
						→ 1	S _{plate}			
d ₁	L	b				$R_{V,0,k}$				R _{ax,0,k}
[mm]	[mm]	[mm]				[kN]				[kN]
	S_{PLATE}		1,5 mm	2,0 mm	2,5 mm	3,0 mm	4,0 mm	5,0 mm	6,0 mm	-
4	50	40	3,04	3,04	3,04	3,04	3,04	3,04	3,04	1,32

ANMERKUNGEN | LVL

- Bei der Berechnung wurde eine Rohdichte der LVL-Elemente aus Nadelholz (Softwood) von $\rho_k=480\ kg/m^3$ berücksichtigt.

ALLGEMEINE GRUNDLAGEN auf Seite 257.

DWS

GIPSPLATTENSCHRAUBE

OPTIMALE GEOMETRIE

Trompetenkopf und phosphatierter Stahl, ideal zum Befestigen von Gipskartonplatten.

FEINGEWINDE

Schraube mit feinem Vollgewinde, ideal für die Befestigung an Trägern aus Blech.

ARTIKELNUMMERN UND ABMESSUNGEN

DWS - lose Schrauben

d_1	ARTNR.	L	Beschreibung	Stk.
[mm]		[mm]		
	FE620001	25		1000
3,5	FE620005	35	Unterkonstruktionen	1000
PH 2	FE620010	45	aus Blech	500
	FE620015	55		500
4,2 PH 2	FE620020	65	Unterkonstruktionen aus Blech	200

DWS STRIP - Gebundene Schrauben

d ₁	ARTNR.	L	Beschreibung	Stk.
[mm]		[mm]		
7.0	HH10600404	30		10000
3,9 PH 2	HH10600405	35	Unterkonstruktionen aus Holz	10000
	HH10600406	45	GGS FIOLE	10000
7.0	HH10600401	30	Unterkonstruktion	10000
3,9 PH 2	HH10600402	35	aus Blech	10000
	HH10600403	45	max 0,75	10000
3,9	HH10600397	30	fermacell	10000
PH 2	HH10600398	35	remacell	10000

Kompatibel mit Nagler HH3371. Siehe S. 405.

GEOMETRIE

DURCHMESSER [mm]	
3,5 (3,5 4)	12
LÄNGE [mm]	
25 (25 65)	200

NUTZUNGSKLASSE

ATMOSPHÄRISCHE KORROSIVITÄT

KORROSIVITÄT DES HOLZES

MATERIAL

Phosphatierter Kohlenstoffstahl

BETON

HOLZ-BETON-VERBUNDSYSTEM	62
TC FUSION HOLZ-BETON-VERBINDUNGSSYSTEM	70
MBS MBZ GEWINDESCHNEIDENDE SCHRAUBE FÜR MAUERWERK2	:74
SKR EVO SKS EVO SCHRAUBBARER ANKERDÜBEL FÜR BETON	76
SKR SKS SKP SCHRAUBBARER ANKERDÜBEL EÜR BETON CE1 27	78

CTC

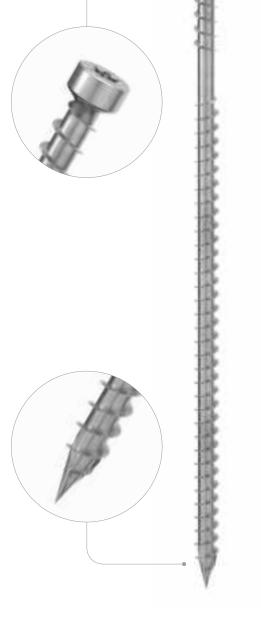
HOLZ-BETON-VERBUNDSYSTEM

ZERTIFIZIERUNG

Verbinder Holz-Beton mit spezifischer CE-Kennzeichnung gemäß ETA-19/0244. Bei paralleler und gekreuzter Anordnung der Verbinder auf 45° und 30°, mit und ohne Schalung getestet und berechnet.

SCHNELLES UND TROCKENES SYSTEM

Zugelassenes System, selbstbohrend, reversibel, sehr schnell zu montieren und nicht invasiv. Ausgezeichnete statische und akustische Leistungen sowohl bei neuen Konstruktionen als auch bei Sanierungen.


KOMPLETTES PRODUKTSORTIMENT

Bohrspitze mit Kerbe, versenkbarer Zylinderkopf. Zwei Durchmesser (7 und 9 mm) und zwei Längen (160 und 240 mm) erhältlich, um die Anzahl der Befestigungen zu optimieren.

MONTAGEANZEIGER

Das Unterkopfgewinde dient als Montageanzeiger während der Installation und verbessert den Sitz des Verbinders im Beton.

ANWENDUNGSGEBIETE

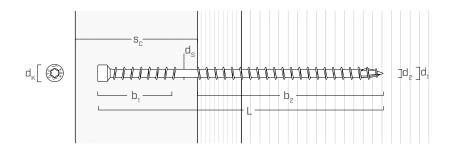
- Holzwerkstoffplatten
- Massivholz
- Brettschichtholz
- BSP und LVL
- Harthölzer
- Beton nach EN 206-1
- Leichtbeton nach EN 206-1
- Leichtbeton auf Basis von Silikaten

HOLZ-BETON

Sowohl für neue Verbunddecken als auch für die Sanierung vorhandener Decken ideal. Steifigkeitswerte auch mit Dampfbremse oder Schalldämpfungsfolie berechnet.

SANIERUNG

Auch für Harthölzer geprüft, zertifiziert und berechnet. Spezifische Zertifizierung für Anwendungen in Holz-Beton-Konstruktionen.



Verbunddecke Holz-Beton, Verbinder in zwei Reihen auf 30° ausgerichtet.

■ GEOMETRIE UND MECHANISCHE EIGENSCHAFTEN

GEOMETRIE

Nenndurchmesser	d_1	[mm]	7	9
Kopfdurchmesser	d_K	[mm]	9,50	11,50
Kerndurchmesser	d_2	[mm]	4,60	5,90
Schaftdurchmesser	d _S	[mm]	5,00	6,50
Vorbohrdurchmesser ⁽¹⁾	$d_{V,S}$	[mm]	4,0	5,0

⁽¹⁾ Vorbohrung gültig für Nadelholz (Softwood).

MECHANISCHE KENNGRÖSSEN

Nenndurchmesser	d_1	[mm]	7	9
Zugfestigkeit	$f_{\text{tens,k}}$	[kN]	20,0	30,0
Fließmoment	$M_{y,k}$	[Nm]	20,0	38,0
Reibungskoeffizient ⁽²⁾	μ	[-]	0,25	0,25

 $^{^{(2)}} Der\ Reibungsanteil\ \mu\ kann\ nur\ bei\ Anordnung\ mit\ nicht\ gekreuzten\ geneigten\ Schrauben\ (30°\ und\ 45°)\ und\ ohne\ Schalldämpfungsfolie\ ber\"ucksichtigt\ werden.$

			Nadelholz (Softwood)	Beton [EN 206-1] + Schalldämpfungsfolie	Beton [EN 206-1] ⁽³⁾
Charakteristischer Wert der Ausziehfestigkeit	$f_{ax,k}$	-	11,3 N/mm ²	10,0 kN	15,0 kN
Assoziierte Dichte	ρ_{a}	[kg/m ³]	350	-	-
Rohdichte	ρ_k	[kg/m ³]	≤ 590	-	-

 $^{^{(3)}}$ Wert gilt nur ohne Schalldämpfungsfolie für Anordnungen mit nicht gekreuzten Verbindern mit 45°-Neigung

ARTIKELNUMMERN UND ABMESSUNGEN

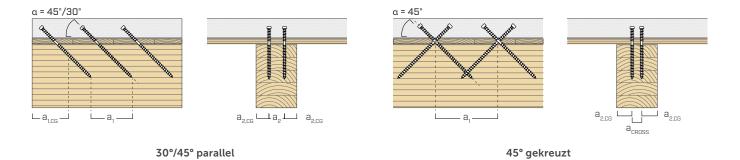
d_1	ARTNR.	L	b ₁	b ₂	Stk.
[mm]		[mm]	[mm]	[mm]	
7	CTC7160	160	40	110	100
TX 30	CTC7240	240	40	190	100

$d_{_1}$	ARTNR.	L	b_1	b ₂	Stk.
[mm]		[mm]	[mm]	[mm]	
9	CTC9160	160	40	110	100
TX 40	CTC9240	240	40	190	100

■ VERSCHIEBUNGSMODUL K_{ser}

Das Verschiebungsmodul K_{ser} bezieht sich auf jeweils einen Verbinder oder auf ein Paar gekreuzter Verbinder, die einer parallel zur Verschiebungsfläche laufenden Kraft ausgesetzt sind.

Ausrichtung der Verbinder ohne Schalldämpfungsfolie	K _{ser} [N/mm]		Ausrichtung der Verbinder mit Schalldämpfungsfolie	K _{ser} [N/mm]		
	CTC Ø7	CTC Ø9		CTC Ø7	CTC Ø9	
30° C	80 l _{ef}	80 l _{ef}	30° Conversion	48 l _{ef}	48 l _{ef}	
30° parallel			30° parallel			
45° parallel	48 l _{ef}	60 l _{ef}	45° parallel	16 l _{ef}	22 l _{ef}	
45" 45"	70 l _{ef}	100 l _{ef}	45	70 l _{ef}	100 l _{ef}	
45° gekreuzt			45° gekreuzt			


l_{ef} = Durchzugstiefe von Verbinder CTC im Holzelement, in mm.

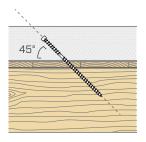
Die Schalldämpfungsfolie ist eine resiliente Unterestrichfolie aus Bitumen und Polyesterfilz, Typ SILENT FLOOR.

■ MINDESTABSTÄNDE DER VERBINDER BEI AXIALER BEANSPRUCHUNG

d_1	[mm]	7	9
a ₁	[mm]	130·sin(α)	130·sin(α)
a ₂	[mm]	35	45
a _{1,CG}	[mm]	85	85
a _{2,CG}	[mm]	32	37
a_{CROSS}	[mm]	11	14

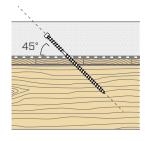
 $[\]alpha$ = Winkel zwischen Verbinder und Faser

ANMERKUNGEN auf Seite 269.


STATISCHE WERTE - BERECHNUNGSNORM NTC 2018

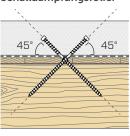
VORBEMESSUNG VERBINDER CTC FÜR VERBUNDDECKEN HOLZ-BETON

Balkenquerschnitt BxH [mm]


Massivholz C24 (EN 338:2004) - unterliegt keiner ständigen Überwachung

Montage auf 45°, ohne Schalldämpfungsfolie.

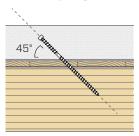
Ball	kenquerschnitt BxH [mm]	Spannweite [m]						
		3	3,5	4	4,5	5	6	
	Anzahl Verbinder pro Balken	32	32					
	СТС	7x160	7x240					
80 x 160	Gewindegang [mm]	100/100	120/120	-	-	-	-	
	Anz. Reihen	1	1					
	Anzahl der Verbinder/m ²	16,2	13,9					
	Anzahl Verbinder pro Balken	36	60	84				
	CTC	9x160	9x160	9x160				
120 x 120	Gewindegang [mm]	200/200	100/200	100/100	-	-	-	
	Anz. Reihen	2	2	2				
	Anzahl der Verbinder/m ²	18,2	26,0	31,8				
	Anzahl Verbinder pro Balken		22	20	28	44		
	СТС		7x160	9x240	9x240	9x240		
120 x 200	Gewindegang [mm]	-	150/200	200/300	150/200	100/150	-	
	Anz. Reihen		1	1	1	1		
	Anzahl der Verbinder/m ²		9,5	7,6	9,4	13,3		
	Anzahl Verbinder pro Balken			16	24	32	64	
	СТС			7x240	9x240	9x240	9x240	
120 x 240	Gewindegang [mm]	-	-	250/300	200/200	150/200	150/300	
	Anz. Reihen			1	1	1	2	
	Anzahl der Verbinder/m ²			6,1	8,1	10,8	19,4	


Montage auf 45°, mit Schalldämpfungsfolie.

	•	3	3,5	4	4,5	5	6
	Anzahl Verbinder pro Balken	18					
	CTC	7x160					
80 x 160	Gewindegang [mm]	200/200	-	-	-	-	-
	Anz. Reihen	1					
	Anzahl der Verbinder/m ²	9,1					
	Anzahl Verbinder pro Balken	22	64				
	CTC	9x160	9x240				
120 x 120	Gewindegang [mm]	150/150	100/150	-	-	-	-
	Anz. Reihen	1	2				
	Anzahl der Verbinder/m ²	11,1	27,7				
	Anzahl Verbinder pro Balken		22	20	28	88	
	CTC		7x160	9x160	7x240	9x240	
120 x 200	Gewindegang [mm]	-	150/200	200/300	150/200	120/120	-
	Anz. Reihen		1	1	1	2	
	Anzahl der Verbinder/m ²		9,5	7,6	9,4	26,7	
	Anzahl Verbinder pro Balken			16	24	24	124
	CTC			7x240	7x240	7x240	9x240
120 x 240	Gewindegang [mm]	-	-	250/300	250/300	200/300	100/100
	Anz. Reihen			1	1	1	2
	Anzahl der Verbinder/m ²			6,1	8,1	8,1	37,6

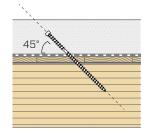
Spannweite[m]

Gekreuzte Montage auf 45°, mit oder ohne Schalldämpfungsfolie.

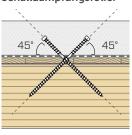

Ball	kenquerschnitt BxH [mm]	Spannweite[m]								
		3	3,5	4	4,5	5	6			
	Anzahl Verbinder pro Balken	32	48							
	CTC	7x160	7x240							
80 x 160	Gewindegang [mm]	200/200	150/150	-	-	-	-			
	Anz. Reihen	1	1							
	Anzahl der Verbinder/m ²	16,2	20,8							
	Anzahl Verbinder pro Balken	40	60							
	СТС	9x160	9x160							
120 x 120	Gewindegang [mm]	150/150	100/150	-	-	-	-			
	Anz. Reihen	1	1							
	Anzahl der Verbinder/m ²	20,2	26,0							
	Anzahl Verbinder pro Balken		26	32	48	68				
	СТС		7x240	7x240	7x240	7x240				
120 x 200	Gewindegang [mm]	-	250/400	250/250	150/300	150/150	-			
	Anz. Reihen		1	1	1	1				
	Anzahl der Verbinder/m ²		11,3	12,1	16,2	20,6				
	Anzahl Verbinder pro Balken			24	32	52	82			
	СТС			7x240	7x240	7x240	9x240			
120 x 240	Gewindegang [mm]	-	-	300/400	250/350	200/200	120/200			
	Anz. Reihen			1	1	1	1			
	Anzahl der Verbinder/m ²			9,1	10,8	17,5	24,8			

■ STATISCHE WERTE - BERECHNUNGSNORM NTC 2018

VORBEMESSUNG VERBINDER CTC FÜR VERBUNDDECKEN HOLZ-BETON


Brettschichtholz GL24h (EN14080:2013) - unterliegt ständiger Überwachung

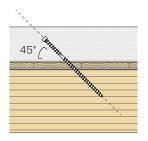
Montage auf 45°, ohne Schalldämpfungsfolie.


Ball	kenquerschnitt BxH [mm]	Spannweite [m]						
		3	3,5	4	4,5	5	5,5	6
	Anzahl Verbinder pro Balken	10	20	26	36			
	СТС	9x160	7x240	9x240	9x240			
120 x 160	Gewindegang [mm]	400/400	150/300	120/250	100/200	-	-	-
	Anz. Reihen	1	1	1	1			
	Anzahl der Verbinder/m ²	5,1	8,7	9,8	12,1			
	Anzahl Verbinder pro Balken		10	16	30	38	44	
	CTC		7x240	9x240	9x240	9x240	9x240	
120 x 200	Gewindegang [mm]	-	400/400	300/300	120/250	100/250	100/200	-
	Anz. Reihen		1	1	1	1	1	
	Anzahl der Verbinder/m ²		4,3	6,1	10,1	11,5	12,1	
	Anzahl Verbinder pro Balken			18	24	32	42	62
	СТС			7x240	9x240	9x240	9x240	9x240
140 x 200	Gewindegang [mm]	-	-	1	1	1	1	1
	Anz. Reihen			250/250	150/300	120/250	100/250	100/100
	Anzahl der Verbinder/m ²			6,8	8,1	9,7	11,6	15,7
	Anzahl Verbinder pro Balken				18	28	36	48
	CTC				7x240	7x240	9x240	9x240
140 x 240	Gewindegang [mm]	-	-	-	1	1	1	1
	Anz. Reihen				300/300	150/250	120/250	100/200
	Anzahl der Verbinder/m ²				6,1	8,5	9,9	12,1

Montage auf 45°, mit Schalldämpfungsfolie.

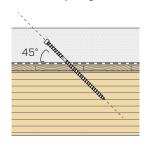
Ball	kenquerschnitt BxH [mm]	Spannweite[m]								
		3	3,5	4	4,5	5	5,5	6		
	Anzahl Verbinder pro Balken	10	14	20	48					
	СТС	7x160	7x160	7x240	7x240					
120 x 160	Gewindegang [mm]	400/400	250/400	200/300	100/100	-	-	-		
	Anz. Reihen	1	1	1	1					
	Anzahl der Verbinder/m ²	5,1	6,1	7,6	16,2					
	Anzahl Verbinder pro Balken		10	14	22	40				
	СТС		7x160	7x160	7x160	7x240				
120 x 200	Gewindegang [mm]	-	400/400	300/400	200/300	100/200	-	-		
	Anz. Reihen		1	1	1	1				
	Anzahl der Verbinder/m ²		4,3	5,3	7,4	12,1				
	Anzahl Verbinder pro Balken			12	22	36	58			
	СТС			7x240	7x240	7x240	7x240			
140 x 200	Gewindegang [mm]	-	-	400/400	200/300	150/150	100/100	-		
	Anz. Reihen			1	1	1	1			
	Anzahl der Verbinder/m ²			4,5	7,4	10,9	16,0			
	Anzahl Verbinder pro Balken				14	16	32	48		
	СТС				7x160	7x240	7x240	7x240		
140 x 240	Gewindegang [mm]	-	-	-	400/400	350/350	150/250	100/200		
	Anz. Reihen				1	1	1	1		
	Anzahl der Verbinder/m ²				4,7	4,8	8,8	12,1		

Gekreuzte Montage auf 45°, mit oder ohne Schalldämpfungsfolie.

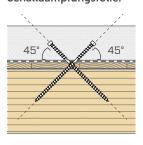

Ball	kenquerschnitt BxH [mm]	Spannweite [m]								
		3	3,5	4	4,5	5	5,5	6		
	Anzahl Verbinder pro Balken	16	30	44	68					
	CTC	7x160	7x240	7x240	9x240					
120 x 160	Gewindegang [mm]	400/400	200/300	150/250	100/200	-	-	-		
	Anz. Reihen	1	1	1	1					
	Anzahl der Verbinder/m ²	8,1	13,0	16,7	22,9					
	Anzahl Verbinder pro Balken		18	32	48	68				
	CTC		7x160	7x240	7x240	7x240				
120 x 200	Gewindegang [mm]	-	400/400	200/400	150/300	150/150	-	-		
	Anz. Reihen		1	1	1	1				
	Anzahl der Verbinder/m ²		7,8	12,1	16,2	20,6				
	Anzahl Verbinder pro Balken			28	46	62	84			
	CTC			7x240	7x240	7x240	7x240			
140 x 200	Gewindegang [mm]	-	-	250/400	150/350	120/250	100/200	-		
	Anz. Reihen			1	1	1	1			
	Anzahl der Verbinder/m ²			10,6	15,5	18,8	23,1			
	Anzahl Verbinder pro Balken				32	44	74	100		
	CTC				7x240	7x240	9x240	9x240		
140 x 240	Gewindegang [mm]	-	-	-	300/300	200/300	150/150	120/120		
	Anz. Reihen				1	1	1	1		
	Anzahl der Verbinder/m ²				10,8	13,3	20,4	25,3		

STATISCHE WERTE - BERECHNUNGSNORM EN 1995-1-1-2014

VORBEMESSUNG VERBINDER CTC FÜR VERBUNDDECKEN HOLZ-BETON


Brettschichtholz GL24h (EN14080:2013)

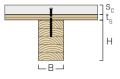
Montage auf 45°, ohne Schalldämpfungsfolie.


Ball	kenquerschnitt BxH [mm]	Spannweite [m]								
		3	3,5	4	4,5	5	5,5	6		
	Anzahl Verbinder pro Balken	10	16	26	32	44				
	CTC	9x160	9x240	9x240	9x240	9x240				
120 x 160	Gewindegang [mm]	400/400	200/400	150/200	120/200	100/150	-	-		
	Anz. Reihen	1	1	1	1	1				
	Anzahl der Verbinder/m ²	5,1	6,9	9,8	10,8	13,3				
	Anzahl Verbinder pro Balken		10	16	24	38	44			
	CTC		7x240	9x240	9x240	9x240	9x240			
120 x 200	Gewindegang [mm]	-	400/400	300/300	200/200	100/250	100/200	-		
	Anz. Reihen		1	1	1	1	1			
	Anzahl der Verbinder/m ²		4,3	6,1	8,1	11,5	12,1			
	Anzahl Verbinder pro Balken			16	24	32	42	52		
	CTC			7x240	9x240	9x240	9x240	9x240		
140 x 200	Gewindegang [mm]	-	-	1	1	1	1	1		
	Anz. Reihen			300/300	200/200	150/200	100/250	100/150		
	Anzahl der Verbinder/m ²			6,1	8,1	9,7	11,6	13,1		
	Anzahl Verbinder pro Balken				18	28	36	42		
	СТС				7x240	7x240	9x240	9x240		
140 x 240	Gewindegang [mm]	-	-	-	1	1	1	1		
	Anz. Reihen				300/300	200/200	120/250	120/200		
	Anzahl der Verbinder/m ²				6,1	8,5	9,9	10,6		

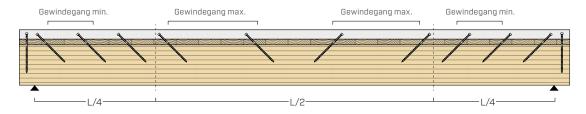
Montage auf 45°, mit Schalldämpfungsfolie.

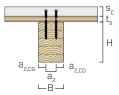
Bal	kenquerschnitt BxH [mm]	Spannweite[m]								
		3	3,5	4	4,5	5	5,5	6		
	Anzahl Verbinder pro Balken	10	14	20	48					
	CTC	7x160	7x160	9x160	7x240					
120 x 160	Gewindegang [mm]	400/400	400/400	200/300	100/100	-	-	-		
	Anz. Reihen	1	1	1	1					
	Anzahl der Verbinder/m ²	5,1	6,1	7,6	16,2					
	Anzahl Verbinder pro Balken		10	14	20	40				
	CTC		7x160	9x160	9x160	7x240				
120 x 200	Gewindegang [mm]	-	400/400	350/350	200/350	100/200	-	-		
	Anz. Reihen		1	1	1	1				
	Anzahl der Verbinder/m ²		4,3	5,3	6,7	12,1				
	Anzahl Verbinder pro Balken			12	16	32	58			
	CTC			7x240	7x160	7x240	7x240			
140 x 200	Gewindegang [mm]	-	-	400/400	250/400	150/200	100/100	-		
	Anz. Reihen			1	1	1	1			
	Anzahl der Verbinder/m ²			4,5	5,4	9,7	16,0			
	Anzahl Verbinder pro Balken				14	16	30	48		
	CTC				7x160	7x240	7x240	7x240		
140 x 240	Gewindegang [mm]	-	-	-	400/400	350/400	150/300	100/200		
	Anz. Reihen				1	1	1	1		
	Anzahl der Verbinder/m ²				4,7	4,8	8,3	12,1		

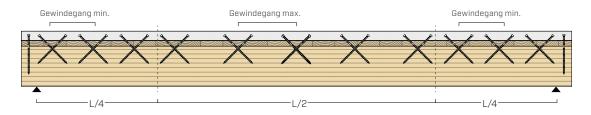
Gekreuzte Montage auf 45°, mit oder ohne Schalldämpfungsfolie.

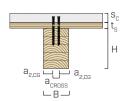


Balk	enquerschnitt BxH [mm]	Spannweite[m]								
		3	3,5	4	4,5	5	5,5	6		
	Anzahl Verbinder pro Balken	16	28	48	76					
	CTC	7x160	7x160	9x160	9x160					
120 x 160	Gewindegang [mm]	400/400	200/350	150/200	100/150	-	-	-		
	Anz. Reihen	1	1	1	1					
	Anzahl der Verbinder/m2	8,1	12,1	18,2	25,6					
	Anzahl Verbinder pro Balken		18	32	48	68				
	CTC		7x160	7x240	7x240	7x240				
120 x 200	Gewindegang [mm]	-	400/400	200/400	150/300	150/150	-	-		
	Anz. Reihen		1	1	1	1				
	Anzahl der Verbinder/m2		7,8	12,1	16,2	20,6				
	Anzahl Verbinder pro Balken			24	46	60	74			
	CTC			9x160	7x240	7x240	7x240			
140 x 200	Gewindegang [mm]	-	-	300/400	150/350	150/200	120/200	-		
	Anz. Reihen			1	1	1	1			
	Anzahl der Verbinder/m2			9,1	15,5	18,2	20,4			
	Anzahl Verbinder pro Balken				35	44	66	82		
	CTC				7x240	7x240	7x240	7x240		
140 x 240	Gewindegang [mm]	-	-	-	350/350	200/300	150/200	120/200		
	Anz. Reihen				1	1	1	1		
	Anzahl der Verbinder/m2				11,8	13,3	18,2	20,7		


BEISPIELE FÜR MÖGLICHE KONFIGURATIONEN


IM 45°-WINKEL ANGEORDNETE CTC-VERBINDER IN PARALLELANORDNUNG AUF 1 REIHE




IM 45°-WINKEL ANGEORDNETE CTC-VERBINDER IN PARALLELANORDNUNG AUF 2 REIHEN

IM 45°-WINKEL ANGEORDNETE CTC-VERBINDER IN GEKREUZTER ANORDNUNG AUF 1 REIHE

STATISCHE WERTE

ALLGEMEINE GRUNDLAGEN

- Bei den Werten für die mechanische Festigkeit und die Geometrie der Schrauben wurde auf die Angaben in der ETA-19/0244 Bezug genommen.
- Die bei der Planung berücksichtigte Scherfestigkeit des Verbinders entspricht dem kleineren Wert zwischen dem berücksichtigten Widerstand auf der Holzseite (R_{ax,d}), dem Bemessungswiderstand auf der Betonseite (R_{ax,concrete,d}) und dem berücksichtigten Widerstand auf der Stahlseite

$$R_{v,Rd} = (\cos \alpha + \mu \cdot \sin \alpha) \cdot \min \begin{cases} R_{ax,d} \\ R_{tens,d} \\ R_{ax,concrete,c} \end{cases}$$

wobei α der Winkel zwischen Verbinder und Faser (45° oder 30°) ist.

- Die Schalldämpfungsfolie ist eine resiliente Unterestrichfolie aus Bitumen und Polyesterfilz, Typ SILENT FLOOR.
- Der Reibungsanteil μ kann nur bei Anordnung mit nicht gekreuzten geneigten Schrauben (30° und 45°) und ohne Schalldämpfungsfolie berücksichtigt
- Der Holzbalken muss mindestens H ≥ 100 mm hoch sein
- Die Verbundplatte aus Beton muss eine Stärke s_c von 50 mm $\leq s_C \leq$ 0,7 H haben; es wird jedoch empfohlen, die stärker auf maximal 100 mm zu begrenzen, um die korrekte Verteilung der Kräfte zwischen Platte, Verbinder und Holzbalken zu gewährleisten.

ANMERKUNGEN

- Die Vorbemessung der CTC-Verbinder wurde gemäß Anhang B der Norm EN 1995-1-1:2014 und gemäß den Angaben der ETA-19/0244 durchgeführt.
- Die Vorbemessungstabellen für die Anzahl der Verbinder wurden sowohl gemäß der italienischen Norm NTC 2018 als auch der europäischen Norm EN 1995-1-1:2014 unter Berücksichtigung der folgenden Annahmen berechnet: - Abstand der Balken i = 660 mm;
- Betonplatte der Klasse C20/25 ($R_{ck} = 25 \text{ N/mm}^2$) mit einer Stärke $s_C = 50 \text{ mm}$;
- Vorhandensein einer Schaltung der Stärke t_s von 20 mm mit einer charakteristischen Dichte von 350 kg/m³;
- In der Betonplatte ist ein elektrogeschweißtes Netz Ø 8 mit Maschenweite 200 x 200 mm vorgesehen.
- Die Vorbemessungstabellen für die Anzahl der Verbinder wurden sowohl gemäß der italienischen Norm NTC 2018 als auch der europäischen Norm EN 1995-1-1:2014 unter Berücksichtigung der folgenden wirkenden Lasten berechnet:
 - Eigengewicht g_{k1} (Holzbalken + Dachschalung + Betonplatte) sonstige Dauerlast g_{k2} = 2 kN/m 2 ;

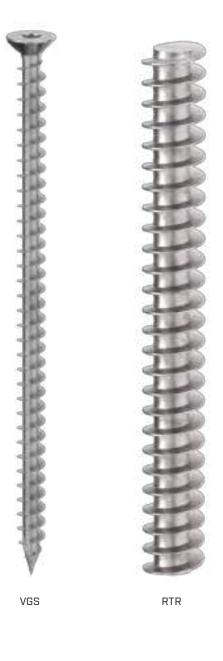
 - variable Last von mittlerer Dauer q_k= 2 kN/m²
- Als Gewindegang wird der Mindest- und Höchstabstand bezeichnet, in dem die Verbinder in Bezug auf die Seiten (L/4 - Mindestabstand) und die Mitte des Balkens (L/2 - Höchstabstand) angebracht werden können.
- Die Verbinder können unter Einhaltung der Mindestabstände in mehreren Reihen ($1 \le n \le 3$) entlang des Balkens angeordnet werden.
- Für weitere Berechnungen steht die kostenlose Software MyProject zur Verfügung (www.rothoblaas.de)

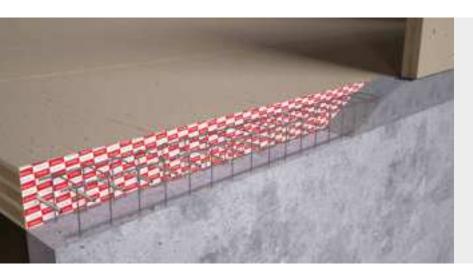
TC FUSION TIMBER-CONCRETE FUSION

HOLZ-BETON-VERBINDUNGSSYSTEM

HYBRIDSTRUKTUREN

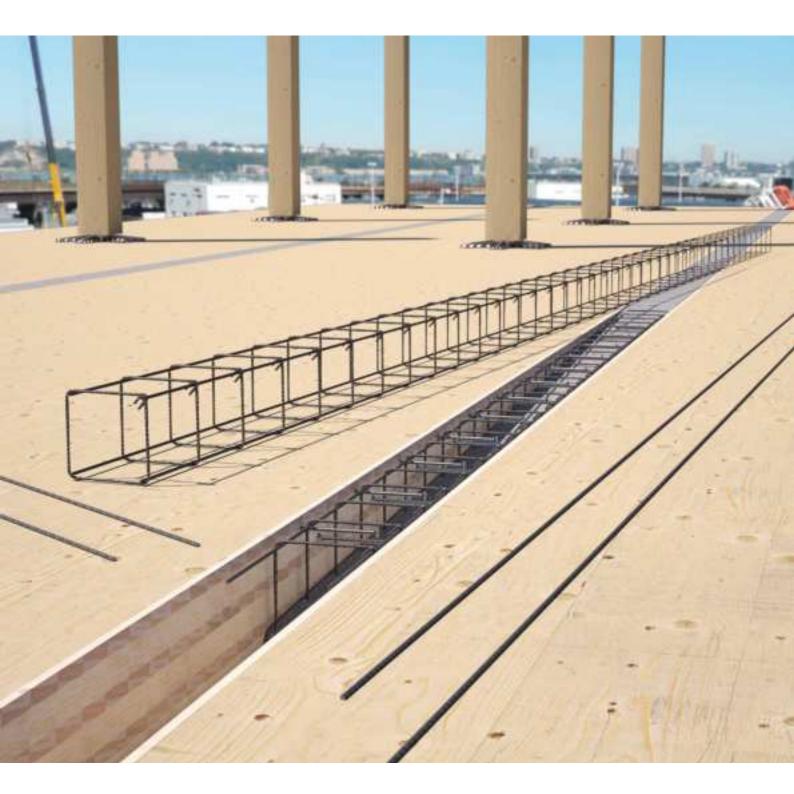
Die VGS-, VGZ- und RTR-Vollgewindeverbinder sind jetzt für alle Anwendungen zertifiziert, bei denen ein Holzelement (Wand, Decke usw.) Belastungen auf ein Betonelement (Stabilisierungskern, Fundament usw.) übertragen muss.


VORFERTIGUNG


Die Vorfertigung von Beton und Holz wird kombiniert: Die in den Betonguss eingebrachten Bewehrungsanschlüsse nehmen die Vollgewindeverbinder für Holz auf, und die zusätzliche Schüttung nach dem Verlegen der Bauteile aus Holz vervollständigt die Verbindung.

PUNKTGESTÜTZTE DECKEN

Das System ermöglicht Verbindungen zwischen BSP-Platten mit besonderer Festigkeit und Steifigkeit hinsichtlich Scherbeanspruchung, Biegemoment und Axialbelastung: Wir denken dabei beispielsweise an eine Verwendung mit SPIDER und PILLAR.

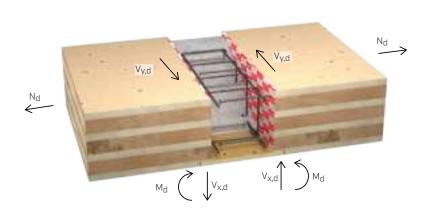


ANWENDUNGSGEBIETE

Holz-Beton-Verbindungen:

- BSP. LVL
- Brettschicht- und Massivholz
- Beton nach EN 206-1

SPIDER UND PILLAR

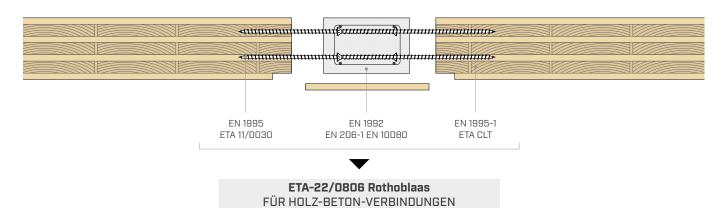

TC FUSION vervollständigt die Systeme SPI-DER und PILLAR und ermöglicht die Erstellung von Momentenverbindungen zwischen Plat-ten. Die Rothoblaas-Abdichtungssysteme er-möglichen die Trennung von Holz und Beton.

VERBINDER

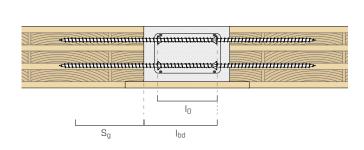
Тур	Beschreibung	d₁ [mm]	L [mm]	
		[[1]]	[[[]]]	
VGS	Holzbauschrauben	9 – 11 - 13	200 ÷ 1500	
VGZ	Holzbauschrauben	9 – 11	200 ÷ 1000	
RTR	Gewindestange	16	2200	

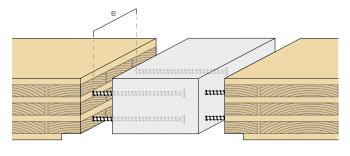
Anwendungsgebiet

Die **ETA-22/0806** ist spezifisch für Holz-Beton-Anwendungen mit VGS-, VGZ- und RTRT-Verbindern mit Vollgewinde. Die Berechnungsmethode wird sowohl für die Bewertung der Festigkeit als auch der Steifigkeit der Verbindung erläutert. Die Verbindung ermöglicht die Übertragung der Scher-, Zug- und Biegemomentspannungen zwischen Holzelementen (BSP, LVL, GL) und Beton, sowohl auf Decken- als auch Wandebene.

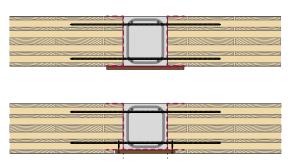


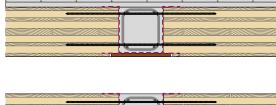
Starre Verbindung:


- Querkraft in der Plattenebene (V_v)
- Querkraft außerhalb der Ebene (V_x)
- Zugkräfte (N)
- Biegemoment (M)

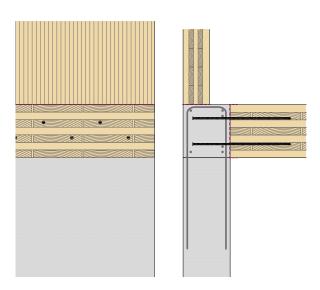

Scharnierverbindung:

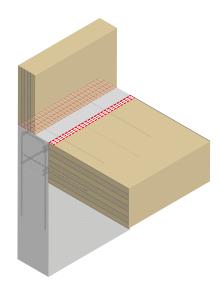
- Querkraft in der Plattenebene (V,)
- Querkraft außerhalb der Ebene (V_x)
- Zugkräfte (N)

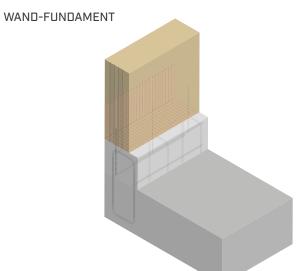

MONTAGE

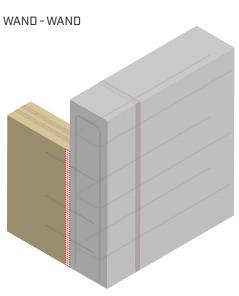


■ ANWENDUNGEN | BSP - BETON


DECKE-DECKE







DECKE - WAND

VGS

VOLLGEWINDE-VERBINDER MIT SENK- ODER SECHSKANTKOPF

RTR

ARMIERUNGSSYSTEM

Mehr zu den Anwendungen mit dem TC FUSION System in den Datenblättern für VGS- und RTR-Verbinder.

Mehr erfahren auf S. 164 und S. 196.

MBS | MBZ

GEWINDESCHNEIDENDE SCHRAUBE FÜR MAUERWERK

FENSTER- UND TÜRRAHMEN AUS HOLZ UND PVC

Der Senkkopf (MBS) ermöglicht die Montage der Fenster und Türen aus PVC ohne Beschädigungen des Rahmens. Der Zylinderkopf (MBZ) ist in der Lage, in Holzrahmen einzudringen und dort zu bleiben.

IFT-ZERTIFIZIERUNG

Festigkeitswerte in den verschiedenen Untergründen geprüft in Zusammenarbeit mit dem Institut für Fenstertechnik (IFT) in Rosenheim.

HI-LOW-GEWINDE

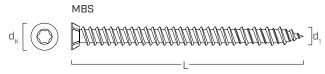
Das Hi-Low-Gewinde ermöglicht dank der geringeren Spannung, die auf das Material wirkt, auch in der Nähe von Trägerkanten eine sichere Befestigung. Ideal für Fenster und Türen.

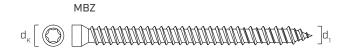
ANWENDUNGSGEBIETE

Befestigung von Rahmen aus Holz (MBZ) und PVC (MBS) auf Untergründen aus:

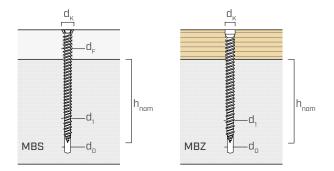
- Vollziegeln und Lochziegeln
- Vollbeton und Lochbeton
- Leichtbeton
- Porenbeton

ARTIKELNUMMERN UND ABMESSUNGEN


MBS - Senkkopfschraube


d_1	ARTNR.	L	Stk.
[mm]		[mm]	
	MBS7552	52	100
	MBS7572	72	100
	MBS7592	92	100
7.5	MBS75112	112	100
7,5 TX 30	MBS75132	132	100
1 / 30	MBS75152	152	100
	MBS75182	182	100
	MBS75212	212	100
	MBS75242	242	100

MBZ - Zylinderkopfschraube


d_1	ARTNR.	L	Stk.
[mm]		[mm]	
	MBZ7552	52	100
	MBZ7572	72	100
	MBZ7592	92	100
7.5	MBZ75112	112	100
7,5 TX 30	MBZ75132	132	100
1 \ 30	MBZ75152	152	100
	MBZ75182	182	100
	MBZ75212	212	100
	MBZ75242	242	100

■ GEOMETRIE UND MONTAGEPARAMETER

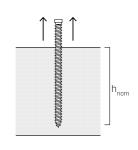
			MBS	MBZ
Nenndurchmesser	d_1	[mm]	7,5	7,5
Kopfdurchmesser	d_k	[mm]	10,00	8,00
Bohrdurchmesser Beton/Mauerwerk	d ₀	[mm]	6,0	6,0
Vorbohrdurchmesser im Holzelement	d _V	[mm]	6,2	6,2
Bohrdurchmesser im PVC-Element	d _F	[mm]	7,5	-

 $\mathbf{d_1}$ Schraubendurchmesser

d_K Kopfdurchmesser

d₀ Bohrdurchmesser Beton/Mauerwerk

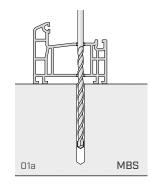
 d_V Vorbohrdurchmesser im Holzelement

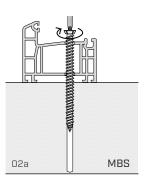

d_F Bohrdurchmesser im PVC-Element

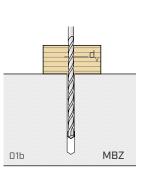
 \dot{h}_{nom} Nominale Eindringtiefe

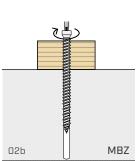
STATISCHE WERTE

AUSZIEHWIDERSTAND


Trägermaterial	h _{nom,min}	$N_{rec}^{(1)}$
	[mm]	[kN]
Beton	30	0,89
Vollziagal	40	0,65
Vollziegel	80	1,18
Lochzingel	40	0,12
Lochziegel	60	0,24
Leichtbeton	80	0,17




 $^{^{(1)}}$ Empfohlene, unter Berücksichtigung des Sicherheitsbeiwerts 3 gemessene Werte.



I SKR EVO | SKS EVO

SCHRAUBBARER ANKERDÜBEL FÜR BETON

SCHNELLES UND TROCKENES SYSTEM

Einfacher und schneller Gebrauch. Das besondere Gewinde benötigt eine kleine Vorbohrung und garantiert die Befestigung an Beton, ohne Spannungen im Beton zu erzeugen. Reduzierte Mindestabstände.

BESCHICHTUNG C4 EVO

Mehrschichtige Beschichtung auf anorganischer Basis mit einer äußeren Funktionsschicht mit Epoxidmatrix und Aluminiumflakes. Eignung für die Korrosionskategorie C4 und die Nutzungsklasse 3.

GRÖSSERER KOPF

Dank der vergrößerten Geometrie des Sechskantkopfs der SKR robust und einfach zu installieren.

DURCHMESSER [mm]	B (7,5 12) 16
LÄNGE [mm]	52 (60 400) 400
NUTZUNGSKLASSE	SC1 SC2 SC3
ATMOSPHÄRISCHE KORROSIVITÄT	C1 C2 C3 C4
KORROSIVITÄT DES HOLZES	
MATERIAL	Kohlenstoffstahl mit Beschichtung C4 EVO

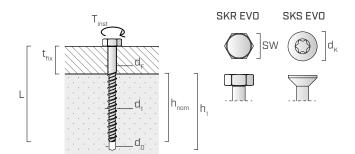
ANWENDUNGSGEBIETE

Befestigung von Holz- oder Stahlelementen an Betonträgern.

ARTIKELNUMMERN UND ABMESSUNGEN

SKR EVO - Sechskantkopf

ARTNR.	d ₁ [mm]	L [mm]	t _{fix} [mm]	h_{1,min} [mm]	h _{nom} [mm]	d ₀ [mm]	d _{F,timber} [mm]	d _{F,steel} [mm]	SW [mm]	T _{inst} [Nm]	Stk.
SKREVO7560		60	10	60	50	6	8	8-10	13	15	50
SKREVO7580	7,5	80	30	60	50	6	8	8-10	13	15	50
SKREVO75100		100	20	90	80	6	8	8-10	13	15	50
SKREVO1080		80	30	65	50	8	10	10-12	16	25	50
SKREVO10100		100	20	95	80	8	10	10-12	16	25	25
SKREVO10120	10	120	40	95	80	8	10	10-12	16	25	25
SKREVO10140		140	60	95	80	8	10	10-12	16	25	25
SKREVO10160		160	80	95	80	8	10	10-12	16	25	25
SKREVO12100		100	20	100	80	10	12	12-14	18	50	25
SKREVO12120		120	40	100	80	10	12	12-14	18	50	25
SKREVO12140		140	60	100	80	10	12	12-14	18	50	25
SKREVO12160		160	80	100	80	10	12	12-14	18	50	25
SKREVO12200	12	200	120	100	80	10	12	12-14	18	50	25
SKREVO12240		240	160	100	80	10	12	12-14	18	50	25
SKREVO12280		280	200	100	80	10	12	12-14	18	50	25
SKREVO12320		320	240	100	80	10	12	12-14	18	50	25
SKREVO12400		400	320	100	80	10	12	12-14	18	50	25


SKS EVO - Senkkopf

ARTNR.	d ₁	L	t _{fix}	h _{1,min}	h _{nom}	d ₀	d _{F,timber}	d _K	TX	T _{inst} [Nm]	Stk.
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]		[INIII]	
SKSEVO7560		60	10	60	50	6	8	13	TX40	-	50
SKSEVO7580		80	30	60	50	6	8	13	TX40	-	50
SKSEVO75100	7.5	100	20	90	80	6	8	13	TX40	-	50
SKSEVO75120	7,5	120	40	90	80	6	8	13	TX40	-	50
SKSEVO75140		140	60	90	80	6	8	13	TX40	-	50
SKSEVO75160		160	80	90	80	6	8	13	TX40	-	50

■ ZUSATZPRODUKTE - ZUBEHÖR

ARTNR.	Beschreibung	Stk.
SOCKET13	Buchse SW 13 Anschluss 1/2"	1
SOCKET16	Buchse SW 16 Anschluss 1/2"	1
SOCKET18	Buchse SW 18 Anschluss 1/2"	1

GEOMETRIE

d₁ Außendurchmesser des Ankers

Länge Anker

 $\begin{array}{ll} t_{fix} & \text{maximale Klemmdicke} \\ h_1 & \text{min. Bohrtiefe} \\ h_{nom} & \text{Nominale Eindringtiefe} \end{array}$

do Bohrdurchmesser im Betonträger

dF max. Bohrdurchmesser am zu befestigenden Element

SW Schlüsselweite

d_K Kopfdurchmesser

Tinst Drehmoment

I SKR | SKS | SKP

SCHRAUBBARER ANKERDÜBEL FÜR BETON CE1

SEISMISCHE LEISTUNGEN

Zertifizierung für Anwendungen auf gerissenem und ungerissenem Beton in der seismischen Leistungskategorie C1 (M10-M16) und C2 (M12-M16).

SOFORTIGE FESTIGKEIT

Aufgrund des Funktionsprinzips kann die Last ohne Wartezeit aufgebracht werden.

FORMSCHLUSS

Die auf den Anker einwirkenden Beanspruchungen werden hauptsächlich durch das Zusammenspiel der geometrischen Form des Ankers, speziell Durchmesser und Gewinde, auf den Untergrund übertragen; dies ermöglicht die Verriegelung im Untergrund und gewährleistet die Abdichtung.

DURCHMESSER [mm]	6 (6 16) 16
LÄNGE [mm]	52 (60 290) 400
NUTZUNGSKLASSE	SCI SC2
ATMOSPHÄRISCHE KORROSIVITÄT	C1 C2
KORROSIVITÄT DES HOLZES	
MATERIAL	Zn Elektroverzinkter Kohlenstoffstahl

ANWENDUNGSGEBIETE

Befestigung von Holz- oder Stahlelementen an Trägern aus:

- Beton nach EN 206:2013
- gerissener und ungerissener Beton

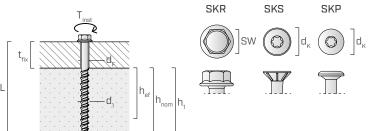
ARTIKELNUMMERN UND ABMESSUNGEN

SKR - Sechskantkopf mit integrierter Unterlegscheibe

d ₁	ARTNR.	L	t_{fix}	h _{1,min}	h_{nom}	h_{ef}	d_0	d_F	SW	T _{inst}	Stk.
[mm]		[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[Nm]	
8	SKR8100	100	40	75	60	48	6	9	10	20	50
	SKR1080	80	10	85	70	56	8	12	13	50	50
10	SKR10100	100	30	85	70	56	8	12	13	50	25
	SKR10120	120	50	85	70	56	8	12	13	50	25
	SKR1290	90	10	100	80	64	10	14	15	80	25
	SKR12110	110	30	100	80	64	10	14	15	80	25
12	SKR12150	150	70	100	80	64	10	14	15	80	25
12	SKR12210	210	130	100	80	64	10	14	15	80	20
	SKR12250	250	170	100	80	64	10	14	15	80	15
	SKR12290	290	210	100	80	64	10	14	15	80	15
16	SKR16130	130	20	140	110	85	14	18	21	160	10

SKS - Senkkopf

d ₁	ARTNR.	L	t _{fix}	h _{1,min}	h_{nom}	h_{ef}	d_0	d_F	d_K	TX	Stk.
[mm]		[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]		
6	SKS660	60	10	55	50	38	5	7	11	TX 30	100
	SKS860	60	10	75	50	38	6	9	14	TX 30	50
8	SKS880	80	20	75	60	48	6	9	14	TX 30	50
	SKS8100	100	40	75	60	48	6	9	14	TX 30	50
10	SKS10100	100	30	85	70	56	8	12	20	TX 40	50


SKP - Linsenkopf

d_1	ARTNR.	L	t _{fix}	h _{1,min}	h_{nom}	h_{ef}	d_0	d_F	d_K	TX	Stk.
[mm]		[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]		
6	SKP680	80	30	55	50	38	5	7	12	TX 30	50
0	SKP6100	100	50	55	50	38	5	7	12	TX 30	50

■ ZUSATZPRODUKTE - ZUBEHÖR

ARTNR.	Beschreibung	Stk.
SOCKET10	Buchse SW 10 Anschluss 1/2"	1
SOCKET13	Buchse SW 13 Anschluss 1/2"	1
SOCKET15	Buchse SW 15 Anschluss 1/2"	1
SOCKET21	Buchse SW 21 Anschluss 1/2"	1

GEOMETRIE

 d_1 Außendurchmesser des Ankers

Länge Anker

 $\mathsf{t}_{\mathsf{fix}}$ maximale Klemmdicke h₁

min. Bohrtiefe **h**nom Bohrtiefe

h_{ef} Effektive Verankerungstiefe

Bohrdurchmesser im Betonträger do

dF max. Bohrdurchmesser am zu befestigenden Element

sw Schlüsselweite d_K Kopfdurchmesser $T_{\mbox{inst}}$ Drehmoment

BETON | SKR | SKS | SKP | 279

METALL

METALL

SBD SELBSTBOHRENDER STABDÜBEL284
SBS SELBSTBOHRENDE SCHRAUBE FÜR HOLZ- METALL
SBS A2 AISI304 SELBSTBOHRENDE SCHRAUBE FÜR HOLZ- METALL
SPP SELBSTBOHRENDE SCHRAUBE FÜR HOLZ- METALL
SBN - SBN A2 AISI304 SELBSTBOHRENDE SCHRAUBE FÜR METALL
SAR SELBSTBOHRENDE SCHRAUBE MIT SECHSKANTKOPF FÜR STAHL
MCS A2 AISI304 SCHRAUBE MIT UNTERLEGSCHEIBE FÜR BLECH
MTS A2 AISI304 BLECHSCHRAUBE
CPL DICHTSCHEIBE AUS VORLACKIERTEM BLECH MIT PE-DICHTUNG
WBAZ EDELSTAHL-BEILAGSCHEIBE MIT DICHTUNG

HOLZ-METALL

METALL BOHREN

Die Schrauben für Holz-Metall haben eine spezielle Spitze, die es ermöglicht, das Loch direkt während der Montage der Schraube in die Metallelemente zu bohren.

Ihre Funktionsweise folgt den gleichen Grundsätzen wie Bohrer und Fräser.

Das Bohren von Metall erzeugt sehr viel Wärme um den Arbeitsbereich: 80 % dieser Wärme ist in den Stahlspänen enthalten, die während des Verfahrens entstehen.

Es ist wichtig, das Bohrmehl zu entfernen, um die Penetrationsfähigkeit zu erhalten.

In der Regel werden die Bohrspitzen der Holz-Metall-Schrauben aus Kohlenstoffstahl hergestellt, der bei hohen Temperaturen weniger stabil ist als Stahlbohrer (SNAIL METAL).

In extremen Situationen kann die erzeugte Wärme so groß sein, dass die Bohrspitzen schmilzt und im Holz verbrennt.

Beim Bohren angefallene Späne.

Bei Holz erleichtern Ausfräsungen über die Tiefe der Platte hinaus das Entfernen von Bohrrückständen und tragen dazu bei, in der Nähe der Bohrspitze eine akzeptable Temperatur beizubehalten.

Die Temperatur der Spitze hängt proportional von folgenden Faktoren ab:

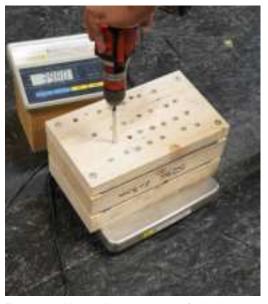
SCHRAUBERDREHZAHL [RPM]

Es empfiehlt sich die Verwendung von Schrauben mit Drehzahlregelung, die mit einer Kupplung oder der Möglichkeit zur Drehmomentkontrolle ausgestattet sind (z. B. Mafel A 18M BL).

AUFGEBRACHTE KRAFT [kg]

Hierbei handelt es sich um die Kraft, mit der der Bediener die Schraube bei der Montage eindrückt.

HÄRTE DER PLATTE


Dies ist die Bohr- und Scherfestigkeit des Metalls, die nicht so sehr von der Werkstoffklasse abhängt, sondern von den Wärmebehandlungen, denen das Material unterzogen wurde (z. B. Härten/Normalisieren).

Zum Bohren von Aluminium ist aufgrund seiner geringen Härte im Allgemeinen eine geringere aufgebrachte Kraft und eine niedrigere Schraubgeschwindigkeit erforderlich als bei Stahl.

Die aufgebrachte Kraft kann verringert werden, sofern die Anzahl der Schrauberdrehungen proportional erhöht wird (und umgekehrt).

Bei besonders harten Stählen kann es hilfreich sein, die Drehzahl des Schraubers zu reduzieren und die aufgebrachte Kraft zu erhöhen.

Einschraubprüfungen für selbstbohrende Stahldübel in Holz-Stahl-Anwendung mit kontrollierter Kraft.

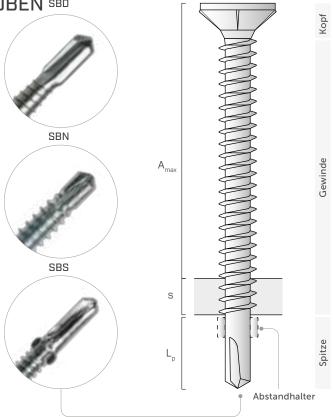
d_1	(RPM + F _{appl}) rec					
[mm]	[RPM]	[kg]				
3,5	2200	35				
4,2	1900	40				
4,8	1600	47				
5,5	1400	53				
6,3	1200	60				
7,5	1100	68				

Kombination RPM- F_{appl} , anzuwenden abhängig von d_{1} .

HOLZ-METALL-SPITZEN UND -SCHRAUBEN SBD

WIE FUNKTIONIEREN HOLZ-METALL-SCHRAUBEN?

Die Form der Spitze erleichtert die Reinigung des Lochs und entfernt die dort anfallenden Stahlspäne.

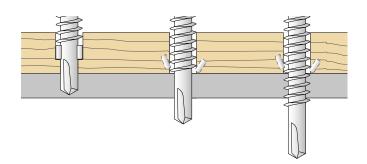

Die Verjüngung an der Spitze des SBD dient gerade dazu, Platz für Bohrmehl abseits des Bohrbereichs zu schaffen.

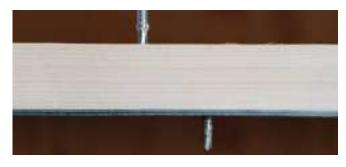
Die maximale Klemmstärke (A_{max}) entspricht der Länge der Schraube abzüglich der Spitze und 3 Gewindegängen.

3 Gewindegänge entsprechen der idealen Länge, um die Schraube in der Metallplatte zu halten.

Die Länge der Spitze L_p bestimmt die maximal bohrbare Stärke.

 $L_{\rm p}$ muss lang genug sein, um die Rückstände einzuleiten. Wenn das Gewinde die Platte berührt, bevor der Bohrvorgang abgeschlossen ist, kann der Verbinder brechen.


HOLZ-METALL-SPITZE MIT ABSTANDHALTERN


Bei Anwendungen, bei denen die Stärke des zu befestigenden Holzelements (A) viel größer ist als die der Metallplatte (s), werden die **Abstandhalter an der Spitze** verwendet.

Die Abstandhalter schützen das Gewinde und sorgen dafür, dass es nicht mit dem Holzelement in Kontakt kommt.

Durch die Schaffung eines größeren Lochs beschädigen die Abstandhalter das Gewinde nicht, und es kann die Platte unversehrt erreichen.

Sobald die Abstandhalter die Platte berühren, brechen sie, damit das Gewinde in der Platte anbeißen kann.

SBS-Schraube vor und nach der Montage

Ein vergrößertes Loch verhindert, dass sich das Holzelement beim Bohren des Metalls aus dem Grundmetall löst.

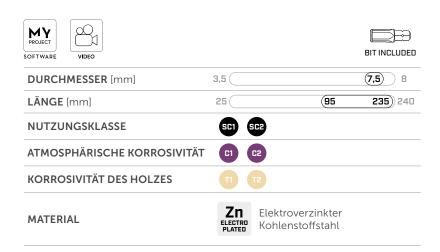
SELBSTBOHRENDER STABDÜBEL

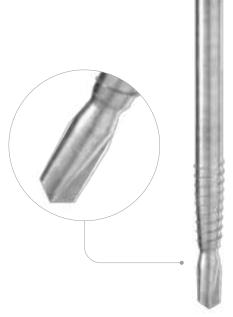
VERJÜNGTE SPITZE

Die neue verjüngte Bohrspitze reduziert die Einschraubzeiten in Holz-Metall-Verbindungssysteme auf ein Minimum und garantiert die Anwendung an schwer zugänglichen Stellen (geringe Anwendungskraft).

HÖHERE FESTIGKEIT

Höhere Scherfestigkeit als bei der Vorgängerversion.


Der Durchmesser von 7,5 mm garantiert eine höhere Scherfestigkeit im Vergleich zu anderen Lösungen auf dem Markt und ermöglicht die Optimierung der Anzahl der Befestigungen.


DOPPELGEWINDE

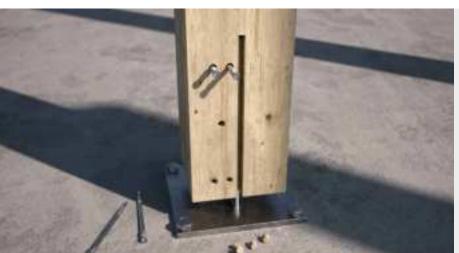
Das Gewinde in der Nähe der Spitze (b_1) erleichtert das Verschrauben. Das längere Unterkopfgewinde (b_2) ermöglicht einen schnellen und präzisen Verschluss der Verbindung.

ZYLINDERKOPF

Der Stabdübel kann die Oberfläche des Untergrunds aus Holz durchdringen. Garantiert eine optimale Optik und erfüllt die Anforderungen an den Feuerwiderstand.

VIDEO

Scannen Sie den QR-Code und schauen Sie sich das Video auf unserem YouTube-Kanal an



ANWENDUNGSGEBIETE

Selbstbohrendes System für verdeckte Holz-Stahl- und Holz-Aluminium-Verbindungen. Verwendbar mit Schraubern bei 600-2100 U/ min; aufgebrachte Mindestkraft 25 kg, mit:

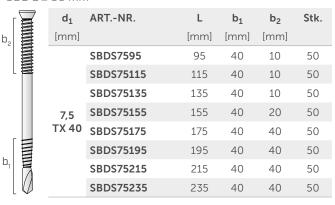
- Stahl S235 ≤ 10,0 mm
- Stahl S275 ≤ 10,0 mm
- Stahl S355 ≤ 10,0 mm
- ALUMINI-, ALUMIDI- und ALUMAXI-Balkenträger

WIEDERHERSTELLUNG DES MOMENTS

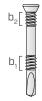
Stellt Scher- und Momentenkräfte in den verdeckten Verbindungen der Mittellinie von großen Balken wieder her.

SEHR HOHE GESCHWINDIGKEIT

Der einzige Stabdübel, der eine 5 mm dicke S355-Platte in 20 Sekunden durchbohrt (horizontale Anwendung mit einer aufgebrachten Kraft von 25 kg). Kein selbstbohrender Stabdübel übertrifft die Anwendungsgeschwindigkeit von SBD mit seiner neuen Spitze.

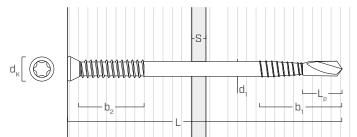


Befestigung von Rothoblaas-Pfostenträgern mit Innenschwert F70.


Angewinkelte starre Verbindung mit doppelter Innenplatte (LVL).

ARTIKELNUMMERN UND ABMESSUNGEN

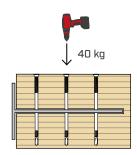
SBD L \geq 95 mm

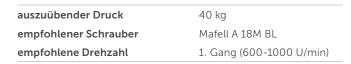

 $SBD\ L \le 75\ mm$

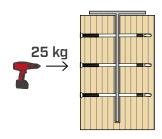
d_1	ARTNR.	L	b_1	b_2	Stk.
[mm]		[mm]	[mm]	[mm]	
7,5	SBD7555	55	-	10	50
TX 40	SBD7575	75	30	10	50

■ GEOMETRIE UND MECHANISCHE EIGENSCHAFTEN

SBD L ≥ 95 mm

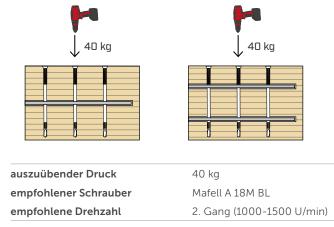

SBD L ≤ 75 mm


			SBD L≥95 mm	SBD L ≤ 75 mm
Nenndurchmesser	d_1	[mm]	7,5	7,5
Kopfdurchmesser	d_K	[mm]	11,00	11,00
Länge der Spitze	L_p	[mm]	20,0	24,0
Wirksame Länge	$L_{\rm eff}$	[mm]	L-15,0	L-8,0
Charakteristisches Fließmoment	$M_{y,k}$	[Nm]	75,0	42,0


■ MONTAGE | ALUMINIUMPLATTE

Platte	einzelne Platte	
	[mm]	
ALUMINI	6	
ALUMIDI	6	
ALUMAXI	10	

Die Stärke der Ausfräsung im Holz sollte der Stärke der Platte plus mindestens 1 mm entsprechen.



auszuübender Druck25 kgempfohlener SchrauberMafell A 18M BLempfohlene Drehzahl1. Gang (600-1000 U/min)

MONTAGE | STAHLPLATTE

Platte	einzelne Platte	doppelte Platte					
	[mm]	[mm]					
Stahl S235	10	8					
Stahl S275	10	6					
Stahl S355	10	5					

Die Stärke der Ausfräsung im Holz sollte der Stärke der Platte plus mindestens 1 mm entsprechen.

auszuübender Druck	25 kg
empfohlener Schrauber	Mafell A 18M BL
empfohlene Drehzahl	2. Gang (1500-2000 U/min)

HÄRTE DER PLATTE

Die Härte der Stahlplatte kann die Durchzugszeiten der Stabdübel stark beeinflussen.

 \triangle

Die Härte ist die Festigkeit des Materials gegenüber Bohren und Schneiden.

Allgemein lässt sich sagen: Je härter die Platte, desto länger die Bohrzeit.

Die Härte der Platte hängt nicht immer von der Festigkeit des Stahls ab; sie kann von Punkt zu Punkt variieren und wird stark von der Wärmebehandlung beeinflusst: Normalisierte Platten haben eine mittlere bis niedrige Härte, während das Härten dem Stahl eine hohe Härte verleiht.

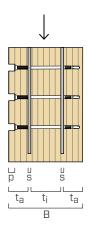
■ STATISCHE WERTE - HOLZ-METALL-HOLZ

1 INNENPLATTE - BOHRTIEFE STABDÜBELKOPF 0 mm

				7,5x55	7,5x75	7,5x95	7,5x115	7,5x135	7,5x155	7,5x175	7,5x195	7,5x215	7,5x235
Balkenbreite B [mm		[mm]	60	80	100	120	140	160	180	200	220	240	
Bohrtiefe Kopf p		[mm]	0	0	0	0	0	0	0	0	0	0	
Außenholz t _a		ta	[mm]	27	37	47	57	67	77	87	97	107	117
R _{v,k} [kN]	Winkel Kraft - Fasern		0°	7,48	9,20	12,10	12,88	12,41	15,27	16,69	17,65	18,41	18,64
			30°	6,89	8,59	11,21	11,96	11,56	13,99	15,23	16,42	17,09	17,65
		n	45°	6,41	8,09	10,34	11,20	10,86	12,96	14,05	15,22	16,00	16,62
			60°	6,00	7,67	9,62	10,58	10,27	12,10	13,07	14,12	15,08	15,63
			90°	5,66	7,31	9,01	10,04	9,77	11,37	12,24	13,18	14,19	14,79

1 INNENPLATTE - BOHRTIEFE STABDÜBELKOPF 15 mm

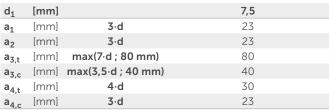
				7,5x55	7,5x75	7,5x95	7,5x115	7,5x135	7,5x155	7,5x175	7,5x195	7,5x215	7,5x235
Balkenbreite B		В	[mm]	80	100	120	140	160	180	200	220	240	-
Bohrtiefe Kopf p		р	[mm]	15	15	15	15	15	15	15	15	15	-
Außenholz t _a		[mm]	37	47	57	67	77	87	97	107	117	-	
							I		l		T		
R _{v,k} [kN]	Winkel Kraft - Fasern	0°	8,47	9,10	11,92	12,77	13,91	15,22	16,66	18,02	18,64	-	
		30°	7,79	8,49	11,17	11,86	12,82	13,95	15,20	16,54	17,43	-	
		45°	7,25	8,00	10,55	11,11	11,93	12,92	14,02	15,20	16,31	-	
		60°	6,67	7,58	10,03	10,48	11,19	12,06	13,04	14,09	15,21	-	
		90°	6,14	7,23	9,59	9,95	10,56	11,33	12,21	13,16	14,17	-	


■ STATISCHE WERTE - HOLZ-METALL-HOLZ

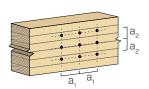
2 INNENPLATTEN - BOHRTIEFE STABDÜBELKOPF 0 mm

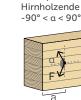
				7,5x55	7,5x75	7,5x95	7,5x115	7,5x135	7,5x155	7,5x175	7,5x195	7,5x215	7,5x235
Balkenbreite		В	[mm]	-	-	-	-	140	160	180	200	220	240
Bohrtiefe Kopf		р	[mm]	-	-	-	-	0	0	0	0	0	0
Außenho	olz	t _a	[mm]	-	-	-	-	45	50	55	60	70	75
Innenholz t _i		[mm]	-	-	-	-	38	48	58	68	68	78	
			0°	-	-	-	-	20,07	22,80	25,39	28,07	29,24	31,80
			30°	-	-	-	-	18,20	20,91	23,19	25,56	26,55	29,07
R_{v,k} [kN]	Winkel Kraft - Faser	'n	45°	-	-	-	-	16,67	19,36	21,39	23,51	24,36	26,63
[[(] 4]	Marc raser		60°	-	-	-	-	15,41	18,01	19,90	21,81	22,55	24,60
			90°	-	-	-	-	14,35	16,73	18,64	20,38	21,01	22,89

2 INNENPLATTEN - BOHRTIEFE STABDÜBELKOPF 10 mm

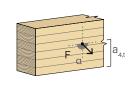

			7,5x55	7,5x75	7,5x95	7,5x115	7,5x135	7,5x155	7,5x175	7,5x195	7,5x215	7,5x235
Balkenbreite		[mm]	-	-	-	140	160	180	200	220	240	-
Bohrtiefe Kopf		[mm]	-	-	-	10	10	10	10	10	10	-
Außenho	olz t _a	[mm]	-	-	-	50	55	60	75	80	85	-
Innenho	lz t _i	[mm]	-	-	-	28	45	50	65	70	75	-
		0°	-	-	-	16,56	20,07	23,22	25,65	28,89	30,50	-
		30°	-	-	-	15,07	18,20	21,29	23,14	26,32	27,78	-
R _{v,k} [kN]	Winkel Kraft - Fasern	45°	-	-	-	13,86	16,67	19,53	21,11	24,05	25,50	-
[1014]	Trait rasem	60°	-	-	-	12,85	15,41	18,01	19,43	22,10	23,62	-
		90°	-	-	-	12,00	14,35	16,73	18,01	20,46	22,02	-

■ MINDESTABSTÄNDE DER STABDÜBEL BEI ABSCHERBEANSPRUCHUNG


d_1	[mm]		7,5
a_1	[mm]	5·d	38
a ₂	[mm]	3·d	23
a _{3,t}	[mm]	max(7·d; 80 mm)	80
a _{3,c}	[mm]	max(3,5·d; 40 mm)	40
$a_{4,t}$	[mm]	3·d	23
a _{4,c}	[mm]	3·d	23

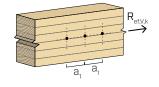


α = Winkel zwischen Kraft- und Faserrichtung


 $d = d_1 = Nenndurchmesser Stabdübel$

0° < α < 180°

180° < α < 360°


ANMERKUNGEN

• Die Mindestabstände der Verbinder mit Abscherbeanspruchung werden gemäß der Norm EN 1995:2014 berechnet.

■ WIRKSAME STABDÜBELANZAHL BEI ABSCHERBEANSPRUCHUNG

Die Tragfähigkeit einer Verbindung mit mehreren Stabdübeln vom gleichen Typ und mit gleicher Größe kann kleiner sein als die Summe der Tragfähigkeiten des einzelnen Verbindungsmittels. Für eine Reihe von n parallel zur Faserrichtung des Holzes ($\alpha=0^{\circ}$) in einem Abstand a_1 angeordneten Stabdübel beträgt die effektive charakteristische Tragfähigkeit:

$$R_{ef,V,k} = n_{ef} \cdot R_{V,k}$$

Der Wert von n_{ef} ist in der folgenden Tabelle abhängig von n und a₁ aufgeführt.

		a ₁ (*) [mm]										
		40	50	60	70	80	90	100	120	140		
	2	1,49	1,58	1,65	1,72	1,78	1,83	1,88	1,97	2,00		
	3	2,15	2,27	2,38	2,47	2,56	2,63	2,70	2,83	2,94		
n	4	2,79	2,95	3,08	3,21	3,31	3,41	3,50	3,67	3,81		
	5	3,41	3,60	3,77	3,92	4,05	4,17	4,28	4,48	4,66		
	6	4,01	4,24	4,44	4,62	4,77	4,92	5,05	5,28	5,49		

(*)Für Zwischenwerte a₁ ist eine lineare Interpolation möglich.

STATISCHE WERTE

ALLGEMEINE GRUNDLAGEN

- Die charakteristischen Werte entsprechen der Norm EN 1995:2014.
- Die Bemessungswerte werden aus den charakteristischen Werten wie folgt berechnet:

$$R_d = \frac{R_k \cdot k_{mod}}{\gamma_M}$$

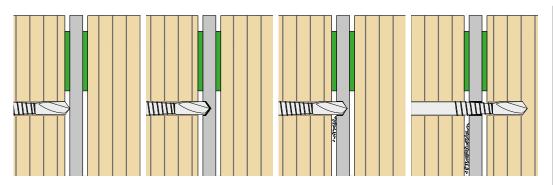
Die Beiwerte γ_M und $k_{\mbox{mod}}$ sind aus der entsprechenden geltenden Norm zu übernehmen, die für die Berechnung verwendet wird.

- Werte für mechanische Festigkeit und Geometrie der Stabdübel gemäß CE-Kennzeichnung nach EN 14592.
- Die angegebenen Werte wurden an Platten mit einer Stärke von 5 mm und einer Frästiefe im Holz von 6 mm berechnet. Die Werte beziehen sich auf einen einzelnen SBD-Stabdübel.
- Die Bemessung und Überprüfung der Holzelemente und der Stahlplatten müssen separat durchgeführt werden.
- Für die Positionierung der Stabdübel sind die Mindestabstände zu berücksichtigen.
- Die effiziente Länge der Stabdübel SBD (L ≥ 95 mm) berücksichtigt die Verringerung des Durchmessers in der Nähe der Bohrspitze.

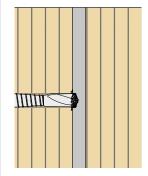
ANMERKUNGEN

* Bei der Berechnung wurde eine Rohdichte der Holzelemente von $\rho_k=385\ kg/m^3$ berücksichtigt.

Für andere $\rho_k\text{-Werte}$ können die aufgelisteten Festigkeitswerte mithilfe des $k_{\mbox{dens}}\text{-Beiwerts}$ umgerechnet werden.


$$R'_{V,k} = k_{dens,v} \cdot R_{V,k}$$

ρ _k [kg/m³]	350	380	385	405	425	430	440
C-GL	C24	C30	GL24h	GL26h	GL28h	GL30h	GL32h
k _{dens,v}	0,90	0,98	1,00	1,02	1,05	1,05	1,07


Die so ermittelten Festigkeitswerte können zugunsten der Sicherheit von denen abweichen, die sich aus einer genauen Berechnung ergeben.

MONTAGE

Es empfiehlt sich eine Ausfräsung im Holz mit einer Stärke, die jener der Platte entspricht, zuzüglich 1-2 mm, wobei die Abstandhalter SHIM zwischen Holz und Platte positioniert werden, um sie während der Ausfräsung zu zentrieren. Auf diese Weise können die Stahlreste vom Bohren des Metalls entweichen und behindern nicht den Durchgang der Spitze durch die Platte: Eine Überhitzung der Platte und des Holzes werden vermieden, und somit auch eine Rauchentwicklung während der Montage.

Späne, die beim Bohren die Löcher im Stahl verstopfen (nicht installierte Abstandhalter).

Damit die Spitze zum Zeitpunkt des Stabdübel-Platte-Kontakts nicht brechen kann, sollte die **Platte langsam erreicht werden und bis zum Moment der Berührung mit einer geringeren Kraft gedrückt werden, um sie dann bis zum empfohlenen Wert zu erhöhen** (40 kg für Anwendungen von oben nach unten und 25 kg für horizontale Montagen). Der Stabdübel sollte so senkrecht wie möglich zur Oberfläche des Holzes und der Platte gehalten werden.

Unbeschädigte Spitze nach korrekter Montage des Stabdübels.

Gebrochene (abgeschnittene) Spitze aufgrund übermäßiger Kraft während der Berührung des Metalls.

Wenn die Stahlplatte zu hart ist, könnte die Spitze des Stabdübels sich deutlich verkleinern oder sogar schmelzen. In diesem Fall wird empfohlen, die Zertifikate der Werkstoffe zu kontrollieren und sie auf Wärmebehandlung oder Härtetests zu prüfen. Es kann versucht werden, die aufgebrachte Last zu verringern oder wahlweise den Plattentyp zu wechseln.

Bei der Montage an einer zu harten Platte ohne Abstandhalter zwischen Holz und Platte geschmolzene Spitze.

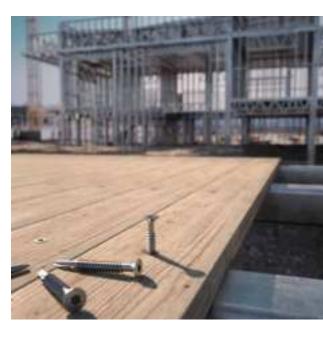
Reduzierung der Bohrspitze beim Bohren der Platte wegen zu hoher Plattenhärte.

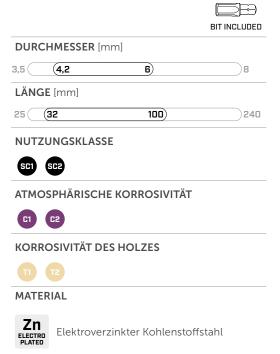
SBS

SELBSTBOHRENDE SCHRAUBE FÜR HOLZ-METALL

ZERTIFIZIERT

Die selbstbohrende Schraube SBS ist gemäß Norm EN 14592 CE-gekennzeichnet. Die ideale Wahl für Profis, die zuverlässige Qualität, Sicherheit und Leistung in statisch tragenden Holz-Metall-Verbindungen benötigen.

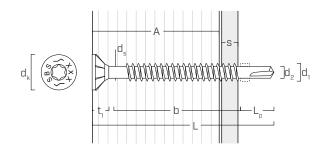

HOLZ-METALL-SPITZE


Spezialbohrspitze mit Ausräumgeometrie für eine ausgezeichnete Bohrleistung sowohl an Aluminium (bis 8 mm Stärke) als auch an Stahl (bis 6 mm Stärke).

FRÄSRIPPEN

Die Rippen schützen das Schraubengewinde beim Durchzug im Holz, garantieren eine höchst effiziente Gewindeleistung im Metall und eine perfekte Haftung zwischen Holz und Metall.

ANWENDUNGSGEBIETE

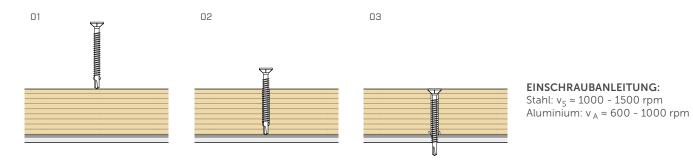

Direkte Befestigung, ohne Vorbohren von Holzelementen an Unterkonstruktionen:

- aus S235-Stahl mit maximaler Stärke 6 mm
- aus Aluminium mit maximaler Stärke 8,0 mm

d_1	ARTNR.	L	b	Α	s _S	s_A	Stk.
[mm]		[mm]	[mm]	[mm]	[mm]	[mm]	
4,2	SBS4232	32	18	17	1 ÷ 3	2 ÷ 4	500
TX 20	SBS4238	38	19	23	1 ÷ 3	2 ÷ 4	500
4,8	SBS4838	38	23	22	2 ÷ 4	3 ÷ 5	200
TX 25	SBS4845	45	25	29	2 ÷ 4	3 ÷ 5	200
5,5	SBS5545	45	29	28	3 ÷ 5	4 ÷ 6	200
TX 30	SBS5550	50	29	33	3 ÷ 5	4 ÷ 6	200
	SBS6360	60	35	39	4 ÷ 6	6 ÷ 8	100
6,3	SBS6370	70	45	49	4 ÷ 6	6 ÷ 8	100
TX 30	SBS6385	85	55	64	4 ÷ 6	6 ÷ 8	100
	SBS63100	100	55	79	4 ÷ 6	6 ÷ 8	100

s $_{\rm S}$ bohrbare Stärke Stahlplatte S235/St37

■ GEOMETRIE UND MECHANISCHE EIGENSCHAFTEN


GEOMETRIE

Nenndurchmesser	d_1	[mm]	4,2	4,8	5,5	6,3
Kopfdurchmesser	d_K	[mm]	8,00	9,25	10,50	12,00
Kerndurchmesser	d_2	[mm]	3,30	3,50	4,15	4,85
Schaftdurchmesser	d_S	[mm]	3,40	3,85	4,45	5,20
Kopfstärke	t_1	[mm]	3,50	4,20	4,80	5,30
Länge der Spitze	L _n	[mm]	10,0	10,5	11,5	15,0

MECHANISCHE KENNGRÖSSEN

Nenndurchmesser	d_1	[mm]	4,2	4,8	5,5	6,3
Zugfestigkeit	$f_{\text{tens},k}$	[kN]	7,5	9,5	10,5	16,5
Fließmoment	$M_{y,k}$	[Nm]	3,4	7,6	10,5	18,0
Charakteristischer Wert der Ausziehfestigkeit	$f_{ax,k}$	[N/mm ²]	-	-	-	-
Assoziierte Dichte	ρ_{a}	[kg/m ³]	-	-	-	-
Charakteristischer Durchziehparameter	f _{head,k}	[N/mm ²]	10,0	10,0	13,0	14,0
Assoziierte Dichte	ρ_{a}	[kg/m ³]	350	350	350	350

MONTAGE

s _A bohrbare Stärke Aluminiumplatte

MINDESTABSTÄNDE DER SCHRAUBEN BEI ABSCHERBEANSPRUCHUNG

Schraubenabstände OHNE Vorbohrung

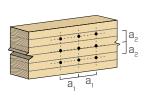
 $\rho_k \leq 420 \; kg/m^3$

d_1	[mm]		4,2	4,8		5,5	6,3
a ₁	[mm]	10 ⋅d	42	48	12·d	66	76
a ₂	[mm]	5·d	21	24	5·d	28	32
a _{3,t}	[mm]	15 ⋅d	63	72	15 ⋅d	83	95
a _{3,c}	[mm]	10 ⋅d	42	48	10 ⋅d	55	63
a _{4,t}	[mm]	5·d	21	24	5·d	28	32
a ₄ c	[mm]	5·d	21	24	5·d	28	32

d_1	[mm]		4,2	4,8		5,5	6,3
a ₁	[mm]	5·d	21	24	5·d	28	32
a ₂	[mm]	5·d	21	24	5·d	28	32
a _{3,t}	[mm]	10 ⋅d	42	48	10·d	55	63
a _{3,c}	[mm]	10 ⋅d	42	48	10·d	55	63
a _{4,t}	[mm]	7∙d	29	34	10·d	55	63
a _{4,c}	[mm]	5·d	21	24	5·d	28	32

 $d = d_1 = Nenndurchmesser Schraube$

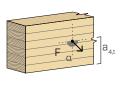
Schraubenabstände VORGEBOHRT


F -	α=0
-----	-----

d_1	[mm]		4,2	4,8		5,5	6,3
a ₁	[mm]	5·d	21	24	5·d	28	32
a ₂	[mm]	3·d	13	14	3·d	17	19
a _{3,t}	[mm]	12·d	50	58	12·d	66	76
a _{3,c}	[mm]	7·d	29	34	7⋅d	39	44
a _{4,t}	[mm]	3·d	13	14	3·d	17	19
a _{4,c}	[mm]	3·d	13	14	3·d	17	19

d_1	[mm]		4,2	4,8		5,5	6,3
a ₁	[mm]	4·d	17	19	4·d	22	25
a ₂	[mm]	4·d	17	19	4·d	22	25
a _{3,t}	[mm]	7∙d	29	34	7⋅d	39	44
a _{3,c}	[mm]	7∙d	29	34	7⋅d	39	44
a _{4,t}	[mm]	5·d	21	24	7⋅d	39	44
a _{4,c}	[mm]	3·d	13	14	3·d	17	19

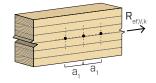
 $d = d_1 = Nenndurchmesser Schraube$


beanspruchtes . Hirnholzende -90° < α < 90°

unbeanspruchtes . Hirnholzende 90° < α < 270°

beanspruchter Rand 0° < α < 180°

unbeanspruchter Rand 180° < α < 360°



ANMERKUNGEN

• Die Mindestabstände werden gemäß der Norm DIN 1995:2014 berechnet.

WIRKSAME SCHRAUBENANZAHL BEI ABSCHERBEANSPRUCHUNG

Die Tragfähigkeit einer Verbindung mit mehreren Schrauben vom gleichen Typ und mit gleicher Größe kann kleiner sein als die Summe der Tragfähigkeiten des einzelnen Verbindungsmittels. Für eine Reihe von n parallel zur Faserrichtung des Holzes in einem Abstand a₁ angeordnete Schrauben entspricht die effektive charakteristische Tragfähigkeit:

$$R_{ef,V,k} = n_{ef} \cdot R_{V,k}$$

Der Wert von n_{ef} ist in der folgenden Tabelle abhängig von n und a_1 aufgeführt.

							a ₁ (*)					
		4·d	5·d	6·d	7⋅d	8·d	9·d	10 ⋅d	11-d	12·d	13·d	≥ 14·d
	2	1,41	1,48	1,55	1,62	1,68	1,74	1,80	1,85	1,90	1,95	2,00
n	3	1,73	1,86	2,01	2,16	2,28	2,41	2,54	2,65	2,76	2,88	3,00
	4	2,00	2,19	2,41	2,64	2,83	3,03	3,25	3,42	3,61	3,80	4,00
	5	2,24	2,49	2,77	3,09	3,34	3,62	3,93	4,17	4,43	4,71	5,00

^(*)Für Zwischenwerte a_1 ist eine lineare Interpolation möglich.

α = Winkel zwischen Kraft- und Faserrichtung

α = Winkel zwischen Kraft- und Faserrichtung

				SCHER	WERT		ZUGKRÄFTE			
Geometrie			Holz-Stahl Platte min.			Holz-Stahl Platte max.	Zugtragfähigkeit Stahl	Kopfdurchzug		
d ₁ [mm]	L [mm]	b [mm]	S _S	R _{V,k} [kN]	S _S	R _{V,k} [kN]	R _{tens,k} [kN]	A _{min} [mm]	R _{head,k} [kN]	
4,2	32 38	18 19	1	0,62 0,80	3	0,64 0,85	7,50	-	-	
4,8	38 45	23 25	2	0,83 1,05	4	1,00 1,20	9,50	20	- 0,92	
5,5	45 50	29 29	3	1,12 1,29	5	1,36 1,51	10,50	20	1,55 1,55	
	60	35		1,78		2,03			2,18	
6,3	70	45	4	2,16	6	2,38	16,50	25	2,18	
3,0	85	55	"	2,42	9	2,90	10,50		2,18	
	100	55		2,43		3,00			2,18	

 ε = Winkel zwischen Schraube und Faserrichtung

STATISCHE WERTE

ALLGEMEINE GRUNDLAGEN

- Die charakteristischen Werte entsprechen der Norm EN 1995:2014.
- Die Bemessungswerte werden aus den charakteristischen Werten wie folgt berechnet:

$$R_d = \frac{R_k \cdot k_{mod}}{\gamma_M}$$

Die Beiwerte γ_M und $k_{\mbox{\footnotesize{mod}}}$ sind aus der entsprechenden geltenden Norm zu übernehmen, die für die Berechnung verwendet wird.

- Werte für mechanische Festigkeit und Geometrie der Schrauben gemäß CE-Kennzeichnung nach EN 14592.
- Die Bemessung und Überprüfung der Holzelemente und der Stahlplatten müssen separat durchgeführt werden.
- Für die Positionierung der Schrauben sind die Mindestabstände zu berücksichtigen.
- Die charakteristische Kopfdurchzugsfestigkeit wurden für ein Element aus Holz oder auf Holzbasis berechnet.

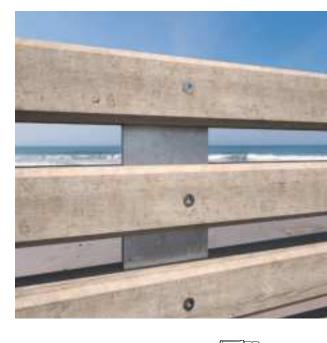
ANMERKUNGEN | HOLZ

- Die charakteristischen Scherfestigkeitswerte auf Platte wurden für eine dünne Platte (S $_S \le 0.5$ d $_1$) und für eine mittlere Platte (0,5 d $_1 < S_S <$ d $_1$) berechnet.
- Die charakteristischen Scherfestigkeitswerte auf Stahlplatte wurden für die minimale $s_{s,min}$ (min. Platte) und maximale $s_{s,max}$ (max. Platte) bohrbare Stärke berechnet.
- Bei der Berechnung wurde eine Rohdichte der Holzelemente von ρ_k = 385 $\mbox{kg/m}^3$ berücksichtigt.
- Für die Schrauben mit Durchmesser Ø 4,2 und Ø 4,8 wurde die charakteristische Kopfdurchzugsfestigkeit unter Berücksichtigung der Werte berechnet, die aus den experimentellen Prüfungen im Labor HFB Engineering, Leipzig, Germany als gültig angenommen wurden.

| SBS A2 | AISI304

SELBSTBOHRENDE SCHRAUBE FÜR HOLZ-METALL

BIMETALL-SCHRAUBE


Kopf und Körper bestehen aus rostfreiem Edelstahl A2 | AlSI304 für eine hohe Korrosionsfestigkeit. Die Spitze besteht aus Kohlenstoffstahl und hat eine ausgezeichnete Bohrleistung.

HOLZ-METALL-SPITZE

Spezialbohrspitze mit Ausräumgeometrie für eine ausgezeichnete Bohrleistung sowohl an Aluminium als auch an Stahl. Die Rippen schützen das Schraubengewinde beim Durchzug im Holz.

EDELSTAHL

Ideal für den Außenbereich, da Kopf und Körper aus rostfreiem Edelstahl A2 | AISI304 bestehen. Gut schneidende Unterkopffräsrippen (ribs) für einen sauberen Kopfabschluss an der Oberfläche des Holzelements.

120)

240

NUTZUNGSKLASSE

LÄNGE [mm]

ATMOSPHÄRISCHE KORROSIVITÄT

KORROSIVITÄT DES HOLZES

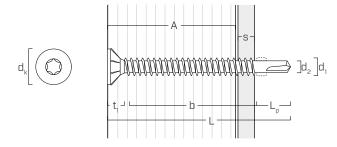


MATERIAL

Austenitischer Edelstahl A2 | AISI304 (CRC II)

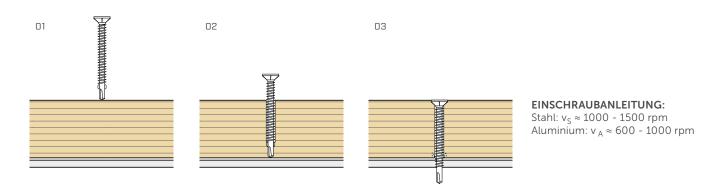
ANWENDUNGSGEBIETE

Direkte Befestigung, ohne Vorbohren von Holzelementen an Unterkonstruktionen:


- aus S235-Stahl mit maximaler Stärke 6,0 mm
- aus Aluminium mit maximaler Stärke 8,0 mm

d_1	ARTNR.	L	b	Α	ss	s_A	Stk.
[mm]		[mm]	[mm]	[mm]	[mm]	[mm]	
4,8 TX 25	SBSA24845	45	31	30	1 ÷ 3	2 ÷ 3	200
5,5 TX 25	SBSA25555	55	39	37	2 ÷ 5	3 ÷ 5	200

d_1	ARTNR.	L	b	Α	s _S	s_A	Stk.
[mm]		[mm]	[mm]	[mm]	[mm]	[mm]	
-,-	SBSA26370	70	53	49	3 ÷ 6	4 ÷ 8	100
	SBSA263120	120	103	99	3 ÷ 6	4 ÷ 8	100


s $_{\rm S}$ bohrbare Stärke Stahlplatte S235/St37

GEOMETRIE

Nenndurchmesser	d_1	[mm]	4,8	5,5	6,3
Kopfdurchmesser	d_K	[mm]	9,25	10,50	10,50
Kerndurchmesser	d_2	[mm]	3,50	4,15	4,80
Kopfstärke	t_1	[mm]	4,25	4,85	4,50
Länge der Spitze	Lp	[mm]	10,3	10,0	12,0

MONTAGE

AUSSENBEREICH

Austenitischer Edelstahl A2 bietet eine höhere Korrosionsbeständigkeit.

Geeignet für den Außenbereich bis zu 1 km Abstand zum Meer und auf säurehaltigen Hölzern der Klasse T4.

s A bohrbare Stärke Aluminiumplatte

SPP

SELBSTBOHRENDE SCHRAUBE FÜR HOLZ-METALL

ZERTIFIZIERT

Die selbstbohrende Schraube SPP ist gemäß Norm EN 14592 CE-gekennzeichnet. Die ideale Wahl für Profis, die zuverlässige Qualität, Sicherheit und Leistung in statisch tragenden Holz-Metall-Verbindungen benötigen.

HOLZ-METALL-SPITZE

Spezialbohrspitze mit Ausräumgeometrie für eine ausgezeichnete Bohrleistung sowohl an Aluminium (bis 10 mm Stärke) als auch an Stahl (bis 8 mm Stärke)

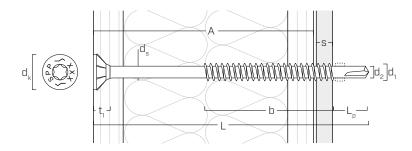
FRÄSRIPPEN

Die Rippen schützen das Schraubengewinde beim Durchzug im Holz, garantieren eine höchst effiziente Gewindeleistung im Metall und eine perfekte Haftung zwischen Holz und Metall.

GROSSES SORTIMENT

Die Ausführung SPP mit Teilgewinde eignet sich besonders zur Befestigung von Sandwichplatten, auch von großer Stärke, an Stahl. Gut schneidende Unterkopffräsrippen (ribs) für einen sauberen Kopfabschluss an der Oberfläche des Holzelements.

ANWENDUNGSGEBIETE


Direkte Befestigung, ohne Vorbohren von Holzelementen an Unterkonstruktionen:

- aus S235-Stahl mit maximaler Stärke 8 mm
- aus Aluminium mit maximaler Stärke 10 mm

d_1	ARTNR.	L	b	Α	s _S	s_A	Stk.
[mm]		[mm]	[mm]	[mm]	[mm]	[mm]	
	SPP63125	125	60	96	6 ÷ 8	8 ÷ 10	100
	SPP63145	145	60	116	6 ÷ 8	8 ÷ 10	100
6.7	SPP63165	165	60	136	6 ÷ 8	8 ÷ 10	100
6,3 TX 30	SPP63180	180	60	151	6 ÷ 8	8 ÷ 10	100
1 / 30	SPP63200	200	60	171	6 ÷ 8	8 ÷ 10	100
	SPP63220	220	60	191	6 ÷ 8	8 ÷ 10	100
	SPP63240	240	60	211	6 ÷ 8	8 ÷ 10	100

s $_{\rm S}$ bohrbare Stärke Stahlplatte S235/St37

■ GEOMETRIE UND MECHANISCHE EIGENSCHAFTEN

GEOMETRIE

Nenndurchmesser	d_1	[mm]	6,3
Kopfdurchmesser	d_K	[mm]	12,50
Kerndurchmesser	d_2	[mm]	4,85
Schaftdurchmesser	d _S	[mm]	5,20
Kopfstärke	t_1	[mm]	5,30
Länge der Spitze	Lp	[mm]	20,0

MECHANISCHE KENNGRÖSSEN

Nenndurchmesser	d_1	[mm]	6,3
Zugfestigkeit	$f_{\text{tens},k}$	[kN]	16,5
Fließmoment	$M_{y,k}$	[Nm]	18,0
Charakteristischer Wert der Ausziehfestigkeit	$f_{ax,k}$	[N/mm ²]	-
Assoziierte Dichte	ρ_{a}	[kg/m ³]	-
Charakteristischer Durchziehparameter	$f_{\text{head},k}$	[N/mm ²]	14,0
Assoziierte Dichte	ρ_{a}	[kg/m ³]	350

SIP PANELS

Die Ausführung SPP ist ideal zur Befestigung von SIP-Platten und Sandwichplatten dank der gesamten Produktpalette mit Längen bis zu 240 mm.

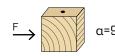
s A bohrbare Stärke Aluminiumplatte

■ MINDESTABSTÄNDE DER SCHRAUBEN BEI ABSCHERBEANSPRUCHUNG | HOLZ-STAHL

Schraubenabstände OHNE Vorbohrung

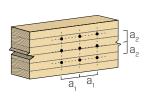
 $\rho_k \leq 420 \; kg/m^3$

d_1	[mm]		6,3
a ₁	[mm]	12·d	76
a ₂	[mm]	5·d	32
a _{3,t}	[mm]	15·d	95
a _{3,c}	[mm]	10 ⋅d	63
a _{4,t}	[mm]	5·d	32
a _{4,c}	[mm]	5·d	32


d_1	[mm]		6,3
a ₁	[mm]	5·d	32
a ₂	[mm]	5·d	32
a _{3,t}	[mm]	10·d	63
a _{3,c}	[mm]	10·d	63
a _{4,t}	[mm]	10·d	63
a _{4,c}	[mm]	5·d	32

 $d = d_1 = Nenndurchmesser Schraube$

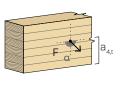
Schraubenabstände VORGEBOHRT



d_1	[mm]		6,3
a ₁	[mm]	5·d	32
a ₂	[mm]	3·d	19
a _{3,t}	[mm]	12·d	76
a _{3,c}	[mm]	7∙d	44
a _{4,t}	[mm]	3·d	19
a _{4,c}	[mm]	3·d	19

d_1	[mm]		6,3
a ₁	[mm]	4·d	25
a ₂	[mm]	4·d	25
a _{3,t}	[mm]	7·d	44
a _{3,c}	[mm]	7·d	44
a _{4,t}	[mm]	7·d	44
a _{4,c}	[mm]	3·d	19

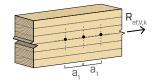
 $d = d_1 = Nenndurchmesser Schraube$


beanspruchtes Hirnholzende $-90^{\circ} < \alpha < 90^{\circ}$

unbeanspruchtes Hirnholzende 90° < α < 270°

beanspruchter Rand $0^{\circ} < \alpha < 180^{\circ}$

unbeanspruchter Rand $180^{\circ} < \alpha < 360^{\circ}$



ANMERKUNGEN

• Die Mindestabstände werden gemäß der Norm DIN 1995:2014 berechnet.

■ WIRKSAME SCHRAUBENANZAHL BEI ABSCHERBEANSPRUCHUNG

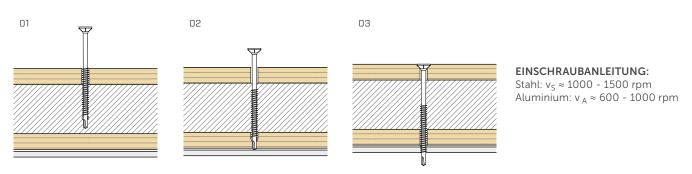
Die Tragfähigkeit einer Verbindung mit mehreren Schrauben vom gleichen Typ und mit gleicher Größe kann kleiner sein als die Summe der Tragfähigkeiten des einzelnen Verbindungsmittels. Für eine Reihe von n parallel zur Faserrichtung des Holzes in einem Abstand a_1 angeordnete Schrauben entspricht die effektive charakteristische Tragfähigkeit:

$$R_{ef,V,k} = n_{ef} \cdot R_{V,k}$$

Der Wert von n_{ef} ist in der folgenden Tabelle abhängig von n und a₁ aufgeführt.

							a ₁ (*)					
		4·d	5·d	6·d	7·d	8·d	9·d	10 ⋅d	11·d	12·d	13·d	≥ 14·d
	2	1,41	1,48	1,55	1,62	1,68	1,74	1,80	1,85	1,90	1,95	2,00
n	3	1,73	1,86	2,01	2,16	2,28	2,41	2,54	2,65	2,76	2,88	3,00
	4	2,00	2,19	2,41	2,64	2,83	3,03	3,25	3,42	3,61	3,80	4,00
	5	2,24	2,49	2,77	3,09	3,34	3,62	3,93	4,17	4,43	4,71	5,00

^(*)Für Zwischenwerte a_1 ist eine lineare Interpolation möglich.


a = Winkel zwischen Kraft- und Faserrichtung

 $[\]alpha$ = Winkel zwischen Kraft- und Faserrichtung

				SCHER	WERT		ZUGKRÄFTE		
Geometrie		Holz-Stahl Platte min.		Holz-Stahl Platte max.		Zugtragfähigkeit Stahl		Copfdurchzug	
			S₅⊏∃						
d₁ [mm]	L [mm]	b [mm]	S _{PLATE}	R _{V,k} [kN]	S _{PLATE} [mm]	R _{V,k} [kN]	R _{tens,k} [kN]	A _{min} [mm]	$R_{head,k}$ [kN]
[125	60	2	3,00		3,09	2000	[itinii]	2,18
	145	60		3,00		3,09			2,18
	165	60		3,00		3,09			2,18
6,3	180	60	6	3,00	8	3,09	16,50	30	2,18
	200	60		3,00		3,09			2,18
	220	60		3,00		3,09			2,18
	240	60		3,00		3,09			2,18

 $[\]epsilon$ = Winkel zwischen Schraube und Faserrichtung

MONTAGE

STATISCHE WERTE

ALLGEMEINE GRUNDLAGEN

- Die charakteristischen Werte entsprechen der Norm EN 1995:2014.
- Die Bemessungswerte werden aus den charakteristischen Werten wie folgt berechnet:

$$R_d = \frac{R_k \cdot k_{mod}}{\gamma_M}$$

Die Beiwerte γ_M und $k_{\mbox{\footnotesize{mod}}}$ sind aus der entsprechenden geltenden Norm zu übernehmen, die für die Berechnung verwendet wird.

- Werte für mechanische Festigkeit und Geometrie der Schrauben gemäß CE-Kennzeichnung nach EN 14592.
- Die Bemessung und Überprüfung der Holzelemente und der Stahlplatten müssen separat durchgeführt werden.
- Für die Positionierung der Schrauben sind die Mindestabstände zu berücksichtigen.
- Die charakteristische Kopfdurchzugsfestigkeit wurden für ein Element aus Holz oder auf Holzbasis berechnet.

ANMERKUNGEN | HOLZ

- Die charakteristischen Scherfestigkeitswerte auf Platte wurden für eine mittlere Platte (0,5 d₁ < S_{PLATE} < d₁) oder für eine dicke Platte (S_{PLATE} = d₁) berechnet.
- Die charakteristischen Scherfestigkeitswerte auf Stahlplatte wurden für die minimale $s_{\mbox{smin}}$ (min. Platte) und maximale $s_{\mbox{smax}}$ (max. Platte) bohrbare Stärke berechnet.
- Bei der Berechnung wurde eine Rohdichte der Holzelemente von ρ_k = 385 $\,$ kg/m 3 berücksichtigt.

| SBN - SBN A2 | AISI304

SELBSTBOHRENDE SCHRAUBE FÜR METALL

SPITZE FÜR METALL

Spezialbohrspitze für Eisen und Stahl für Stärken zwischen 0,7 mm und 5,25 mm. Ideal zur Befestigung von Metallüberlappungen oder Metallblechen.

FEINGEWINDE

Feingewinde, das sich besonders zur präzisen Befestigung an Blechen eignet oder für Metall-Metall- oder Holz-Metall-Verbindungen.

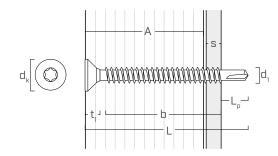
EDELSTAHL

Auch in Bimetall-Ausführung mit Kopf und Körper aus rostfreiem Edelstahl A2 | AISI304 und Spitze aus Kohlenstoffstahl. Ideal zur Befestigung von Klippverschlüssen an Aluminiumträgern im Außenbereich.

ANWENDUNGSGEBIETE

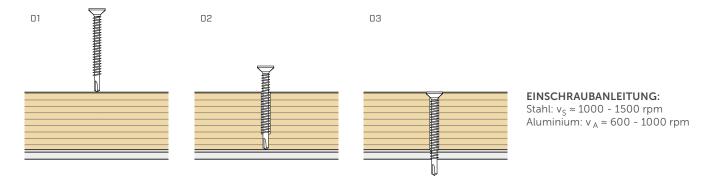
Direkte Befestigung, ohne Vorbohrung, von Metallgerüstelementen an Unterkonstruktionen aus Stahl (maximale Stärke 5,25 mm).

SBN


d_1	ARTNR.	L	b	Α	S	Stk.
[mm]		[mm]	[mm]	[mm]	[mm]	
3,5 TX 15	SBN3525	25	16	16	0,7 ÷ 2,25	500
3,9 TX 15	SBN3932	35	27	23	0,7 ÷ 2,40	200
4,2 TX 20	SBN4238	38	30	29	1,75 ÷ 3,00	200
4,8 TX 25	SBN4845	45	34	34	1,75 ÷ 4,40	200
5,5 TX 25	SBN5550	50	38	38	1,75 ÷ 5,25	200

SBN A2 | AISI304

d_1	ARTNR.	L	b	Α	s	Stk.
[mm]		[mm]	[mm]	[mm]	[mm]	
3,5 TX 15	SBNA23525	25	18	20	0,7 ÷ 2,25	1000
3,9 TX 15	SBNA23932	32	24	25	0,7 ÷ 2,40	1000


s bohrbare Stärke Metallplatte (Stahl oder Aluminium)

■ GEOMETRIE

					SBN			SBN	N A2
Nenndurchmesser	d_1	[mm]	3,5	3,9	4,2	4,8	5,5	3,5	3,9
Kopfdurchmesser	d _K	[mm]	6,50	7,50	7,90	9,30	10,60	7,30	7,50
Kopfstärke	t_1	[mm]	2,60	3,80	3,60	3,90	4,10	3,40	3,80
Länge der Spitze	L _p	[mm]	5,0	5,2	6,2	6,6	7,5	4,9	5,2

MONTAGE

SBN A2 | AISI304

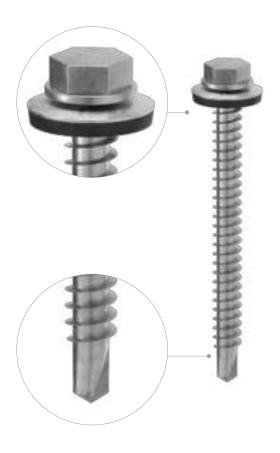
ldeal zur Befestigung an Aluminium von Standard-Klippverschlüssen von Rothoblaas im Außenbereich.

Siehe CLIP für Terrassen auf S. 356.

SAR

SELBSTBOHRENDE SCHRAUBE MIT SECHSKANTKOPF FÜR STAHL

BOHRSPITZE


Spezialbohrspitze mit Ausräumgeometrie für eine ausgezeichnete Bohrleistung (bis zu 6 mm an Stahl).

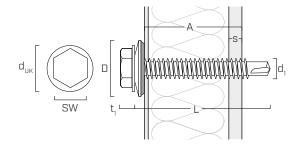
SCHNEIDEND

Selbstschneidendes Gewinde für Stahl und Sechskantkopf mit Unterlegscheibe SW 10.

WASSERDICHT

Einschließlich integrierter Unterlegscheibe mit EPDM-Dichtung für eine wasserdichte Befestigung.

DURCHMESSER [mm]							
3,5	(6,3)	В					
LÄNGE	[mm]						
25	(60	200) 240					
ATMOS	SPHÄRISCHE KORROSIVITÄ	т					
C 1	C2						
MATER	RIAL						
Zn ELECTRO PLATED	Elektroverzinkter Kohlenst	offstahl					
EPDM	EPDM-Dichtung						


ANWENDUNGSGEBIETE

Direkte Befestigung, ohne Vorbohrung, von Metallgerüstelementen und Blechen an Unterkonstruktionen aus Stahl mit max. Stärke 6,0 mm.


d ₁	d_UK	ARTNR.	L	Α	S	Stk.
[mm]	[mm]		[mm]	[mm]	[mm]	
		SAR6360	60	0 ÷ 47	2 ÷ 6	100
		SAR6370	70	14 ÷ 57	2 ÷ 6	100
		SAR6380	80	24 ÷ 67	2 ÷ 6	100
		SAR63100	100	44 ÷ 87	2 ÷ 6	100
6,3 SW 10	12,5	SAR63120	120	64 ÷ 107	2 ÷ 6	100
011 _0		SAR63140	140	84 ÷ 127	2 ÷ 6	100
		SAR63160	160	104 ÷ 147	2 ÷ 6	100
		SAR63180	180	124 ÷ 167	2 ÷ 6	100
		SAR63200	200	144 ÷ 187	2 ÷ 6	100

s bohrbare Stärke Metallplatte (Stahl oder Aluminium)

GEOMETRIE

Nenndurchmesser	d_1	[mm]	6,3
Schlüsselweite	SW	[mm]	SW 10
Kopfdurchmesser	d_UK	[mm]	12,50
Durchmesser Beilagscheibe	D	[mm]	15,70

UNTERGRÜNDE AUS TRAPEZBLECH

Aufgrund seiner Stahlbohrfähigkeit und der Wasserdichtheit der zugehörigen Unterlegscheibe ist das Produkt die ideale Wahl für die Anwendung auf Trapezblechen.

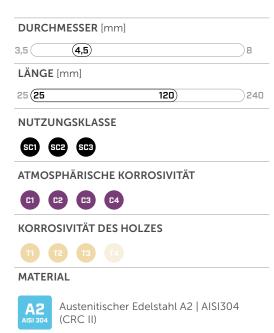
MCS A2 | AISI304

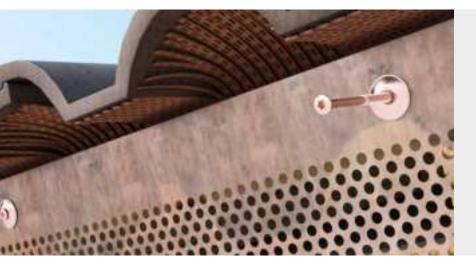
SCHRAUBE MIT UNTERLEGSCHEIBE FÜR BLECH

INTEGRIERTE BEILAGSCHEIBE

Schraube aus rostfreiem Edelstahl A2 | AISI304, mit eingebauter Unterlegscheibe aus rostfreiem Edelstahl A2 | AISI304 und EPDM-Dichtung.

EDELSTAHL


Edelstahl A2 | AlSI304 garantiert eine hohe Korrosionsfestigkeit. Auch in den Farben Kupfer oder schokoladenbraun erhältlich.


TORX-EINSATZ

Linsenkopf mit Torx-Antrieb für eine sichere Befestigung von Blechteilen an Holz oder Putz. Ideal für die Befestigung von Dachrinnen und Blechkrempen auf Holz.

ANWENDUNGSGEBIETE

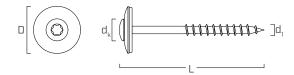
Verwendung im Außenbereich mit aggressiven Bedingungen. Befestigung von Metallgerüstelementen an Unterkonstruktionen aus Holz.

MCS A2: Edelstahl

ART.-NR. L Stk. d_1 0 [mm] [mm] MCS4525A2 25 200 MCS4535A2 35 200 MCS4545A2 45 200 4,5 MCS4560A2 60 200 TX 20 MCS4580A2 80 100 MCS45100A2 100 200 MCS45120A2 120 200

MCS CU: verkupferte Oberfläche

d ₁	ARTNR.	L	Stk.
[mm]		[mm]	
	MCS4525CU	25	200
4,5 TX 20	MCS4535CU	35	200
	MCS4545CU	45	200
	MCS4560CU	60	200
	MCS4580CU	80	100
	MCS45100CU	100	100
	MCS45120CU	120	200
	[mm]	MCS4525CU MCS4535CU MCS4545CU MCS4545CU MCS4560CU MCS4580CU MCS45100CU MCS45100CU	[mm] [mm] MCS4525CU 25 MCS4535CU 35 MCS4545CU 45 4,5 TX 20 MCS4560CU 60 MCS4580CU 80 MCS45100CU 100


MCS M: RAL 8017 - schokoladenbraun

0	d₁ [mm]	ARTNR.	L [mm]	Stk.
		MCS4525A2M	25	200
	4,5 TX 20	MCS4535A2M	35	200
	17.20	MCS4545A2M	45	200
#				

MCS B: RAL 9002 - grauweiß

	d₁ [mm]	ARTNR.	L [mm]	Stk.
		MCS4525A2B	25	200
	4,5 TX 20	MCS4535A2B	35	200
	1,7,20	MCS4545A2B	45	200
#				

GEOMETRIE

Nenndurchmesser	d_1	[mm]	4,5
Kopfdurchmesser	d_K	[mm]	8,30
Durchmesser Beilagscheibe	D	[mm]	20,00

LAUBENGÄNGE

Ideal zur Befestigung von Blechverkleidungen am Holz einer Pergola und an Bauwerken im Außenbereich.

MTS A2 | AISI304

BLECHSCHRAUBE

SECHSKANTKOPF

Ideal in Kombination mit Unterlegscheibe WBAZ zur dichten Befestigung an Blech, mit Vorbohren. Der Sechskantkopf erleichtert eine eventuelle spätere Demontage.

EDELSTAHL

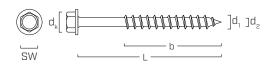
Der rostfreie Edelstahl A2 | AISI304 sichert eine hohe Korrosionsfestigkeit und eine optimale Beständigkeit, auch in sehr aggressiven Umgebungen.

ARTIKELNUMMERN UND ABMESSUNGEN

d ₁	ARTNR.	L	b	Α	Stk.
[mm]		[mm]	[mm]	[mm]	
	MTS680	80	58	20 ÷ 40	100
6 SW 10	MTS6100	100	58	40 ÷ 60	100
	MTS6120	120	58	60 ÷ 80	100

■ GEOMETRIE UND MECHANISCHE EIGENSCHAFTEN

GEOMETRIE


Nenndurchmesser	d_1	[mm]	6
Schlüsselweite	SW	-	SW 8
Kopfdurchmesser	d_K	[mm]	12,00
Kerndurchmesser	d ₂	[mm]	4,10

MECHANISCHE KENNGRÖSSEN

Nenndurchmesser	d_1	[mm]	6
Zugfestigkeit	f _{tens,k}	[kN]	9,8
Fließmoment	$M_{y,k}$	[Nm]	8,5
Charakteristischer Wert der Ausziehfestigkeit	$f_{ax,k}$	[N/mm ²]	13,3
Assoziierte Dichte	ρ_{a}	[kg/m ³]	433
Charakteristischer Durchziehparameter	$f_{\text{head},k}$	[N/mm ²]	18,5
Assoziierte Dichte	ρ_{a}	[kg/m ³]	474

Mechanische Parameter aus experimentellen Prüfungen.

GEOMETRIE

CPL

DICHTSCHEIBE AUS VORLACKIERTEM BLECH MIT PE-DICHTUNG

WASSERDICHTHEIT

Dichtscheibe aus Kohlenstoffstahl, vorlackiert und inkl. PE-Dichtung für den wasserdichten Abschluss mit dem Blech. 40 x 50 mm Aluminiumausführung.

KOMPLETTES PRODUKTSORTIMENT

Vollständige Auswahl an Größen für die Kompatibilität mit verschiedenen marktgängigen Trapezblechmaßen.

ÄSTHETISCHE WIRKUNG

Erhältlich in verschiedenen Farben für jede optische Anforderung an das Dach.

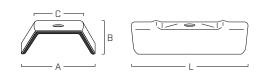
ARTIKELNUMMERN UND ABMESSUNGEN

RAL 9005 - grauweiß

ARTNR.	С	Α	L	В	Stk.
	[mm]	[mm]	[mm]	[mm]	
CPLW1528	15	28	50	16	50
CPLW2036	20	36	50	16	50
CPLW2534	25	34	50	16	50
CPLW3040	30	40	50	16	50
CPLW4050	40	50	50	16	50

RAL 3009 - Sienarot

ARTNR.	С	Α	L	В	Stk.
	[mm]	[mm]	[mm]	[mm]	
CPLR1528	15	28	50	16	50
CPLR2036	20	36	50	16	50
CPLR2534	25	34	50	16	50
CPLR3040	30	40	50	16	50
CPLR4050	40	50	50	16	50


RAL 8017 - Dunkelbraun

ARTNR.	С	Α	L	В	Stk.
	[mm]	[mm]	[mm]	[mm]	
CPLB1528	15	28	50	16	50
CPLB2036	20	36	50	16	50
CPLB2534	25	34	50	16	50
CPLB3040	30	40	50	16	50
CPLB4050	40	50	50	16	50

GEOMETRIE

NUTZUNGSKLASSE

ATMOSPHÄRISCHE KORROSIVITÄT

MATERIAL

PRE PAINTED CARBON STEEL KOhlenstoffstahl vorlackiert

Polyethylen

WBAZ

EDELSTAHL-BEILAGSCHEIBE MIT DICHTUNG

WASSERDICHTHEIT


Vollkommen wasserdichter Verschluss und exzellente Versiegelung dank der EPDM-Dichtung.

UV-STRAHLEN-BESTÄNDIGKEIT

Exzellente UV-Strahlen-Beständigkeit. Ideal für den Außenbereich dank der Anpassungsfähigkeit der EPDM-Dichtung und der Güte der Unterlegscheibe aus rostfreiem Edelstahl A2 | AISI304.

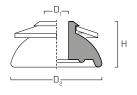
VIELSEITIGKEIT

Ideal in Kombination mit Schraube TBS EVO Ø6; kann ohne Vorbohrung an Blechen mit einer Stärke bis 0,7 mm befestigt werden oder mit Schraube MTS A2 | AISI304, mit Vorbohrung.

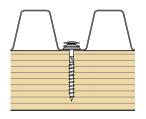
NUTZUNGSKLASSE

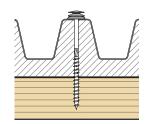
ATMOSPHÄRISCHE KORROSIVITÄT

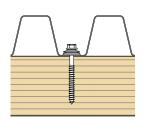
Austenitischer Edelstahl A2 | AISI304 (CRC II)

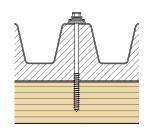

EPDM-Dichtung

ANWENDUNGSGEBIETE


Ideal in Kombination mit den Schrauben TBS EVO, TBS EVO C5 oder MTS zur Befestigung von Metallblechen an Unterkonstruktionen aus Holz und Metall, die Witterungseinflüssen und UV-Strahlen ausgesetzt sind.



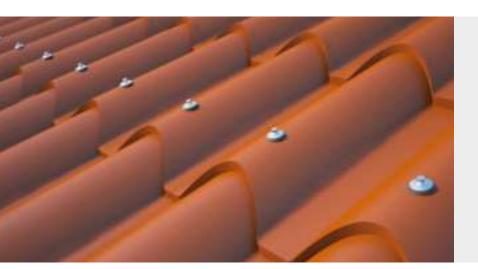

ARTNR.	Schraube	D_2	Н	D_1	Stk.
	[mm]	[mm]	[mm]	[mm]	
WBAZ25A2	6,0 ÷ 6,5	25	15	6,5	100


MONTAGE

TBS EVO + WBAZ	zu befestigendes Paket
ØxL	[mm]
6 x 60	min. 0 - max. 30
6 x 80	min. 10 - max. 50
6 x 100	min. 30 - max. 70
6 x 120	min. 50 - max. 90
6 x 140	min. 70 - max. 110
6 x 160	min. 90 - max. 130
6 x 180	min. 110 - max. 150
6 x 200	min. 130 - max. 170

MTS A2 + WBAZ	zu befestigendes Paket			
ØxL	[mm]			
6 x 80	min. 10 - max. 50			
6 x 100	min. 30 - max. 70			
6 x 120	min. 50 - max. 90			

Für weitere Informationen zu den verwandten Produkten siehe S. 102 für TBS EVO und S. 308 für MTS A2.


Unzureichendes Anschrauben

Falsches Anschrauben schräg zur Achse

ANMERKUNGEN:

Die Stärke der Beilagscheibe beträgt nach der erfolgten Installation ungefähr 8 - 9 mm. Die maximale Stärke des fixierbaren Pakets wurde so berechnet, dass eine minimale Einschraubtiefe in das Holz von 4d gewährleistet ist.

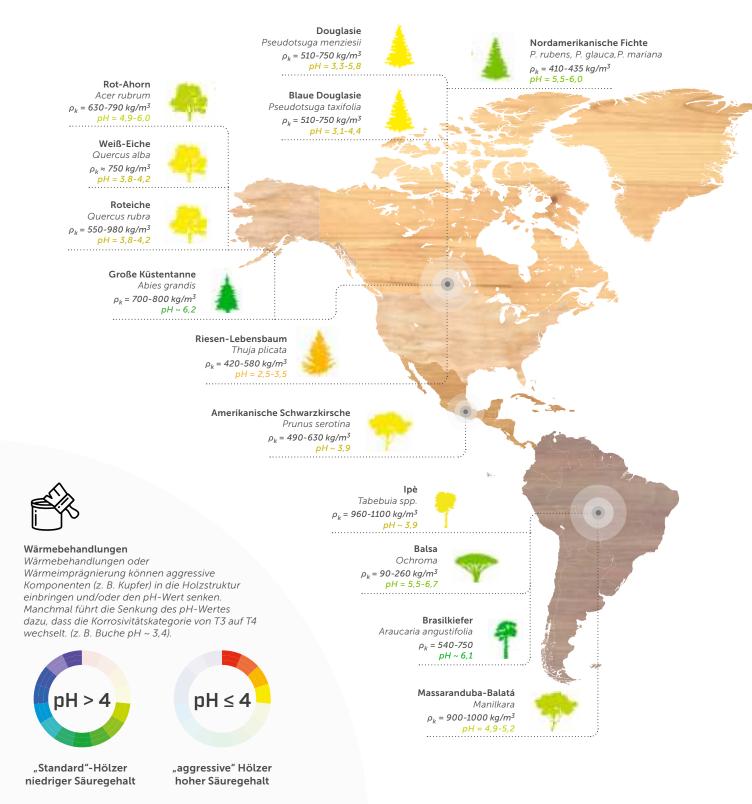
KÜNSTLICHE DACHZIEGEL

Kann auch an Sandwichplatten, gewellten Platten und künstlichen Dachziegeln verwendet werden.

TERRASSEN UND FASSADEN

I TERRASSEN UND FASSADEN

SCI HCR SENKKOPFSCHRAUBE316	JFA JUSTIERBARER STELLFUSS FÜR TERRASSEN
SCI A4 AISI316 SENKKOPFSCHRAUBE318	SUPPORT JUSTIERBARER STELLFUSS FÜR TERRASSEN
SCI A2 AISI304 SENKKOPFSCHRAUBE	ALU TERRACE ALUMINIUMPROFIL FÜR TERRASSEN
KKT COLOR A4 AISI316 VERDECKTE KEGELKOPFSCHRAUBE	GROUND COVER BEWUCHSSCHUTZFOLIE FÜR DEN UNTERGRUND
KKT A4 AISI316 VERDECKTE KEGELKOPFSCHRAUBE	NAG JUSTIERENDES PAD392
KKT COLOR VERDECKTE KEGELKOPFSCHRAUBE	GRANULO UNTERBODEN AUS GUMMIGRANULAT393
FAS A4 AISI316 SCHRAUBE FÜR FASSADEN	TERRA BAND UV BUTYL-KLEBEBAND394
KKZ A2 AISI304 SCHRAUBE MIT DOPPELGEWINDE MIT KLEINEM ZYLINDERKOPF	PROFID PROFIL-ABSTANDHALTER394
KKZ EVO C5	STAR DISTANZHALTER-STERN394
SCHRAUBE MIT DOPPELGEWINDE MIT KLEINEM ZYLINDERKOPF	BROAD SPITZE MIT VERSENKER FÜR KKT, KKZ, KKA
EWS AISI410 EWS A2 LINSENKOPFSCHRAUBE	CRAB MINI EINHAND-TERRASSEN-SPANNWERKZEUG
KKF AISI410 SCHRAUBE MIT KEGELUNTERKOPF	CRAB MAXI DIELENZWINGE, GROSSES MODELL
KKA AISI410 SELBSTBOHRENDE SCHRAUBEN HOLZ-HOLZ HOLZ-ALUMINIUM	SHIM NIVELLIERKEILE
KKA COLOR SELBSTBOHRENDE SCHRAUBE FÜR ALUMINIUM	SHIM LARGE NIVELLIERKEILE
FLAT FLIP VERBINDER FÜR TERRASSEN	THERMOWASHER UNTERLEGSCHEIBE ZUM BEFESTIGEN VON
SNAP VERBINDER UND ABSTANDHALTER FÜR TERRASSEN	DÄMMSTOFFEN AN HOLZ396 ISULFIX
TVM	DÜBEL ZUM BEFESTIGEN VON DÄMMSTOFFEN AM MAUERWERK
VERBINDER FÜR TERRASSEN	WRAF <i>VERBINDER FÜR HOLZ-DÄMMSTOFF-ZEMENT-WÄNDE</i>
VERBINDER FÜR TERRASSEN	


| HOLZARTEN | pH-Wert und Dichte

Jede Holzart hat einzigartige Eigenschaften, die ihre Stabilität und Festigkeit gegenüber Witterungseinflüssen, Schimmel, Pilzen und Parasiten beeinflussen. Wenn die Dichte des Materials die Funktionalität des Verbinders (ρ_k > 500 kg/m³) beeinträchtigt, ist vor dem Einschrauben ein Vorbohren erforderlich. Der Grenzwert der Dichte hängt vom gewählten Verbindertyp ab.

Der pH-Wert jedes Holzes gibt Aufschluss über das Vorhandensein von Essigsäure, die eine korrosive Wirkung auf verschiedene Arten von Metallen hat, die mit dem Holz in Berührung kommen. Dies gilt vor allem, wenn das Holz der Nutzungsklasse S3 angehört. Die Klassifizierung der Hölzer für einen durchschnittlichen Feuchtigkeitsgehalt zwischen 16 und 20 % (Klasse T3/T4) und somit die Art der zu verwendenden Verbinder hängt vom pH-Wert ab.

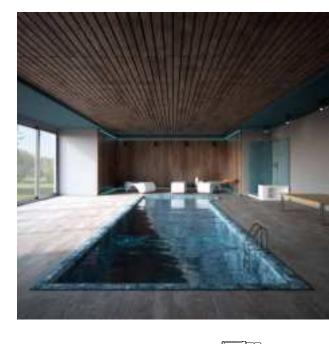
Dichte und pH-Wert abgeleitet aus: "Wagenführ R; Wagenführ R. Holzatlas (2022)" e da "Canadian Conservation Institute Jean Tetreault, Coatings for Display and Storage in Museums (January 1999).

SCI HCR

SENKKOPFSCHRAUBE

HÖCHSTE KORROSIONSBESTÄNDIGKEIT

Einstufung in der höchsten Korrosionsbeständigkeitsklasse gemäß EN 1993-1-1:2006/A1:2015 (CRC V), bietet maximale Korrosionsbeständigkeit in Bezug auf Atmosphäre (C5) und Holz (T5).


HCR: HIGH CORROSION RESISTANCE

Super-austenitischer Edelstahl. Er zeichnet sich durch einen hohen Molybdän- und Nickelgehalt aus, der für maximale Korrosionsbeständigkeit sorgt, während der vorhandene Stickstoff eine hervorragende mechanische Leistung garantiert.

HALLENBÄDER

Die chemische Zusammensetzung, vor allem der hohe Nickel- und Molybdängehalt, sorgt für Beständigkeit gegen Lochfraß durch Chloride und damit gegen Spannungsrisskorrosion (Stress Corrosion Cracking). Damit ist sie die einzige Kategorie von Edelstahl, die für die Verwendung in Hallenbädern gemäß Eurocode 3 geeignet ist.

ANWENDUNGSGEBIETE

Außen- und Inneneinsatz in extrem aggressiven Umgebungen.

- Hallenbäder
- Fassaden
- sehr feuchte Bereiche
- Seeklima

	d_1	ARTNR.	L	b	Α	Stk.
	[mm]		[mm]	[mm]	[mm]	
Т	_	SCIHCR550	50	30	20	200
	5 TX 20	SCIHCR560	60	35	25	200
		SCIHCR570	70	42	28	100

■ GEOMETRIE UND MECHANISCHE EIGENSCHAFTEN

GEOMETRIE

Nenndurchmesser	d_1	[mm]	5
Kopfdurchmesser	d_K	[mm]	9,80
Kerndurchmesser	d_2	[mm]	3,20
Schaftdurchmesser	d_S	[mm]	3,60
Kopfstärke	t_1	[mm]	4,65
Vorbohrdurchmesser ⁽¹⁾	d_V	[mm]	3,0

 $^{^{(1)}}$ Bei Materialien mit hoher Dichte ist je nach Holzart ein Vorbohren empfehlenswert.

MECHANISCHE KENNGRÖSSEN

Nenndurchmesser	d_1	[mm]	5
Zugfestigkeit	$f_{tens,k}$	[kN]	4,9
Fließmoment	$M_{y,k}$	[Nm]	3,4
Parameter der Auszugsfestigkeit	$f_{ax,k}$	[N/mm ²]	12,5
Assoziierte Dichte	ρ _a	[kg/m ³]	350
Durchziehparameter	f _{head,k}	[N/mm ²]	9,4
Assoziierte Dichte	ρ_{a}	[kg/m ³]	350

Mechanische Parameter aus experimentellen Prüfungen.

SAUNEN UND WELLNESS-ZENTREN

Ideal in Umgebungen mit sehr hoher Luftfeuchtigkeit und Präsenz von Salzen und Chloriden.

| SC| A4 | A|S|316

SENKKOPFSCHRAUBE

HÖHERE FESTIGKEIT

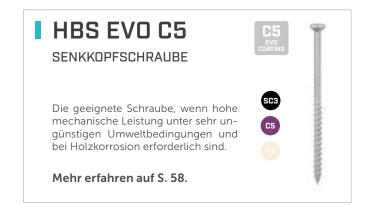
Spezielles asymmetrisches Schirmgewinde, verlängertes Bohrwerk und scharfe Fräsrippen am Unterkopf verleihen der Schraube eine höhere Torsionsfestigkeit und ermöglichen ein sicheres Einschrauben.

A4 | AISI316

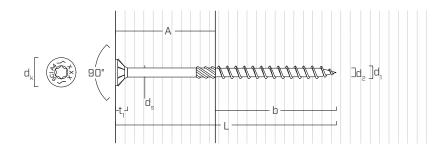
Austenitischer Edelstahl A4 | AISI316 mit ausgezeichneter Korrosionsfestigkeit. Ideal für Meeresklima; Korrosivitätskategorie C5, und zum Einschrauben in die aggressivsten Hölzer der Klasse T5.

KORROSIVITÄT DES HOLZES T5

Für Anwendungen auf aggressiven Hölzern mit einem Säuregehalt (pH-Wert) unter 4, wie Eiche, Douglasie und Kastanie, und bei einer Holzfeuchtigkeit über 20 %.


ANWENDUNGSGEBIETE

Verwendung im Außenbereich mit sehr aggressiven Bedingungen.


Holzbretter mit einer Dichte < 470 kg/m³ (ohne Vorbohrung) und < 620 kg/m³ (mit Vorbohrung).

SCI A4 | AISI316

d_1	ARTNR.	L	b	Α	Stk.
[mm]		[mm]	[mm]	[mm]	
	SCI5050A4	50	24	26	200
	SCI5060A4	60	30	30	200
5	SCI5070A4	70	35	35	100
TX 25	SCI5080A4	80	40	40	100
	SCI5090A4	90	45	45	100
	SCI50100A4	100	50	50	100

■ GEOMETRIE UND MECHANISCHE EIGENSCHAFTEN

GEOMETRIE

Nenndurchmesser	d_1	[mm]	5	
Kopfdurchmesser	d_{K}	[mm]	10,00	
Kerndurchmesser	d_2	[mm]	3,40	
Schaftdurchmesser	d_S	[mm]	3,65	
Kopfstärke	t_1	[mm]	4,65	
Vorbohrdurchmesser ⁽¹⁾	d_V	[mm]	3,0	

⁽¹⁾ Bei Materialien mit hoher Dichte ist je nach Holzart ein Vorbohren empfehlenswert.

MECHANISCHE KENNGRÖSSEN

Nenndurchmesser	d_1	[mm]	5
Zugfestigkeit	$f_{\text{tens,k}}$	[kN]	4,3
Fließmoment	$M_{y,k}$	[Nm]	3,9
Parameter der Auszugsfestigkeit	$f_{ax,k}$	[N/mm ²]	17,9
Assoziierte Dichte	ρ_{a}	[kg/m ³]	440
Durchziehparameter	$f_{\text{head},k}$	[N/mm ²]	17,6
Assoziierte Dichte	ρ_{a}	[kg/m ³]	440

Mechanische Parameter aus experimentellen Prüfungen.

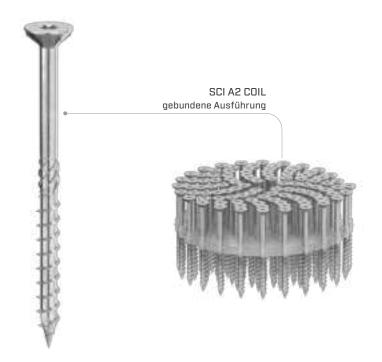
MEERESKLIMA

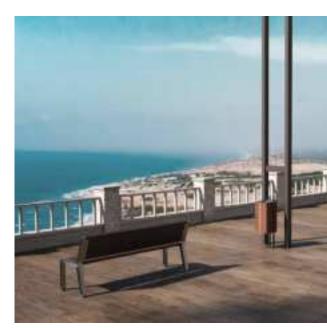
Kann dank Edelstahl A4 | AlSI316 in aggressiven Umgebungen und in Meeresnähe verwendet werden.

| SCI A2 | AISI304

SENKKOPFSCHRAUBE

SPITZE 3 THORNS


Dank der Spitze 3 THORNS werden die Mindestabstände reduziert. Mehr Schrauben können auf geringerem Raum und größere Schrauben in kleineren Elementen verwendet werden. Die Kosten und der Zeitaufwand für die Umsetzung des Projekts verringern sich.


HÖHERE FESTIGKEIT

Neue Spitze, spezielles asymmetrisches Schirmgewinde, verlängertes Bohrwerk und scharfe Fräsrippen am Unterkopf verleihen der Schraube eine höhere Torsionsfestigkeit und ermöglichen ein sicheres Einschrauben.

A2 | AISI304

Austenitischer Edelstahl A2. Hohe Korrosionsbeständigkeit. Geeignet für den Außenbereich bis zu 1 km Abstand zum Meer in Klasse C4 auf den meisten säurehaltigen Hölzern der Klasse T4.

ANWENDUNGSGEBIETE

Verwendung im Außenbereich mit aggressiven Bedingungen.

Holzbretter mit einer Dichte < 470 kg/m³ (ohne Vorbohrung) und < 620 kg/m³ (mit Vorbohrung).

d_1	ARTNR.	L	b	Α	Stk.
[mm]		[mm]	[mm]	[mm]	
	SCI3525(*)	25	18	7	500
3,5	SCI3530(*)	30	18	12	500
TX 15	SCI3535(*)	35	18	17	500
	SCI3540(*)	40	18	22	500
	SCI4030	30	18	12	500
	SCI4035	35	18	17	500
4	SCI4040	40	24	16	500
TX 20	SCI4045	45	30	15	200
	SCI4050	50	30	20	400
	SCI4060	60	35	25	200
	SCI4535	35	24	11	400
	SCI4540	40	24	16	400
4.5	SCI4545	45	30	15	400
4,5 TX 20	SCI4550	50	30	20	200
17 20	SCI4560	60	35	25	200
	SCI4570	70	40	30	200
	SCI4580	80	40	40	200
	SCI5040	40	20	20	200
	SCI5045	45	24	21	200
	SCI5050	50	24	26	200
5	SCI5060	60	30	30	200
TX 25	SCI5070	70	35	35	100
	SCI5080	80	40	40	100
	SCI5090	90	45	45	100
	SCI50100	100	50	50	100

(*) Ohne CE-Kennzeich	nung.

SCI A2 COIL

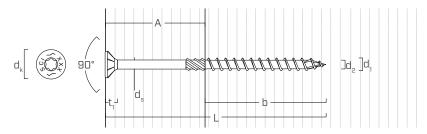
Gebundene Ausführung für eine schnelle und genaue Montage erhältlich.

Ideal für große Projekte.

Kompatibel mit KMR 3373 und KMR 3352 für Ø 4 und KMR 3372 und KMR 3338 für Ø 5. Für weitere Informationen siehe S. 403.

d₁	ARTNR.	L	b	Α	Stk.
[mm]		[mm]	[mm]	[mm]	
	SCI6060	60	30	30	100
	SCI6080	80	40	40	100
6	SCI60100	100	50	50	100
TX 30	SCI60120	120	60	60	100
	SCI60140	140	75	65	100
	SCI60160	160	75	85	100
	SCI80120	120	60	60	100
	SCI80160	160	80	80	100
8	SCI80200	200	80	120	100
TX 40	SCI80240	240	80	160	100
	SCI80280	280	80	200	100
	SCI80320	320	80	240	100

■ ZUGEHÖRIGE PRODUKTE



HUS A4 GEDREHTE BEILAGSCHEIBE

siehe	S.	68

d ₁ [mm]	ARTNR.	L [mm]	b [mm]	A [mm]	Stk.
4 TX 20	SCICOIL4025	25	18	7	3000
-	SCICOIL5050	50	30	20	1250
5 TX 25	SCICOIL5060	60	35	25	1250
17.23	SCICOIL5070	70	40	30	625

GEOMETRIE UND MECHANISCHE EIGENSCHAFTEN

GEOMETRIE

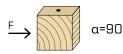
Nenndurchmesser	d_1	[mm]	3,5	4	4,5	5	6	8
Kopfdurchmesser	d_{K}	[mm]	7,00	8,00	9,00	10,00	12,00	14,50
Kerndurchmesser	d_2	[mm]	2,25	2,55	2,80	3,40	3,95	5,40
Schaftdurchmesser	d_S	[mm]	2,45	2,75	3,15	3,65	4,30	5,80
Kopfstärke	t_1	[mm]	3,50	3,80	4,25	4,65	5,30	6,00
Vorbohrdurchmesser ⁽¹⁾	d _V	[mm]	2,0	2,5	3,0	3,0	4,0	5,0

⁽¹⁾ Bei Materialien mit hoher Dichte ist je nach Holzart ein Vorbohren empfehlenswert.

MECHANISCHE KENNGRÖSSEN

Nenndurchmesser	d_1	[mm]	3,5	4	4,5	5	6	8
Zugfestigkeit	$f_{tens,k}$	[kN]	2,2	3,2	4,4	5,0	6,8	14,1
Fließmoment	$M_{y,k}$	[Nm]	1,3	1,9	2,8	4,4	8,2	17,6
Parameter der Auszugsfestigkeit	f _{ax,k}	$[N/mm^2]$	19,1	17,1	17,2	17,9	11,6	14,8
Assoziierte Dichte	ρ_a	$[kg/m^3]$	440	410	410	440	420	410
Durchziehparameter	f _{head,k}	$[N/mm^2]$	16,0	13,4	18,0	17,6	12,0	12,5
Assoziierte Dichte	ρ_a	[kg/m ³]	380	390	440	440	440	440

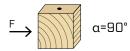
MINDESTABSTÄNDE DER SCHRAUBEN BEI ABSCHERBEANSPRUCHUNG



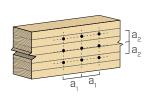
Schraubenabstände OHNE Vorbohrung

 $\rho_k \leq 420 \; kg/m^3$

d_1	[mm]		3,5	4	4,5		5	6	8
a ₁	[mm]	10 ⋅d	35	40	45	12·d	60	72	96
a ₂	[mm]	5·d	18	20	23	5·d	25	30	40
a _{3,t}	[mm]	15 ⋅d	53	60	68	15·d	75	90	120
a _{3,c}	[mm]	10 ⋅d	35	40	45	10·d	50	60	80
a _{4,t}	[mm]	5·d	18	20	23	5·d	25	30	40
a _{4,c}	[mm]	5·d	18	20	23	5·d	25	30	40


d_1	[mm]		3,5	4	4,5		5	6	8
a ₁	[mm]	5·d	18	20	23	5·d	25	30	40
a ₂	[mm]	5·d	18	20	23	5·d	25	30	40
a _{3,t}	[mm]	10 ⋅d	35	40	45	10·d	50	60	80
a _{3,c}	[mm]	10 ⋅d	35	40	45	10·d	50	60	80
a _{4,t}	[mm]	7·d	25	28	32	10 ⋅d	50	60	80
a _{4,c}	[mm]	5·d	18	20	23	5·d	25	30	40

Schraubenabstände VORGEBOHRT

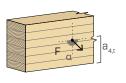


d_1	[mm]		3,5	4	4,5		5	6	8
a ₁	[mm]	5·d	18	20	23	5·d	25	30	40
a ₂	[mm]	3·d	11	12	14	3·d	15	18	24
a _{3,t}	[mm]	12·d	42	48	54	12·d	60	72	96
a _{3,c}	[mm]	7·d	25	28	32	7·d	35	42	56
a _{4,t}	[mm]	3·d	11	12	14	3·d	15	18	24
a _{4,c}	[mm]	3·d	11	12	14	3·d	15	18	24

d_1	[mm]		3,5	4	4,5		5	6	8
a ₁	[mm]	4·d	14	16	18	4·d	20	24	32
a ₂	[mm]	4·d	14	16	18	4·d	20	24	32
a _{3,t}	[mm]	7∙d	25	28	32	7∙d	35	42	56
a _{3,c}	[mm]	7∙d	25	28	32	7∙d	35	42	56
a _{4,t}	[mm]	5·d	18	20	23	7∙d	35	42	56
a _{4,c}	[mm]	3·d	11	12	14	3·d	15	18	24

 α = Winkel zwischen Kraft- und Faserrichtung

 $d = d_1 = Nenndurchmesser Schraube$


beanspruchtes . Hirnholzende -90° < α < 90°

unbeanspruchtes Hirnholzende 90° < α < 270°

beanspruchter Rand 0° < α < 180°

unbeanspruchter Rand 180° < α < 360°

MINDESTABSTÄNDE

ANMERKUNGEN

- Die Mindestabstände wurden nach EN 1995:2014 berechnet und beziehen sich auf einen Durchmesser von d = Nenndurchmesser der Schraube.
- Bei Stahl-Holz-Verbindungen können die Mindestabstände (a_1 , a_2) mit einem Koeffizienten von 0,7 multipliziert werden.
- Bei Holzwerkstoffplatten-Verbindungen können die Mindestabstände (a₁, a₂) mit einem Koeffizienten von 0,85 multipliziert werden.

STATISCHE WERTE

ANMERKUNGEN

- Die charakteristischen Holz-Holz-Scherfestigkeitswerte wurden unter Berücksichtigung eines Winkels ϵ von 90° zwischen Fasern des zweiten Elements und dem Verbinder berechnet.
- Die charakteristischen Gewindeauszugswerte wurden mit einem Winkel $\boldsymbol{\epsilon}$ von 90° zwischen Fasern des Holzelements und dem Verbinder berechnet
- Bei der Berechnung wurde eine Rohdichte der Holzelemente von $\rho_k = 385 \text{ kg/m}^3$
 - Für andere ρ_k -Werte können die aufgelisteten Festigkeiten mithilfe des k_{dens}-Beiwerts umgerechnet werden (siehe S. 42).
- Für eine Reihe von n parallel zur Faserrichtung des Holzes in einem Abstand a₁ angeordnete Schrauben kann die effektive charakteristische Tragfähigkeit R_{ef,V,k} mittels der wirksamen Anzahl n_{ef} berechnet werden (siehe S. 42).

				SCHER	WERT	ZUGKRÄFTE			
	Geo	metrie		Holz-Holz	Holz-Holz mit Unterlegscheibe	Gewindeauszug	Kopfdurchzug	Kopfdurchzug mit Unterlegscheibe	
	d ₁								
d ₁	L	b	Α	$R_{V,k}$	$R_{V,k}$	R _{ax,k}	R _{head,k}	$R_{head,k}$	
[mm]	[mm]	[mm]	[mm]	[kN]	[kN]	[kN]	[kN]	[kN]	
	25	18	7	0,41	-	1,08	0,79	-	
3,5	30	18	12	0,55	-	1,08	0,79	-	
-,-	35	18	17	0,63	-	1,08	0,79	-	
	40	18	22	0,64	-	1,08	0,79	-	
	30	18	12	0,62	-	1,17	0,85	-	
	35	18	17	0,68	-	1,17	0,85	-	
4	40	24	16	0,69	-	1,56	0,85	-	
	45	30	15	0,67	-	1,95	0,85	-	
	50	30	20	0,76	-	1,95	0,85	-	
	60	35	25	0,78	-	2,28	0,85	-	
	35	24	11	0,76	-	1,77	1,31	-	
	40	24	16	0,88	-	1,77	1,31	-	
4.5	45 50	30 30	15 20	0,87 0,95	-	2,21	1,31	-	
4,5	60	35	25	1,04	-	2,21 2,58	1,31 1,31	-	
	70	40	30	1,04	-	2,58	1,31	-	
	80	40	40	1,04	-	2,94	1,31	-	
	40	20	20	1,04	-	1,61	1,58	-	
	45	24	21	1,13	-	1,93	1,58	-	
	50	24	26	1,21	-	1,93	1,58	_	
	60	30	30	1,35	-	2,41	1,58	-	
5	70	35	35	1,35	_	2,82	1,58	_	
	80	40	40	1,35	-	3,22	1,58	_	
	90	45	45	1,35	-	3,62	1,58	_	
	100	50	50	1,35	_	4,02	1,58	_	
	60	30	30	1,48	1,44	1,95	1,55	4,31	
	80	40	40	1,77	1,92	2,60	1,55	4,31	
_	100	50	50	1,77	2,13	3,25	1,55	4,31	
6	120	60	60	1,77	2,29	3,90	1,55	4,31	
	140	75	65	1,77	2,46	4,87	1,55	4,31	
	160	75	85	1,77	2,46	4,87	1,55	4,31	
	120	60	60	2,83	3,79	6,76	2,36	7,02	
	160	80	80	2,83	4,00	9,01	2,36	7,02	
0	200	80	120	2,83	4,00	9,01	2,36	7,02	
8	240	80	160	2,83	4,00	9,01	2,36	7,02	
	280	80	200	2,83	4,00	9,01	2,36	7,02	
	320	80	240	2,83	4,00	9,01	2,36	7,02	

ALLGEMEINE GRUNDLAGEN

- Die charakteristischen Werte entsprechen der Norm EN 1995:2014 in Übereinstimmung mit der EN 14592.
- Die Bemessungswerte werden aus den charakteristischen Werten wie folgt herechnet:

$$R_d = \frac{R_k \cdot k_{mod}}{\gamma_M}$$

Die Beiwerte γ_M und $k_{\mbox{mod}}$ sind aus der entsprechenden geltenden Norm zu übernehmen, die für die Berechnung verwendet wird.

- Werte für mechanische Festigkeit und Geometrie der Schrauben gemäß CE-Kennzeichnung nach EN 14592.
- Die Bemessung und Überprüfung der Holzelemente müssen getrennt durchgeführt werden.
- Die charakteristischen Scherfestigkeitswerte wurden bei eingeschraubten Schrauben ohne Vorbohrung bewertet. Mit vorgebohrten Schrauben können höhere Festigkeitswerte erreicht werden.
- Für die Positionierung der Schrauben sind die Mindestabstände zu berücksichtigen.
- Die charakteristischen Gewindeauszugswerte wurden unter Berücksichtigung einer Einschraubtiefe b berechnet.
- Die charakteristischen Kopfdurchzugswerte wurden für ein Holzelement berechnet.
- Die charakteristischen Holz-Holz-Scherfestigkeitswerte mit Unterlegscheibe wurden unter Berücksichtigung der effektiven Gewindelänge im zweiten Element berechnet.

KKT COLOR A4 | AISI316

CE

VERDECKTE KEGELKOPFSCHRAUBE

FARBIGER KOPF

Ausführung aus Edelstahl A4 | AISI316, schwarzer, brauner oder grauer Kopf. Optimale farbliche Anpassung an das Holz. Ideal für sehr aggressive Umgebungen, für saure, chemisch behandelte Hölzer und bei sehr hoher interner Luftfeuchtigkeit (T5).

GEGENGEWINDE

Das entgegengesetzt (linksdrehend) laufende Gewinde garantiert ein ausgezeichnetes Klemmvermögen. Kleiner Kegelkopf für optimal verdeckten Kopfabschluss.

DREIECKIGER KÖRPER

Das dreilappige Gewinde schneidet die Holzfasern beim Einschrauben. Ausgezeichnete Durchzugfähigkeit.

ANWENDUNGSGEBIETE

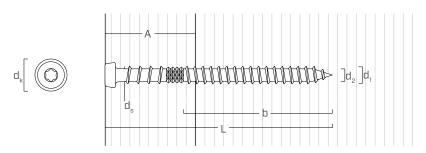
Verwendung im Außenbereich mit sehr aggressiven Bedingungen.

Holzbretter mit einer Dichte < 550 kg/m³ (ohne Vorbohrung) und < 880 kg/m³ (mit Vorbohrung).

WPC-Bretter (mit Vorbohrung).

KOPF FARBE BRAUN

111111111111111111111111111111111111111	d ₁ [mm]	ARTNR.	L [mm]	b [mm]	A [mm]	Stk.
		KKT540A4M	43	25	16	200
	5 TX 20	KKT550A4M	53	35	18	200
		KKT560A4M	60	40	20	200
		KKT570A4M	70	50	25	100

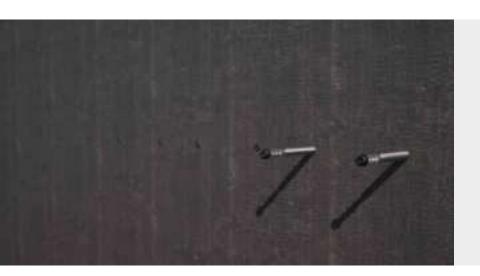

KOPF FARBE SCHWARZ

[mm]	L	b	Α	Stk.
	[mm]	[mm]	[mm]	
5 KKT550A4I	N 53	35	18	200
TX 20 KKT560A4I	N 60	40	20	200

KOPF FARBE GRAU

 .,	51010				
d_1	ARTNR.	L	b	Α	Stk.
[mm]		[mm]	[mm]	[mm]	
5 TX 20	KKT550A4G	53	35	18	200
	KKT560A4G	60	40	20	200

■ GEOMETRIE UND MECHANISCHE EIGENSCHAFTEN


GEOMETRIE

Nenndurchmesser	d_1	[mm]	5,1
Kopfdurchmesser	d_K	[mm]	6,75
Kerndurchmesser	d ₂	[mm]	3,40
Schaftdurchmesser	d _S	[mm]	4,05
Vorbohrdurchmesser ⁽¹⁾	d _V	[mm]	3,0 - 4,0

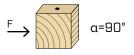
 $^{^{(1)}}$ Bei Materialien mit hoher Dichte ist je nach Holzart ein Vorbohren empfehlenswert.

MECHANISCHE KENNGRÖSSEN

Nenndurchmesser	d_1	[mm]	5,1
Zugfestigkeit	$f_{tens,k}$	[kN]	7,8
Fließmoment	$M_{y,k}$	[Nm]	5,8
Parameter der Auszugsfestigkeit	$f_{ax,k}$	[N/mm ²]	13,7
Assoziierte Dichte	ρ_a	[kg/m ³]	350
Durchziehparameter	$f_{head,k}$	[N/mm ²]	23,8
Assoziierte Dichte	ρ_{a}	[kg/m ³]	350

CARBONIZED WOOD

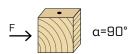
Ideal zur Befestigung von Holzbrettern mit Verkohlungseffekt. Kann auch bei Holzwarten verwendet werden, die mit Acetylaten behandelt wurden.


MINDESTABSTÄNDE DER SCHRAUBEN BEI ABSCHERBEANSPRUCHUNG

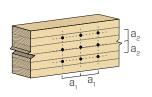
Schraubenabstände OHNE Vorbohrung

 $\rho_k \leq 420 \; kg/m^3$

d	[mm]		5
a ₁	[mm]	12·d	60
a ₂	[mm]	5·d	25
a _{3,t}	[mm]	15·d	75
a _{3,c}	[mm]	10·d	50
$a_{4,t}$	[mm]	5·d	25
a _{4,c}	[mm]	5·d	25


d	[mm]		5
a ₁	[mm]	5·d	25
a ₂	[mm]	5·d	25
$a_{3,t}$	[mm]	10 ⋅d	50
a _{3,c}	[mm]	10 ⋅d	50
$a_{4,t}$	[mm]	10 ⋅d	50
a _{4,c}	[mm]	5·d	25

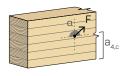
d = Schraubendurchmesser


Schraubenabstände VORGEBOHRT

d	[mm]		5
a ₁	[mm]	5·d	25
a ₂	[mm]	3·d	15
$a_{3,t}$	[mm]	12·d	60
a _{3,c}	[mm]	7·d	35
$a_{4,t}$	[mm]	3·d	15
a _{4,c}	[mm]	3·d	15

d	[mm]		5
a ₁	[mm]	4·d	20
a ₂	[mm]	4·d	20
a _{3,t}	[mm]	7·d	35
a _{3,c}	[mm]	7·d	35
a _{4,t}	[mm]	7·d	35
a _{4,c}	[mm]	3·d	15


beanspruchtes Hirnholzende -90° < α < 90°


unbeanspruchtes Hirnholzende 90° < α < 270°

beanspruchter Rand 0° < α < 180°

unbeanspruchter Rand 180° < α < 360°

- Die Mindestabstände wurden nach EN 1995:2014 berechnet und beziehen sich auf einen Durchmesser von d = Durchmesser der Schraube.
- Bei Stahl-Holz-Verbindungen können die Mindestabstände (a₁, a₂) mit einem Koeffizienten von 0,7 multipliziert werden.
- Bei Holzwerkstoffplatten-Verbindungen können die Mindestabstände (a₁, a₂) mit einem Koeffizienten von 0,85 multipliziert werden.

 $[\]alpha$ = Winkel zwischen Kraft- und Faserrichtung

 $[\]alpha$ = Winkel zwischen Kraft- und Faserrichtung

d = Schraubendurchmesser

				SCHEF	RWERT	ZUGKRÄFTE		
Geometrie			Holz-Holz ohne Vorbohren	Holz-Holz mit Vorbohren	Gewindeauszug	Kopfdurchzug inkl. Obergewindeauszug		
	d ₁		Ā					
d ₁	L	b	Α	$R_{V,k}$	R _{V,k}	R _{ax,k}	R _{head,k}	
[mm]	[mm]	[mm]	[mm]	[kN]	[kN]	[kN]	[kN]	
	43	25	16	1,13	1,35	1,98	1,25	
5	53	35	18	1,16	1,40	2,77	1,25	
5	60	40	22	1,19	1,46	3,17	1,25	
	70	50	27	1,30	1,63	3,96	1,25	

ALLGEMEINE GRUNDLAGEN

- Die charakteristischen Werte entsprechen der Norm EN 1995:2014.
- Die Bemessungswerte werden aus den charakteristischen Werten wie folgt berechnet:

$$R_d = \frac{R_k \cdot k_{mod}}{\gamma_M}$$

Die Beiwerte γ_M und k_{mod} sind aus der entsprechenden geltenden Norm zu übernehmen, die für die Berechnung verwendet wird.

- Werte für mechanische Festigkeit und Geometrie der Schrauben gemäß CE-Kennzeichnung nach EN 14592.
- Die Bemessung und Überprüfung der Holzelemente müssen getrennt durchgeführt werden.
- Für die Positionierung der Schrauben sind die Mindestabstände zu berücksichtigen.

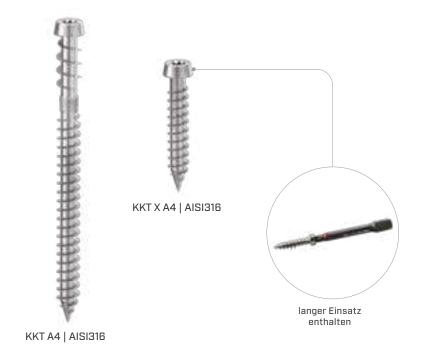
- Die Gewindeauszugswerte wurden mit einem Winkel des Verbinders von 90° zur Faser bei einer Einschraubtiefe gleich "b" berechnet.
- Die Kopfdurchzugswerte wurden für ein Holzelement berechnet, wobei auch die Mitwirkung des Unterkopfgewindes berücksichtigt wurde.
- * Bei der Berechnung wurde eine Rohdichte der Holzelemente von ρ_k = 420 $\,$ kg/m 3 berücksichtigt.

| KKT A4 | AISI316

CE

VERDECKTE KEGELKOPFSCHRAUBE

AGGRESSIVE UMGEBUNGEN


Ausführung aus Edelstahl A4 | AISI316, ideal für sehr aggressive Umgebungen, für saure, chemisch behandelte Hölzer und bei sehr hoher interner Luftfeuchtigkeit (T5). Ausführung KKT X mit verringerter Länge und langem Einsatz zur Verwendung mit Klippverschluss.

GEGENGEWINDE

Das entgegengesetzt (linksdrehend) laufende Gewinde garantiert ein ausgezeichnetes Klemmvermögen. Kleiner Kegelkopf für optimal verdeckten Kopfabschluss.

DREIECKIGER KÖRPER

Das dreilappige Gewinde schneidet die Holzfasern beim Einschrauben. Ausgezeichneter Zug in das Holz.

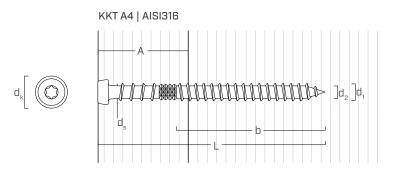
ANWENDUNGSGEBIETE

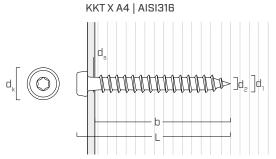
Verwendung im Außenbereich mit sehr aggressiven Bedingungen.

Holzbretter mit einer Dichte < 550 kg/m³ (ohne Vorbohrung) und < 880 kg/m³ (mit Vorbohrung). WPC-Bretter (mit Vorbohrung).

KKT A4 | AISI316

	d_1	ARTNR.	L	b	Α	Stk.
	[mm]		[mm]	[mm]	[mm]	
		KKT540A4	43	25	16	200
		KKT550A4	53	35	18	200
	5 TX 20	KKT560A4	60	40	20	200
	17.20	KKT570A4	70	50	25	100
		KKT580A4	80	53	30	100


KKT X A4 | AISI316 - Schraube mit Vollgewinde


量	d_1	ARTNR.	L	b	Α	Stk.
	[mm]		[mm]	[mm]	[mm]	
		KKTX520A4(*)	20	16	4	200
	5 TX 20	KKTX525A4(*)	25	21	4	200
		KKTX530A4(*)	30	26	4	200
		KKTX540A4	40	36	4	100

^(*) Ohne CE-Kennzeichnung.

LANGER EINSATZ INBEGRIFFEN, Art, Nr. TX2050

■ GEOMETRIE UND MECHANISCHE EIGENSCHAFTEN

GEOMETRIE

Nenndurchmesser	d_1	[mm]	5,1
Kopfdurchmesser	d_K	[mm]	6,75
Kerndurchmesser	d_2	[mm]	3,40
Schaftdurchmesser	d_S	[mm]	4,05
Vorbohrdurchmesser ⁽¹⁾	d_V	[mm]	3,0 - 4,0

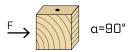
 $^{^{(1)}}$ Bei Materialien mit hoher Dichte ist je nach Holzart ein Vorbohren empfehlenswert.

MECHANISCHE KENNGRÖSSEN

Nenndurchmesser	d_1	[mm]	5,1
Zugfestigkeit	$f_{tens,k}$	[kN]	7,8
Fließmoment	$M_{y,k}$	[Nm]	5,8
Parameter der Auszugsfestigkeit	f _{ax,k}	[N/mm ²]	13,7
Assoziierte Dichte	ρ_{a}	[kg/m ³]	350
Durchziehparameter	f _{head,k}	[N/mm ²]	23,8
Assoziierte Dichte	ρ_{a}	[kg/m ³]	350

KKT X

Ideal zur Befestigung von Standard-Klippverschlüssen von Rothoblaas (TVM, TERRALOCK) im Außenbereich. Langer Bit-Einsatz in der Packung enthalten.


MINDESTABSTÄNDE DER SCHRAUBEN BEI ABSCHERBEANSPRUCHUNG

Schraubenabstände OHNE Vorbohrung

 $\rho_k \leq 420 \; kg/m^3$

d	[mm]		5
a ₁	[mm]	12·d	60
a ₂	[mm]	5·d	25
$a_{3,t}$	[mm]	15·d	75
a _{3,c}	[mm]	10 ⋅d	50
$a_{4,t}$	[mm]	5·d	25
a _{4,c}	[mm]	5·d	25

d	[mm]		5
a ₁	[mm]	5·d	25
a ₂	[mm]	5·d	25
$a_{3,t}$	[mm]	10·d	50
a _{3,c}	[mm]	10·d	50
$a_{4,t}$	[mm]	10·d	50
$a_{4,c}$	[mm]	5·d	25

- α = Winkel zwischen Kraft- und Faserrichtung
- d = Schraubendurchmesser

Schraubenabstände OHNE Vorbohrung

 $420 \text{ kg/m}^3 < \rho_k \le 500 \text{ kg/m}^3$

α=90°

d	[mm]		5
a ₁	[mm]	1 5⋅d	75
a ₂	[mm]	7⋅d	35
$a_{3,t}$	[mm]	20·d	100
a _{3,c}	[mm]	1 5⋅d	75
$a_{4,t}$	[mm]	7·d	35
a _{4,c}	[mm]	7·d	35

5 d [mm] [mm] a_1 7·d 35 [mm] a_2 7·d 35 $a_{3,t}$ [mm] 15·d 75 [mm] $a_{3,c}$ 15·d 75 $a_{4,t}$ [mm] 12·d 60 [mm] $a_{4,c}$ 7·d 35

- α = Winkel zwischen Kraft- und Faserrichtung
- d = Schraubendurchmesser

Schraubenabstände VORGEBOHRT

α=90°

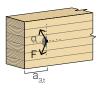
5

20

20

35

35


35

15

d	[mm]		5
a ₁	[mm]	5·d	25
a ₂	[mm]	3·d	15
$a_{3,t}$	[mm]	12·d	60
a _{3,c}	[mm]	7⋅d	35
$a_{4,t}$	[mm]	3·d	15
a _{4,c}	[mm]	3·d	15

- α = Winkel zwischen Kraft- und Faserrichtung d = Schraubendurchmesser

beanspruchtes Hirnholzende -90° < α < 90°

unbeanspruchtes Hirnholzende 90° < α < 270°

d

a₁

 a_2

 $a_{3,t}$

a_{3,c}

 $a_{4,t}$

 $a_{4,c}$

[mm]

[mm]

[mm]

[mm]

[mm]

[mm]

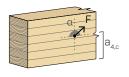
[mm]

beanspruchter Rand $0^{\circ} < \alpha < 180^{\circ}$

4.d

4·d

7·d


7·d

7·d

3·d

unbeanspruchter Rand $180^{\circ} < \alpha < 360^{\circ}$

- Die Mindestabstände wurden nach EN 1995:2014 berechnet und beziehen sich auf einen Berechnungsdurchmesser von d = Schraubendurchmesser.
- Bei Stahl-Holz-Verbindungen können die Mindestabstände (a₁, a₂) mit einem Koeffizienten von 0,7 multipliziert werden.
- Bei Holzwerkstoffplatten-Verbindungen können die Mindestabstände (a $_1$, a $_2$) mit einem Koeffizienten von 0,85 multipliziert werden.

STATISCHE WERTE

K	KT A4	I AISI3	16	SCHER	RWERT	ZUGKRÄFTE		
	Geometrie			Holz-Holz Holz-Holz ohne Vorbohren mit Vorbohren		Gewindeauszug	Kopfdurchzug inkl. Obergewindeauszug	
			A					
d_1	L	b	Α	R _{V,k}	R _{V,k}	$R_{ax,k}$	$R_{head,k}$	
[mm]	[mm]	[mm]	[mm]	[kN]	[kN]	[kN]	[kN]	
	43	25	16	1,13	1,35	1,98	1,25	
	53	35	18	1,16	1,40	2,77	1,25	
5	60	40	20	1,19	1,46	3,17	1,25	
	70	50	25	1,41	1,77	3,96	1,25	
	80	53	30	1,59	2,00	4,20	1,25	

KKT X A4 AISI316				SCHEF	RWERT		ZUGKRÄFTE
	Geometr	ie		Stahl-Holz, dünnes Blech		Stahl-Holz mittlere Platte	Gewindeauszug
	d ₁			→ ⊃S _{PLATE}		⇒ JS _{PLATE}	
d_1	L	b	S _{PLATE}	$R_{V,k}$	S _{PLATE}	$R_{V,k}$	$R_{ax,k}$
[mm]	[mm]	[mm]	[mm]	[kN]	[mm]	[kN]	[kN]
	20	16		0,64		0,74	1,27
_	25	21	4.5	0,82	3	0,92	1,66
5	30	26	1,5	0,99	3	1,10	2,06
	40	36		1,34		1,48	2,85

ALLGEMEINE GRUNDLAGEN

- Die charakteristischen Werte entsprechen der Norm EN 1995:2014.
- Die Bemessungswerte werden aus den charakteristischen Werten wie folgt berechnet:

$$R_d = \frac{R_k \cdot k_{mod}}{\gamma_M}$$

Die Beiwerte γ_M und k_{mod} sind aus der entsprechenden geltenden Norm zu übernehmen, die für die Berechnung verwendet wird.

- Werte für mechanische Festigkeit und Geometrie der Schrauben gemäß CE-Kennzeichnung nach EN 14592.
- Die Bemessung und Überprüfung der Holzelemente und der Stahlplatten müssen separat durchgeführt werden.
- Für die Positionierung der Schrauben sind die Mindestabstände zu berück-
- Die KKT A4 Schrauben mit Doppelgewinde werden hauptsächlich für Holz-Holz-Verbindungen verwendet.
- Die KKT X Schrauben mit Vollgewinde werden hauptsächlich für Stahlplatten verwendet (z. B. System für Terrassen TERRALOCK).

ANMERKLINGEN

- Die Gewindeauszugswerte wurden mit einem Winkel des Verbinders von 90° zur Faser bei einer Einschraubtiefe gleich "b" berechnet.
- Die Kopfdurchzugswerte wurden für ein Holzelement berechnet, wobei auch die Mitwirkung des Unterkopfgewindes berücksichtigt wurde.
- Die charakteristischen Scherfestigkeitswerte wurden für eine dünne Platte (Sp_{LATE} \leq 0,5 d₁) und für eine mittlere Platte (0,5 d₁ < Sp_{LATE} < d₁) be-
- Bei Stahl-Holz-Verbindungen ist in Bezug auf den Abreiß- oder Durchzugswiderstand des Schraubenkopfes für gewöhnlich die Zugfestigkeit des Stahls ausschlaggebend.
- Bei der Berechnung wurde eine Rohdichte der Holzelemente von ρ_k = 420 kg/m³ berücksichtigt.

KKT COLOR

VERDECKTE KEGELKOPFSCHRAUBE

ORGANISCHE FARB-BESCHICHTUNG

Ausführung in Kohlenstoffstahl mit farbiger Rostschutzbeschichtung (braun, grau, grün, sandfarben, schwarz), für den Außenbereich in Nutzungsklasse 3 auf nicht säurehaltigen Hölzern (T3).

GEGENGEWINDE

Das entgegengesetzt (linksdrehend) laufende Gewinde garantiert ein ausgezeichnetes Klemmvermögen. Kleiner Kegelkopf für optimal verdeckten Kopfabschluss.

DREIECKIGER KÖRPER

Das dreilappige Gewinde schneidet die Holzfasern beim Einschrauben. Ausgezeichneter Zug in das Holz.

ANWENDUNGSGEBIETE

Für den Außenbereich.

Holzbretter mit einer Dichte < 780 kg/m³ (ohne Vorbohrung) und < 880 kg/m³ (mit Vorbohrung).

WPC-Bretter (mit Vorbohrung).

KKT FARBE BRAUN

d_1	ARTNR.	L	b	Α	Stk.
[mm]		[mm]	[mm]	[mm]	
	KKTM540	43	25	16	200
-	KKTM550	53	35	18	200
5 TX 20	KKTM560	60	40	20	200
17,20	KKTM570	70	50	25	100
	KKTM580	80	53	30	100
	KKTM660	60	40	20	100
6	KKTM680	80	50	30	100
TX 25	KKTM6100	100	50	50	100
	KKTM6120	120	60	60	100

KKT FARBE GRAU

$d_{_1}$	ARTNR.	L	b	Α	Stk.
[mm]		[mm]	[mm]	[mm]	
	KKTG540	43	25	16	200
-	KKTG550	53	35	18	200
5 TX 20	KKTG560	60	40	20	200
17 20	KKTG570	70	50	25	100
	KKTG580	80	53	30	100

KKT FARBE GRÜN

	$d_{_1}$	ARTNR.	L	b	Α	Stk.
	[mm]		[mm]	[mm]	[mm]	
TX	-	KKTV550	53	35	18	200
	5 TX 20	KKTV560	60	40	20	200
	1 / 20	KKTV570	70	50	25	100

KKT FARBE SAND

)	d ₁	ARTNR.	L	b	Α	Stk.
	[mm]		[mm]	[mm]	[mm]	
	-	KKTS550	53	35	18	200
	5 TX 20	KKTS560	60	40	20	200
	1 / 20	KKTS570	70	50	25	100

KKT FARBE SCHWARZ

$d_{_1}$	ARTNR.	L	b	Α	Stk.
[mm]		[mm]	[mm]	[mm]	
_	KKTN540(*)	43	36	16	200
5 TX 20	KKTN550	53	35	18	200
1 / 20	KKTN560	60	40	20	200

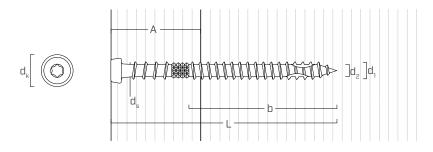
^(*) Schraube mit Vollgewinde.

KKT COLOR STRIP

Gebundene Ausführung für eine schnelle und genaue Montage erhältlich.

Ideal für große Projekte.

Für Informationen zum Schrauber und zu Zusatzprodukten siehe S. 403.



KKT FARBE BRAUN

$d_{_1}$	ARTNR.	L	b	Α	Stk.
[mm]		[mm]	[mm]	[mm]	
5 TX 20	KKTMSTRIP540	43	25	16	800
	KKTMSTRIP550	53	35	18	800

Kompatibel mit Ladern KMR 3372, Art.Nr. HH3372 und HH3338 mit entsprechendem Bit TX20 (Art.Nr. TX2075)

■ GEOMETRIE UND MECHANISCHE EIGENSCHAFTEN

GEOMETRIE

Nenndurchmesser	d_1	[mm]	5,1	6
Kopfdurchmesser	d_K	[mm]	6,75	7,75
Kerndurchmesser	d_2	[mm]	3,40	3,90
Schaftdurchmesser	d _S	[mm]	4,05	4,40
Vorbohrdurchmesser ⁽¹⁾	d _V	[mm]	3,0 - 4,0	4,0 - 5,0

⁽¹⁾ Bei Materialien mit hoher Dichte ist je nach Holzart ein Vorbohren empfehlenswert.

MECHANISCHE KENNGRÖSSEN

Nenndurchmesser	d_1	[mm]	5,1	6
Zugfestigkeit	$f_{tens,k}$	[kN]	9,6	14,5
Fließmoment	$M_{y,k}$	[Nm]	8,4	9,9
Parameter der Auszugsfestigkeit	f _{ax,k}	[N/mm ²]	14,7	14,7
Assoziierte Dichte	ρ_{a}	[kg/m ³]	400	400
Durchziehparameter	$f_{head,k}$	[N/mm ²]	68,8	20,1
Assoziierte Dichte	ρ_{a}	[kg/m ³]	730	350

■ MINDESTABSTÄNDE DER SCHRAUBEN BEI ABSCHERBEANSPRUCHUNG

Schraubenabstände OHNE Vorbohrung

 $\rho_k \le 420 \text{ kg/m}^3$

F ->	α=90'
------	-------

d	[mm]		5	6
a ₁	[mm]	12·d	60	72
a ₂	[mm]	5·d	25	30
$a_{3,t}$	[mm]	15 ⋅d	75	90
a _{3,c}	[mm]	10 ⋅d	50	60
$a_{4,t}$	[mm]	5·d	25	30
a _{4,c}	[mm]	5·d	25	30

d	[mm]		5	6
a ₁	[mm]	5·d	25	30
a ₂	[mm]	5·d	25	30
$a_{3,t}$	[mm]	10 ⋅d	50	60
a _{3,c}	[mm]	10 ⋅d	50	60
$a_{4,t}$	[mm]	10 ⋅d	50	60
$a_{4,c}$	[mm]	5·d	25	30

- α = Winkel zwischen Kraft- und Faserrichtung
- d = Schraubendurchmesser

Schraubenabstände OHNE Vorbohrung

 $420 \text{ kg/m}^3 < \rho_k \le 500 \text{ kg/m}^3$

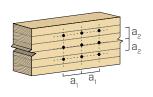
a=90°

d	[mm]		5	6
a ₁	[mm]	15·d	75	90
a ₂	[mm]	7⋅d	35	42
$a_{3,t}$	[mm]	20·d	100	120
a _{3,c}	[mm]	15·d	75	90
$a_{4,t}$	[mm]	7·d	35	42
a _{4,c}	[mm]	7∙d	35	42

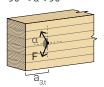
d	[mm]		5	6
a ₁	[mm]	7·d	35	42
a ₂	[mm]	7·d	35	42
a _{3,t}	[mm]	15·d	75	90
a _{3,c}	[mm]	15·d	75	90
$a_{4,t}$	[mm]	12·d	60	72
$a_{4,c}$	[mm]	7·d	35	42

- α = Winkel zwischen Kraft- und Faserrichtung
- d = Schraubendurchmesser

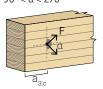
Schraubenabstände VORGEBOHRT

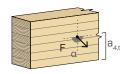


α=90°


d	[mm]		5	6
a ₁	[mm]	5·d	25	30
a ₂	[mm]	3·d	15	18
$a_{3,t}$	[mm]	12·d	60	72
a _{3,c}	[mm]	7⋅d	35	42
$a_{4,t}$	[mm]	3·d	15	18
a _{4,c}	[mm]	3·d	15	18

d	[mm]		5	6
a ₁	[mm]	4·d	20	24
a ₂	[mm]	4·d	20	24
٥,٠	[mm]	7·d	35	42
a _{3,c}	[mm]	7·d	35	42
$a_{4,t}$	[mm]	7·d	35	42
a _{4,c}	[mm]	3·d	15	18


- α = Winkel zwischen Kraft- und Faserrichtung
- d = Schraubendurchmesser


beanspruchtes Hirnholzende -90° < a < 90°

unbeanspruchtes Hirnholzende $90^{\circ} < \alpha < 270^{\circ}$

beanspruchter Rand $0^{\circ} < \alpha < 180^{\circ}$

unbeanspruchter Rand $180^{\circ} < \alpha < 360^{\circ}$

- Die Mindestabstände wurden nach EN 1995:2014 und in Übereinstimmung mit der ETA-11/0030 berechnet und beziehen sich auf einen Berechnungsdurchmesser von d = Schraubendurchmesser.
- Bei Stahl-Holz-Verbindungen können die Mindestabstände (a₁, a₂) mit einem Koeffizienten von 0,7 multipliziert werden.
- Bei Holzwerkstoffplatten-Verbindungen können die Mindestabstände (a $_1$, a $_2$) mit einem Koeffizienten von 0,85 multipliziert werden.

STATISCHE WERTE

	K	KT		SCHER	SCHERWERT ZUGKRÄF		RÄFTE
	Geometrie Holz-Holz ohne Vorbohren			Holz-Holz mit Vorbohren Gewindeauszug		Kopfdurchzug inkl. Obergewindeauszug	
	d ₁		A				
d_1	L	b	Α	R _{V,k}	R _{V,k}	R _{ax,k}	R _{head,k}
[mm]	[mm]	[mm]	[mm]	[kN]	[kN]	[kN]	[kN]
	43	25	16	1,08	1,43	1,91	1,05
	53	35	18	1,22	1,48	2,67	1,05
5	60	40	20	1,25	1,53	3,06	1,05
	70	50	25	1,34	1,68	3,82	1,05
	80	53	30	1,45	1,84	4,05	1,05
	60	40	20	1,46	1,80	3,67	1,40
6	80	50	30	1,67	2,16	4,59	1,40
O	100	50	50	1,93	2,27	4,59	1,40
	120	60	60	1,93	2,27	5,50	1,40

	KKTN54	.0		SCHE	RWERT		ZUGKRÄFTE
	Geometri	Stahl-Holz, dünnes Blech		Stahl-Holz mittlere Platte		Gewindeauszug	
			→	JS _{plate}	→]S _{PLATE}	
d_1	L	b	S _{PLATE}	$R_{V,k}$	S _{PLATE}	$R_{V,k}$	R _{ax,k}
[mm]	[mm]	[mm]	[mm]	[kN]	[mm]	[kN]	[kN]
5	40	36	2	1,32	3	1,50	2,75

ALLGEMEINE GRUNDLAGEN

- Die charakteristischen Werte entsprechen der Norm EN 1995:2014.
- Die Bemessungswerte werden aus den charakteristischen Werten wie folgt berechnet:

$$R_d = \frac{R_k \cdot k_{mod}}{V}$$

Die Beiwerte γ_M und $k_{\mbox{mod}}$ sind aus der entsprechenden geltenden Norm zu übernehmen, die für die Berechnung verwendet wird.

- Werte für mechanische Festigkeit und Geometrie der Schrauben gemäß CE-Kennzeichnung nach EN 14592.
- Die Bemessung und Überprüfung der Holzelemente und der Stahlplatten müssen separat durchgeführt werden.
- Für die Positionierung der Schrauben sind die Mindestabstände zu berück-
- Die KKT Schrauben mit Doppelgewinde werden hauptsächlich für Holz-Holz-Verbindungen verwendet.
- Die KKTN540 Schraube mit Vollgewinde wird hauptsächlich für Stahlplatten verwendet (z. B. System für Terrassen FLAT).

- Die Gewindeauszugswerte wurden mit einem Winkel des Verbinders von 90° zur Faser bei einer Einschraubtiefe gleich "b" berechnet.
- Die Kopfdurchzugswerte wurden für ein Holzelement berechnet, wobei auch die Mitwirkung des Unterkopfgewindes berücksichtigt wurde
- Bei der Berechnung des Durchmessers Ø 5 wurde ein charakteristischer Durchziehparameter von 20 N/mm² mit einer assoziierten Dichte von ρ_a = $350~kg/m^3$ berücksichtigt.
- Die charakteristischen Scherfestigkeitswerte wurden für eine dünne Platte $(S_{PLATE} \le 0.5 d_1)$ und für eine mittlere Platte $(0.5 d_1 < S_{PLATE} < d_1)$ berechnet.
- Bei Stahl-Holz-Verbindungen ist in Bezug auf den Abreiß- oder Durchzugswiderstand des Schraubenkopfes für gewöhnlich die Zugfestigkeit des Stahls ausschlaggebend.
- Bei der Berechnung wurde eine Rohdichte der Holzelemente von ρ_k = 420 $\,$ kg/m 3 berücksichtigt.

| FAS A4 | AISI316

SCHRAUBE FÜR FASSADEN

OPTIMALE GEOMETRIE


Dank des großen Tellerkopfes, der Ausführung mit Teilgewinde und der Bohrspitze ist die Schraube geeignet zur Befestigung von Fassadenpaneelen (HPL, Platten aus Faserzement usw.) auf Unterkonstruktionen aus Holz.

A4 | AISI316

Austenitischer Edelstahl A4 | AISI316 mit ausgezeichneter Korrosionsfestigkeit. Ideal für Meeresklima; Korrosivitätskategorie C5, und zum Einschrauben in die aggressivsten Hölzer der Klasse T5.

FARBIGER KOPF

Erhältlich in Weiß, Grau oder Schwarz für eine perfekte farbliche Anpassung an die Platte. Die Kopffarbe kann auf Anfrage angepasst werden.

3,5	(5)	8
LÄNG	E [mm]	
20 (25 38)	320
NUTZ	UNGSKLASSE	
SC1	SC2 SC3	
АТМО	SPHÄRISCHE KORROSIVITÄT	
C1	C2 C3 C4 C5	
KORR	OSIVITÄT DES HOLZES	
MATE	RIAL	
A4 AISI 316	Austenitischer Edelstahl A4 AISI316 (CRC III)	

ANWENDUNGSGEBIETE

Verwendung im Außenbereich mit aggressiven Bedingungen. Befestigung von Fassadenelementen (Platten aus HPL, Platten aus Faserzement usw.) an Unterkonstruktionen aus Holz.

FAS: Edelstahl

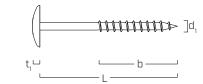
d_1	ARTNR.	L	b	Stk.
[mm]		[mm]	[mm]	
4,8	FAS4825	25	17	200
TX 20	FAS4838	38	23	200

FAS N: RAL 9005 - Schwarz

NR.	L	b	Stk.
	[mm]	[mm]	
4825	25	17	200
4838	38	23	200
	4825 4838	[mm] 4825 25	[mm] [mm] 4825 25 17

FAS W: RAL 9010 - Weiß

d_1	ARTNR.	L	b	Stk.
[mm]		[mm]	[mm]	
4,8	FASW4825	25	17	200
TX 20	FASW4838	38	23	200


FAS G: RAL 7016 - Anthrazitgrau

d_1	ARTNR.	L	b	Stk.
[mm]		[mm]	[mm]	
4,8	FASG4825	25	17	200
TX 20	FASG4838	38	23	200

GEOMETRIE

Nenndurchmesser	d_1	[mm]	5
Kopfdurchmesser	d_K	[mm]	12,30
Kopfstärke	t ₁	[mm]	2,70

KOMPATIBILITÄT

FAS ist mit den gängigsten Fassadenplattensystemen aus Faserzement und HPL kompatibel.

| KKZ A2 | AISI304

CE

SCHRAUBE MIT DOPPELGEWINDE MIT KLEINEM ZYLINDERKOPF

HARTHÖLZER

Die Spezialbohrspitze mit Schwertgeometrie wurde speziell entwickelt, um sehr harte Holzarten wirksam und ohne Vorbohrung zu bohren (mit Vorbohrung auch über 1000 kg/m³).

DOPPELGEWINDE

Das rechtsdrehende Unterkopfgewinde mit größerem Durchmesser sorgt für eine wirksame Zugkraft, wodurch die Verbindung der Holzelemente garantiert ist. Verdeckter Kopfabschluss.

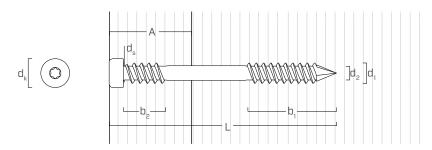
BRÜNIERTE AUSFÜHRUNG

Erhältlich in Edelstahl, in brünierter Ausführung, Farbe Antik, garantiert eine optimale farbliche Anpassung an das Holz.

ANWENDUNGSGEBIETE

Verwendung im Außenbereich mit aggressiven Bedingungen.

Holzbretter mit einer Dichte < 780 kg/m³ (ohne Vorbohrung) und < 1240 kg/m³ (mit Vorbohrung). WPC-Bretter (mit Vorbohrung).


KKZ A2 | AISI304

ART.-NR. Stk. d_1 L b_1 b_2 [mm] [mm] [mm] [mm] [mm] KKZ550 50 22 11 200 KKZ560 60 27 11 33 200 TX 25 KKZ570 70 32 11 38 100

KKZ BRONZE A2 | AISI304

	d₁ [mm]	ARTNR.	L [mm]	_	b ₂ [mm]	A [mm]	Stk.	
	5	KKZB550	50	22	11	28	200	
	TX 25	KKZB560	60	27	11	33	200	
2								

■ GEOMETRIE UND MECHANISCHE EIGENSCHAFTEN

GEOMETRIE

Nenndurchmesser	d_1	[mm]	5
Kopfdurchmesser	d_{K}	[mm]	6,80
Kerndurchmesser	d ₂	[mm]	3,50
Schaftdurchmesser	d _S	[mm]	4,35
Vorbohrdurchmesser ⁽¹⁾	d_V	[mm]	3,5

 $^{^{(1)}}$ Bei Materialien mit hoher Dichte ist je nach Holzart ein Vorbohren empfehlenswert.

MECHANISCHE KENNGRÖSSEN

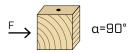
Nenndurchmesser	d_1	[mm]	5
Zugfestigkeit	$f_{\text{tens,k}}$	[kN]	5,7
Fließmoment	$M_{y,k}$	[Nm]	5,3
Parameter der Auszugsfestigkeit	$f_{ax,k}$	[N/mm ²]	17,1
Assoziierte Dichte	ρ_{a}	[kg/m ³]	350
Durchziehparameter	$f_{head,k}$	[N/mm ²]	36,8
Assoziierte Dichte	ρ_{a}	[kg/m ³]	350

HARD WOOD

Auch an Harthölzern, wie IPE, Massaranduba oder Bambus-Furnierschichtholz (über 1000 kg/m³) getestet.

SAURE HÖLZER T4

Experimentelle Prüfungen von Rothoblaas haben gezeigt, dass sich Edelstahl A2 (AISI 304) für Anwendungen auf den meisten aggressiven Hölzern mit einem Säuregehalt (pH-Wert) unter 4, wie Eiche, Douglasie und Kastanie, eignet (siehe S. 314).


■ MINDESTABSTÄNDE DER SCHRAUBEN BEI ABSCHERBEANSPRUCHUNG

Schraubenabstände OHNE Vorbohrung

 $\rho_k \leq 420 \; kg/m^3$

d	[mm]		5
a ₁	[mm]	12·d	60
a ₂	[mm]	5·d	25
$a_{3,t}$	[mm]	15·d	75
a _{3,c}	[mm]	10 ⋅d	50
$a_{4,t}$	[mm]	5·d	25
a _{4,c}	[mm]	5·d	25

d	[mm]		5
a ₁	[mm]	5·d	25
a ₂	[mm]	5·d	25
a _{3,t}	[mm]	10·d	50
a _{3,c}	[mm]	10 ⋅d	50
$a_{4,t}$	[mm]	10·d	50
$a_{4,c}$	[mm]	5·d	25

- α = Winkel zwischen Kraft- und Faserrichtung
- d = Nenndurchmesser Schraube

Schraubenabstände OHNE Vorbohrung

 $420 \text{ kg/m}^3 < \rho_k \le 500 \text{ kg/m}^3$

α=90°

d	[mm]		5
a ₁	[mm]	15·d	75
a ₂	[mm]	7⋅d	35
$a_{3,t}$	[mm]	20·d	100
a _{3,c}	[mm]	15·d	75
$a_{4,t}$	[mm]	7⋅d	35
a _{4,c}	[mm]	7∙d	35

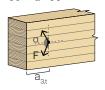
5 d [mm] [mm] a_1 7·d 35 [mm] a_2 7·d 35 $a_{3,t}$ [mm] 15·d 75 [mm] $a_{3,c}$ 15·d 75 $a_{4,t}$ [mm] 12·d 60 [mm] $a_{4,c}$ 7·d 35

- α = Winkel zwischen Kraft- und Faserrichtung
- d = Nenndurchmesser Schraube

Schraubenabstände VORGEBOHRT

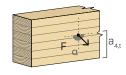


α=90°


d	[mm]		5
a ₁	[mm]	5·d	25
a ₂	[mm]	3·d	15
a _{3,t}	[mm]	12 ⋅d	60
a _{3,c}	[mm]	7⋅d	35
$a_{4,t}$	[mm]	3·d	15
a _{4,c}	[mm]	3·d	15

d [mm] 5 a₁ [mm] 4.d 20 [mm] a_2 4·d 20 $a_{3,t}$ [mm] 7·d 35 [mm] $a_{3,c}$ 7·d 35 $a_{4,t}$ [mm] 7·d 35 [mm] $a_{4,c}$ 3·d 15

- α = Winkel zwischen Kraft- und Faserrichtung
- d = Nenndurchmesser Schraube


beanspruchtes Hirnholzende $-90^{\circ} < \alpha < 90^{\circ}$

unbeanspruchtes Hirnholzende $90^{\circ} < \alpha < 270^{\circ}$

beanspruchter Rand $0^{\circ} < \alpha < 180^{\circ}$

unbeanspruchter Rand $180^{\circ} < \alpha < 360^{\circ}$

- Die Mindestabstände wurden nach EN 1995:2014 berechnet und beziehen sich auf einen Durchmesser von d = Nenndurchmesser der Schraube.
- Bei Stahl-Holz-Verbindungen können die Mindestabstände (a_1 , a_2) mit einem Koeffizienten von 0,7 multipliziert werden.
- Bei Holzwerkstoffplatten-Verbindungen können die Mindestabstände (a_1, a_2) mit einem Koeffizienten von 0,85 multipliziert werden.

STATISCHE WERTE

				SCHEF	RWERT	ZUGK	RÄFTE
	Geo	eometrie Holz-Holz Holz-Holz ohne Vorbohren mit Vorbohren		Gewindeauszug	Kopfdurchzug inkl. Obergewindeauszug		
			Ā				
d ₁	L	b_1	Α	$R_{V,k}$	R _{V,k}	R _{ax,k}	R _{head,k}
[mm]	[mm]	[mm]	[mm]	[kN]	[kN]	[kN]	[kN]
	50	22	28	1,41	1,71	2,18	1,97
5	60	27	33	1,52	1,83	2,67	1,97
	70	32	38	1,61	1,83	3,17	1,97

ALLGEMEINE GRUNDLAGEN

- Die charakteristischen Werte entsprechen der Norm EN 1995:2014.
- Die Bemessungswerte werden aus den charakteristischen Werten wie folgt berechnet:

$$R_d = \frac{R_k \cdot k_{mod}}{\gamma_M}$$

Die Beiwerte γ_M und k_{mod} sind aus der entsprechenden geltenden Norm zu übernehmen, die für die Berechnung verwendet wird.

- Werte für mechanische Festigkeit und Geometrie der Schrauben gemäß CE-Kennzeichnung nach EN 14592.
- Die Bemessung und Überprüfung der Holzelemente müssen getrennt durchgeführt werden.
- Für die Positionierung der Schrauben sind die Mindestabstände zu berücksichtigen.

- Die Gewindeauszugswerte wurden mit einem Winkel des Verbinders von 90° zur Faser bei einer Einschraubtiefe gleich "b" berechnet.
- Die Kopfdurchzugswerte wurden für ein Holzelement berechnet, wobei auch die Mitwirkung des Unterkopfgewindes berücksichtigt wurde.
- * Bei der Berechnung wurde eine Rohdichte der Holzelemente von ρ_k = 420 $\,$ kg/m 3 berücksichtigt.

KKZ EVO C5

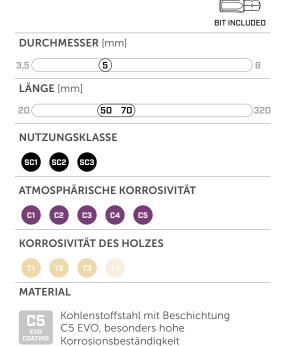
SCHRAUBE MIT DOPPELGEWINDE MIT KLEINEM ZYLINDERKOPF

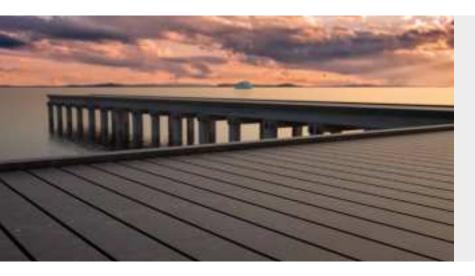
ATMOSPHÄRISCHE KORROSIVITÄT C5

Mehrschichtige Beschichtung, die Außenumgebungen mit C5-Klassifizierung nach ISO 9223 standhält. Salzsprühtest (Salt Spray Test - SST) mit einer Expositionszeit von über 3000 Stunden, durchgeführt an zuvor verschraubten und gelösten Schrauben in Douglasie.

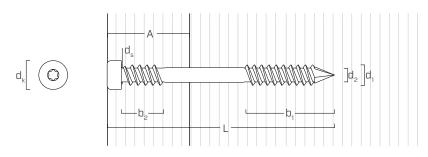

DOPPELGEWINDE

Das rechtsdrehende Unterkopfgewinde mit größerem Durchmesser sorgt für eine wirksame Zugkraft, wodurch die Verbindung der Holzelemente garantiert ist.


Verdeckter Kopfabschluss.


HARTHÖLZER

Die Spezialbohrspitze mit Schwertgeometrie wurde speziell entwickelt, um sehr harte Holzarten wirksam und ohne Vorbohrung zu bohren (mit Vorbohrung auch über 1000 kg/m³).

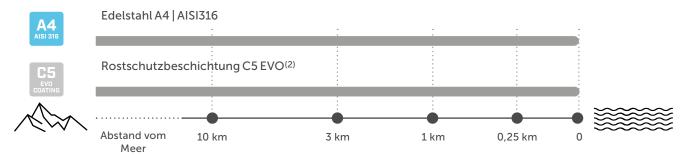

ANWENDUNGSGEBIETE

Verwendung im Außenbereich mit aggressiven Bedingungen.

Holzbretter mit einer Dichte < 780 kg/m³ (ohne Vorbohrung) und < 1240 kg/m³ (mit Vorbohrung). WPC-Bretter (mit Vorbohrung).

d_1	ARTNR.	L	b_1	b ₂	А	Stk.
[mm]		[mm]	[mm]	[mm]	[mm]	
	KKZEVO550C5	50	22	11	28	200
5 TX 25	KKZEVO560C5	60	27	11	33	200
IXLS	KKZEVO570C5	70	32	11	38	100

GEOMETRIE UND MECHANISCHE EIGENSCHAFTEN


GEOMETRIE

Nenndurchmesser	d_1	[mm]	5
Kopfdurchmesser	d_K	[mm]	6,80
Kerndurchmesser	d_2	[mm]	3,50
Schaftdurchmesser	d_S	[mm]	4,35
Vorbohrdurchmesser ⁽¹⁾	d_V	[mm]	3,5

 $^{^{(1)}}$ Bei Materialien mit hoher Dichte ist je nach Holzart ein Vorbohren empfehlenswert.

ABSTAND VOM MEER

BESTÄNDIGKEIT GEGEN CHLORIDEINWIRKUNG[1]

 $^{^{(1)}}$ C5 ist nach EN 14592:2022 entsprechend EN ISO 9223 definiert. $^{(2)}$ EN 14592:2022 begrenzt derzeit die Nutzungsdauer alternativer Beschichtungen auf 15 Jahre.

MAXIMALE FESTIGKEIT

Auch bei sehr ungünstigen korrosiven Bedingungen in Bezug auf die Umwelt und das Holz wird hohe mechanische Leistung gewährleistet.

| EWS AISI410 | EWS A2

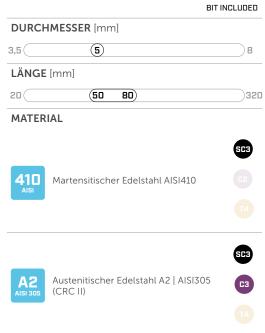
CE

LINSENKOPFSCHRAUBE

ÄSTHETISCHE WIRKUNG UND ROBUSTHEIT

Senkkopf mit tropfenförmiger und gekrümmten Oberflächengeometrie für eine angenehme Optik und sicheren Halt am Einsatz. Schaft mit größerem Durchmesser und hoher Torsionsfestigkeit für festes und sicheres Einschrauben, auch an Harthölzern.

EWS AISI410


Die Ausführung aus martensitischem Edelstahl bietet höchste mechanische Leistung. Geeignet für den Außenbereich und säurehaltigen Hölzern, jedoch nicht für korrosive Stoffen (Chloride, Sulfide usw.).

EWS A2 | AISI305

Die Ausführung aus austenitischem Edelstahl A2 bietet eine höhere Korrosionsbeständigkeit. Geeignet für den Außenbereich bis zu 1 km Abstand zum Meer und auf den meisten säurehaltigen Hölzern der Klasse T4.

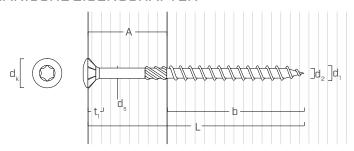
ANWENDUNGSGEBIETE

Für den Außenbereich. WPC-Bretter (mit Vorbohrung).

EWS AISI410: Holzbretter mit einer Dichte < 880 kg/m³ (ohne Vorbohrung).

EWS A2 | AISI305: Holzbretter mit einer Dichte < 550 kg/m³ (ohne Vorbohrung) und < 880 kg/m³ (mit Vorbohrung).

EWS AISI410


EWS A2 | AISI305

d_1	ARTNR.	L	b	Α	Stk.
[mm]		[mm]	[mm]	[mm]	
5 TX 25	EWS550	50	30	20	200
	EWS560	60	36	24	200
	EWS570	70	42	28	100
	EWS580	80	48	32	100

d_1	ARTNR.	L	b	Α	Stk.
[mm]		[mm]	[mm]	[mm]	
5 TX 25	EWSA2550	50	30	20	200
	EWSA2560	60	36	24	200
	EWSA2570	70	42	28	100

■ GEOMETRIE UND MECHANISCHE EIGENSCHAFTEN

GEOMETRIE

			EWS AISI410	EWS A2 AISI305
Nenndurchmesser	d_1	[mm]	5,3	5,3
Kopfdurchmesser	d_K	[mm]	8,00	8,00
Kerndurchmesser	d ₂	[mm]	3,90	3,90
Schaftdurchmesser	d _S	[mm]	4,10	4,10
Kopfstärke	t_1	[mm]	3,65	3,65
Vorbohrdurchmesser ⁽¹⁾	d_V	[mm]	3,5	3,5

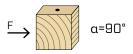
⁽¹⁾ Bei Materialien mit hoher Dichte ist je nach Holzart ein Vorbohren empfehlenswert.

MECHANISCHE KENNGRÖSSEN

			EWS AISI410	EWS A2 AISI305
Nenndurchmesser	d_1	[mm]	5,3	5,3
Zugfestigkeit	$f_{tens,k}$	[kN]	13,7	7,3
Fließmoment	$M_{y,k}$	[Nm]	14,3	9,7
Parameter der Auszugsfestigkeit	$f_{ax,k}$	[N/mm ²]	16,5	16,6
Assoziierte Dichte	ρ_{a}	[kg/m ³]	350	350
Durchziehparameter	f _{head,k}	[N/mm ²]	21,1	21,4
Assoziierte Dichte	ρ_a	[kg/m ³]	350	350

OHNE VORBOHRUNG

EWS AlSI410 ohne Vorbohrung an Holzarten mit einer maximalen Dichte von 880 kg/m³ zu verwenden. EWS A2 | AlSI305 ohne Vorbohrung an Holzarten mit einer maximalen Dichte von 550 kg/m³ zu verwenden.


■ MINDESTABSTÄNDE DER SCHRAUBEN BEI ABSCHERBEANSPRUCHUNG

Schraubenabstände OHNE Vorbohrung

 $\rho_k \leq 420 \; kg/m^3$

d	[mm]		5
a ₁	[mm]	12·d	60
a ₂	[mm]	5·d	25
$a_{3,t}$	[mm]	1 5⋅d	75
a _{3,c}	[mm]	10 ⋅d	50
$a_{4,t}$	[mm]	5·d	25
a _{4,c}	[mm]	5·d	25

d	[mm]		5
a ₁	[mm]	5·d	25
a ₂	[mm]	5·d	25
$a_{3,t}$	[mm]	10 ⋅d	50
a _{3,c}	[mm]	10 ⋅d	50
$a_{4,t}$	[mm]	10 ⋅d	50
$a_{4,c}$	[mm]	5·d	25

- α = Winkel zwischen Kraft- und Faserrichtung
- d = Schraubendurchmesser

Schraubenabstände OHNE Vorbohrung

 $420 \text{ kg/m}^3 < \rho_k \le 500 \text{ kg/m}^3$

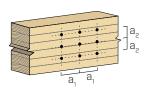
a=90°

d	[mm]		5
a ₁	[mm]	1 5⋅d	75
a ₂	[mm]	7⋅d	35
$a_{3,t}$	[mm]	20·d	100
a _{3,c}	[mm]	1 5⋅d	75
$a_{4,t}$	[mm]	7·d	35
a _{4,c}	[mm]	7·d	35

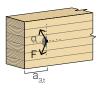
a	[mm]		Э
a ₁	[mm]	7∙d	35
a ₂	[mm]	7∙d	35
$a_{3,t}$	[mm]	15·d	75
a _{3,c}	[mm]	15·d	75
$a_{4,t}$	[mm]	12·d	60
a _{4,c}	[mm]	7∙d	35

- α = Winkel zwischen Kraft- und Faserrichtung
- d = Schraubendurchmesser

Schraubenabstände VORGEBOHRT

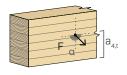

F >	
-----	--

α=90°


d	[mm]		5
a ₁	[mm]	5·d	25
a ₂	[mm]	3·d	15
$a_{3,t}$	[mm]	12·d	60
a _{3,c}	[mm]	7⋅d	35
a _{4,t}	[mm]	3·d	15
a _{4,c}	[mm]	3·d	15

d	[mm]		5
a ₁	[mm]	4·d	20
a ₂	[mm]	4·d	20
$a_{3,t}$	[mm]	7⋅d	35
a _{3,c}	[mm]	7⋅d	35
$a_{4,t}$	[mm]	7·d	35
a _{4,c}	[mm]	3·d	15

- α = Winkel zwischen Kraft- und Faserrichtung
- d = Schraubendurchmesser


beanspruchtes Hirnholzende $-90^{\circ} < \alpha < 90^{\circ}$

unbeanspruchtes Hirnholzende 90° < α < 270°

beanspruchter Rand 0° < α < 180°

unbeanspruchter Rand $180^{\circ} < \alpha < 360^{\circ}$

- Die Mindestabstände wurden nach EN 1995:2014 berechnet und beziehen sich auf einen Durchmesser von d = Durchmesser der Schraube.
- Bei Holzwerkstoffplatten-Verbindungen können die Mindestabstände (a₁, a₂) mit einem Koeffizienten von 0,85 multipliziert werden.

STATISCHE WERTE

	EWS	AISI410)	SCHER	RWERT	ZUGKRÄFTE		
	Geo	metrie		Holz-Holz ohne Vorbohrung	Holz-Holz mit Vorbohren	Gewindeauszug	Kopfdurchzug	
			À					
d_1	L	b	Α	R _{V,k}	R _{V,k}	R _{ax,k}	R _{head,k}	
[mm]	[mm]	[mm]	[mm]	[kN]	[kN]	[kN]	[kN]	
	50	30	20	1,38	1,84	2,86	1,56	
5	60	36	24	1,58	2,09	3,44	1,56	
5	70	42	28	1,77	2,21	4,01	1,56	
	80	48	32	1,85	2,34	4,58	1,56	

E	EWS A2 AISI305			SCHEF	RWERT	ZUGKRÄFTE		
	Geo	metrie		Holz-Holz ohne Vorbohrung	Holz-Holz mit Vorbohren	Gewindeauszug	Kopfdurchzug	
	d		A					
d_1	L	b	Α	R _{V,k}	R _{V,k}	R _{ax,k}	R _{head,k}	
[mm]	[mm]	[mm]	[mm]	[kN]	[kN]	[kN]	[kN]	
	50	30	20	1,39	1,80	2,88	1,58	
5	60	36	24	1,55	1,92	3,46	1,58	
	70	42	28	1,64	2,06	4,03	1,58	

ALLGEMEINE GRUNDLAGEN

- Die charakteristischen Werte entsprechen der Norm EN 1995:2014.
- Die Bemessungswerte werden aus den charakteristischen Werten wie folgt berechnet:

$$R_d = \frac{R_k \cdot k_{mod}}{\gamma_M}$$

Die Beiwerte γ_M und $k_{\mbox{\footnotesize{mod}}}$ sind aus der entsprechenden geltenden Norm zu übernehmen, die für die Berechnung verwendet wird.

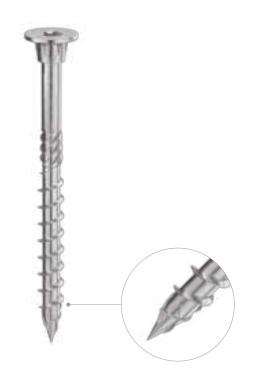
- Werte für mechanische Festigkeit und Geometrie der Schrauben gemäß CE-Kennzeichnung nach EN 14592.
- Die Werte wurden unter Berücksichtigung des Gewindeabschnitts berechnet, der vollständig in das Holzelement eingeschraubt wurde.
- Die Bemessung und Überprüfung der Holzelemente müssen getrennt durchgeführt werden.
- Für die Positionierung der Schrauben sind die Mindestabstände zu berücksichtigen.

- Die Gewindeauszugswerte wurden mit einem Winkel des Verbinders von 90° zur Faser bei einer Einschraubtiefe gleich "b" berechnet.
- Die Kopfdurchzugswerte wurden für ein Holzelement berechnet.
- Bei der Berechnung wurde eine Rohdichte der Holzelemente von ρ_k = 420 $\,$ kg/m 3 berücksichtigt.

KKF AISI410

SCHRAUBE MIT KEGELUNTERKOPF

KEGELUNTERKOPF


Der flache Unterkopf unterstützt Aufnahme der Späne und vermeidet Risse am Holz, wodurch die Oberfläche einen optimalen Abschluss hat.

LÄNGERES GEWINDE

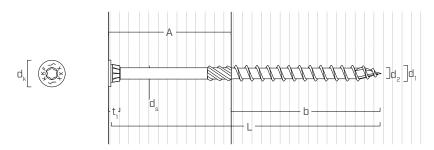
Asymmetrisches, um 60% verlängertes "Schirm"-Gewinde für ein optimales Klemmvermögen. Feingewinde für höchste Präzision beim Festschrauben.

ANWENDUNGEN IM AUSSENBEREICH AUF SÄUREHALTIGEN HÖLZERN

Martensitischer Edelstahl. Unter den rostfreien Stählen ist er derjenige mit der höchsten mechanischen Leistung. Geeignet für den Außenbereich und säurehaltigen Hölzern, jedoch nicht für korrosive Stoffen (Chloride, Sulfide usw.).

ANWENDUNGSGEBIETE

Für den Außenbereich. Holzbretter mit einer Dichte < 780 kg/m³ (ohne Vorbohrung).


WPC-Bretter (mit Vorbohrung).

d ₁	ARTNR.	L	b	Α	Stk.
[mm]		[mm]	[mm]	[mm]	
	KKF430	30	18	12	500
	KKF435	35	20	15	500
4 TX 20	KKF440	40	24	16	500
.,,	KKF445	45	30	15	200
	KKF450	50	30	20	200
	KKF4520(*)	20	15	5	200
	KKF4540	40	24	16	200
4,5	KKF4545	45	30	15	200
TX 20	KKF4550	50	30	20	200
	KKF4560	60	35	25	200
	KKF4570	70	40	30	200

d_1	ARTNR.	L	b	Α	Stk.
[mm]		[mm]	[mm]	[mm]	
	KKF540	40	24	16	200
	KKF550	50	30	20	200
	KKF560	60	35	25	200
5 TX 25	KKF570	70	40	30	100
17.20	KKF580	80	50	30	100
	KKF590	90	55	35	100
	KKF5100	100	60	40	100
_	KKF680	80	50	30	100
6 TX 30	KKF6100	100	60	40	100
1 X 30	KKF6120	120	75	45	100

^(*) Ohne CE-Kennzeichnung.

GEOMETRIE UND MECHANISCHE EIGENSCHAFTEN

GEOMETRIE

Nenndurchmesser	d_1	[mm]	4	4,5	5	6
Kopfdurchmesser	d_K	[mm]	7,70	8,70	9,65	11,65
Kerndurchmesser	d_2	[mm]	2,60	3,05	3,25	4,05
Schaftdurchmesser	d_S	[mm]	2,90	3,35	3,60	4,30
Kopfstärke	t_1	[mm]	5,00	5,00	6,00	7,00
Vorbohrdurchmesser ⁽¹⁾	$d_{V,S}$	[mm]	2,5	2,5	3,0	4,0
Vorbohrdurchmesser ⁽²⁾	$d_{V,H}$	[mm]	-	-	3,5	4,0

MECHANISCHE KENNGRÖSSEN

Nenndurchmesser	d_1	[mm]	4	4,5	5	6
Zugfestigkeit	$f_{\text{tens,k}}$	[kN]	5,0	6,4	7,9	11,3
Fließmoment	$M_{y,k}$	[Nm]	3,0	4,1	5,4	9,5

			Nadelholz (Softwood)	LVL aus Nadelholz (LVL Softwood)	vorgebohrtes Hartholz (hardwood predrilled)
Charakteristischer Wert der Ausziehfestigkeit	$f_{ax,k}$	[N/mm ²]	11,7	15,0	29,0
Charakteristischer Durchziehparameter	$f_{head,k}$	[N/mm ²]	16,5	-	-
Assoziierte Dichte	ρ_{a}	[kg/m ³]	350	500	730
Rohdichte	$ ho_k$	[kg/m ³]	≤ 440	410 ÷ 550	590 ÷ 750

Für Anwendungen mit anderen Materialien siehe ETA-11/0030.

⁽¹⁾ Vorbohrung gültig für Nadelholz (Softwood). (2) Vorbohrung gültig für Harthölzer (Hardwood) und für LVL aus Buchenholz.

MINDESTABSTÄNDE DER SCHRAUBEN BEI ABSCHERBEANSPRUCHUNG

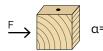
Schraubenabstände OHNE Vorbohrung

 $\rho_k \le 420 \text{ kg/m}^3$

F -	α=90°
-----	-------

d_1	[mm]		4	4,5		5	6
a ₁	[mm]	10·d	40	45	10·d	50	60
a ₂	[mm]	5·d	20	23	5·d	25	30
a _{3,t}	[mm]	15·d	60	68	15·d	75	90
a _{3,c}	[mm]	10 ⋅d	40	45	10·d	50	60
a _{4,t}	[mm]	5·d	20	23	5·d	25	30
a _{4,c}	[mm]	5·d	20	23	5·d	25	30

d_1	[mm]		4	4,5		5	6
a ₁	[mm]	5·d	20	23	5·d	25	30
a ₂	[mm]	5·d	20	23	5·d	25	30
a _{3,t}	[mm]	10 ⋅d	40	45	10·d	50	60
a _{3,c}	[mm]	10 ⋅d	40	45	10·d	50	60
a _{4,t}	[mm]	7⋅d	28	32	10·d	50	60
a _{4,c}	[mm]	5·d	20	23	5·d	25	30



Schraubenabstände OHNE Vorbohrung

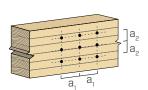
 $420 \text{ kg/m}^3 < \rho_k \le 500 \text{ kg/m}^3$

d_1	[mm]		4	4,5		5	6
a ₁	[mm]	15·d	60	68	15·d	75	90
a ₂	[mm]	7∙d	28	32	7·d	35	42
a _{3,t}	[mm]	20·d	80	90	20·d	100	120
a _{3,c}	[mm]	15·d	60	68	15·d	75	90
a _{4,t}	[mm]	7⋅d	28	32	7·d	35	42
a _{4,c}	[mm]	7·d	28	32	7·d	35	42

d_1	[mm]		4	4,5		5	6
a ₁	[mm]	7∙d	28	32	7∙d	35	42
a ₂	[mm]	7∙d	28	32	7⋅d	35	42
a _{3,t}	[mm]	15 ⋅d	60	68	1 5⋅d	75	90
a _{3,c}	[mm]	15·d	60	68	15·d	75	90
a _{4,t}	[mm]	9·d	36	41	12·d	60	72
a _{4,c}	[mm]	7·d	28	32	7·d	35	42

Schraubenabstände VORGEBOHRT

α=0°



d_1	[mm]		4	4,5		5	6
a ₁	[mm]	5·d	20	23	5·d	25	30
a ₂	[mm]	3⋅d	12	14	3·d	15	18
a _{3,t}	[mm]	12·d	48	54	12·d	60	72
a _{3,c}	[mm]	7⋅d	28	32	7∙d	35	42
a _{4,t}	[mm]	3·d	12	14	3·d	15	18
a _{4,c}	[mm]	3·d	12	14	3·d	15	18

d_1	[mm]		4	4,5		5	6
a ₁	[mm]	4·d	16	18	4·d	20	24
a ₂	[mm]	4·d	16	18	4·d	20	24
a _{3,t}	[mm]	7·d	28	32	7⋅d	35	42
a _{3,c}	[mm]	7·d	28	32	7∙d	35	42
a _{4,t}	[mm]	5·d	20	23	7⋅d	35	42
a _{4,c}	[mm]	3·d	12	14	3·d	15	18

 α = Winkel zwischen Kraft- und Faserrichtung

d = Nenndurchmesser Schraube

beanspruchtes . Hirnholzende -90° < α < 90°

unbeanspruchtes . Hirnholzende 90° < α < 270°

beanspruchter Rand 0° < α < 180°

unbeanspruchter Rand

- Die Mindestabstände werden gemäß der Normen EN 1995:2014 und in Übereinstimmung mit ETA-11/0030 berechnet.
- Bei Stahl-Holz-Verbindungen können die Mindestabstände (a₁, a₂) mit einem Koeffizienten von 0,7 multipliziert werden.
- Bei Holzwerkstoffplatten-Verbindungen können die Mindestabstände (a₁, a₂) mit einem Koeffizienten von 0,85 multipliziert werden.
- Bei Verbindungen von Elementen aus Douglasienholz (Pseudotsuga menziesii) müssen die Mindestabstände und die minimalen, parallelen Abstände zur Faser mit dem Koeffizienten 1,5 multipliziert werden.
- Der Abstand a_1 , aufgelistet für Schrauben mit Spitze 3 THORNS und $d_1 \ge 5$ mm, eingeschraubt ohne Vorbohrung in Holzelemente mit Dichte $\rho_k \le 420$ kg/m 3 und Winkel zwischen Kraft- und Faserrichtung α = 0°, wurde auf der Grundlage experimenteller Untersuchungen mit 10-d angenommen; wahl-weise können 12-d gemäß EN 1995:2014 übernommen werden.
- Für eine Reihe von n parallel zur Faserrichtung des Holzes in einem Abstand a $_1$ angeordnete Schrauben kann die effektive charakteristische Tragfähigkeit R $_{\rm ef,V,k}$ mittels der wirksamen Anzahl n $_{\rm ef}$ berechnet werden (siehe Seite 34).

STATISCHE WERTE

					SCHERWERT				ZUGKRÄFTE	
	Geom	netrie		Holz-Holz ε=90°	Holz-Holz ε=0°	The state of the s		Gewindeauszug ε=90°	Gewindeauszug ε=0°	Kopfdurchzug
				SPAN						
d_1	L	b	Α	R _{V,90,k}	$R_{V,0,k}$	S _{PAN}	$R_{V,k}$	R _{ax,90,k}	R _{ax,0,k}	$R_{head,k}$
[mm]	[mm]	[mm]	[mm]	[kN]	[kN]	[mm]	[kN]	[kN]	[kN]	[kN]
	30	18	12	0,76	0,38		0,75	0,91	0,27	1,06
	35	20	15	0,87	0,45		0,83	1,01	0,30	1,06
4	40	24	16	0,91	0,51	15	0,83	1,21	0,36	1,06
	45	30	15	0,89	0,56		0,83	1,52	0,45	1,06
	50	30	20	1,00	0,62		0,83	1,52	0,45	1,06
	20	15	5	0,45	0,28		0,45	0,85	0,26	1,35
	40	24	16	1,08	0,55		1,05	1,36	0,41	1,35
4,5	45	30	15	1,07	0,61	15	1,05	1,70	0,51	1,35
7,5	50	30	20	1,17	0,69	15	1,05	1,70	0,51	1,35
	60	35	25	1,29	0,79		1,05	1,99	0,60	1,35
	70	40	30	1,33	0,86		1,05	2,27	0,68	1,35
	40	24	16	1,21	0,60		1,15	1,52	0,45	1,66
	50	30	20	1,36	0,75		1,19	1,89	0,57	1,66
	60	35	25	1,48	0,88		1,19	2,21	0,66	1,66
5	70	40	30	1,59	0,96	15	1,19	2,53	0,76	1,66
	80	50	30	1,59	1,11		1,19	3,16	0,95	1,66
	90	55	35	1,59	1,11		1,19	3,47	1,04	1,66
	100	60	40	1,59	1,11		1,19	3,79	1,14	1,66
	80	50	30	2,08	1,37	_	1,63	3,79	1,14	2,42
6	100	60	40	2,27	1,58	15	1,63	4,55	1,36	2,42
	120	75	45	2,27	1,65		1,63	5,68	1,70	2,42

 ϵ = Winkel zwischen Schraube und Faserrichtung

ALLGEMEINE GRUNDLAGEN

- Die charakteristischen Werte werden gemäß der Norm EN 1995:2014 und in Übereinstimmung mit ETA-11/0030 berechnet.
- Die Bemessungswerte werden aus den charakteristischen Werten wie folgt berechnet:

$$R_d = \frac{R_k \cdot k_{mod}}{\gamma_M}$$

Die Beiwerte γ_M und k_{mod} sind aus der entsprechenden geltenden Norm zu übernehmen, die für die Berechnung verwendet wird.

- Bei den Werten für die mechanische Festigkeit und die Geometrie der Schrauben wurde auf die Angaben in der ETA-11/0030 Bezug genommen.
- Die Bemessung und Überprüfung der Holzelemente und der Paneele müssen separat durchgeführt werden.
- Für die Positionierung der Schrauben sind die Mindestabstände zu berücksichtigen.
- Die charakteristischen Scherfestigkeitswerte wurden bei eingeschraubten Schrauben ohne Vorbohrung bewertet. Mit vorgebohrten Schrauben können höhere Festigkeitswerte erreicht werden.
- Die Scherfestigkeitswerte wurden unter Berücksichtigung des vollständig in das zweite Element eingedrehten Gewindeteils berechnet.
- Die charakteristischen Holzwerkstoffplatte-Holz-Scherfestigkeitswerte wurden für eine OSB3- oder OSB4-Platte gemäß EN 300 oder für eine Spanplatte gemäß EN 312 mit einer Stärke $S_{\mbox{\footnotesize{PAN}}}$ und Dichte $\rho_k=500\mbox{\;kg/m}^3$ berechnet.
- Die charakteristischen Gewindeauszugswerte wurden unter Berücksichtigung einer Einschraubtiefe b berechnet.
- Die charakteristischen Kopfdurchzugswerte wurden für ein Holzelement berechnet.

ANMERKUNGEN

- Die charakteristischen Holz-Holz-Scherfestigkeitswerte wurden unter Berücksichtigung eines Winkels ϵ sowohl von 90° (R_{V,9,0,k}) als auch 0° (R_{V,0,k}) zwischen Fasern und dem Verbinder im zweiten Element berechnet.
- Die charakteristischen Holzwerkstoffplatte-Holz-Scherfestigkeitswerte wurden unter Berücksichtigung eines Winkels ε von 90° zwischen Fasern und dem Verhinder im Holzelement herechnet
- und dem Verbinder im Holzelement berechnet.

 Die charakteristischen Gewindeauszugswerte wurden unter Berücksichtigung eines Winkels ε sowohl von 90° (R_{ax,90,k}) als auch 0° (R_{ax,0,k}) zwischen Fasern und dem Verbinder berechnet.

Für andere ρ_k -Werte können die aufgelisteten Festigkeitswerte (Holz-Holz-Scher- und Zugfestigkeit) mithilfe des k_{dens}-Beiwerts umgerechnet werden.

$$R'_{V,k} = K_{dens,v} \cdot R_{V,k}$$

$$R'_{ax,k} = K_{dens,ax} \cdot R_{ax,k}$$

$$R' = k \cdot R$$

$$R'_{head,k} = K_{dens,ax} \cdot R_{head,k}$$

ρ _k [kg/m³]	350	380	385	405	425	430	440
C-GL	C24	C30	GL24h	GL26h	GL28h	GL30h	GL32h
k _{dens,v}	0,90	0,98	1,00	1,02	1,05	1,05	1,07
k _{dens,ax}	0,92	0,98	1,00	1,04	1,08	1,09	1,11

Die so ermittelten Festigkeitswerte können zugunsten der Sicherheit von denen abweichen, die sich aus einer genauen Berechnung ergeben.

KKA AISI410

SELBSTBOHRENDE SCHRAUBEN HOLZ-HOLZ | HOLZ-ALUMINIUM

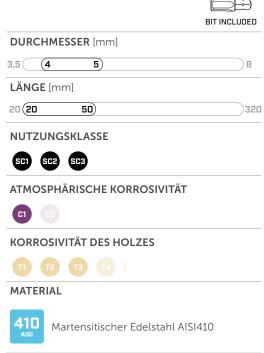
HOLZ-ALUMINIUM

Selbstbohrende Spitze für Aluminiumprofile. Ideal zur Befestigung von Holz- oder WPC-Brettern an Unterkonstruktionen aus Aluminium.

HOLZ-HOLZ

Ideal zur Befestigung von Holz- oder WPC-Brettern an dünnen Unterkonstruktionen aus Holz, die selbst aus Holzbrettern bestehen.

METALL-ALUMINIUM

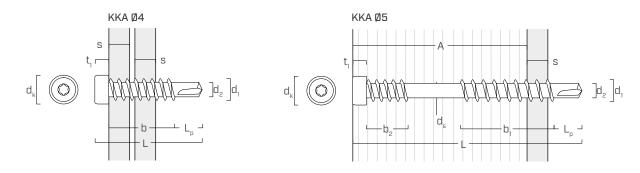

Ausführung mit kürzerer Länge, ideal zur Befestigung von Klippverschlüssen, Platten und Winkeln an Aluminium-Unterkonstruktionen. Befestigung der Aluminium-Aluminium-Überlappungen möglich.

ANWENDUNGEN IM AUSSENBEREICH AUF SÄUREHALTIGEN HÖLZERN

Martensitischer Edelstahl AISI410. Unter den rostfreien Stählen ist er derjenige mit der höchsten mechanischen Leistung. Anwendungsmöglichkeit auf säurehaltigen Hölzern, jedoch fern von korrosiven Stoffen (Chloride, Sulfide usw.).

ANWENDUNGSGEBIETE

Für den Außenbereich.


Holzbretter mit einer Dichte < 880 kg/m³ an Aluminium mit einer Stärke von < 3,2 mm (ohne Vorbohrung).

d ₁ ART.	NR. L	b ₁	b ₂	Α	s	Stk.
[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	
4 TX 20 KKA	.420 20	11,4	-	-	1 ÷ 2,5	200

d_1	ARTNR.	L	b ₁	b ₂	Α	s	Stk.
[mm]		[mm]	[mm]	[mm]	[mm]	[mm]	
5	KKA540	40	15,5	11	29	2 ÷ 3	100
TX 25	KKA550	50	20,5	11	39	2 ÷ 3	100

s bohrbare Stärke Stahlplatte S235/St37 bohrbare Stärke Aluminiumplatte

GEOMETRIE

Nenndurchmesser	d_1	[mm]	4	5
Kopfdurchmesser	d_{K}	[mm]	6,30	6,80
Kerndurchmesser	d_2	[mm]	2,80	3,50
Schaftdurchmesser	d_S	[mm]	-	4,35
Kopfstärke	t_1	[mm]	3,10	3,35
Länge der Spitze	L _p	[mm]	5,5	6,5

ALU TERRACE

Ideal zur Befestigung von Holz- oder WPC-Brettern, Klippverschlüssen oder Winkeln an Unterkonstruktionen aus Aluminium.

KKA COLOR

SELBSTBOHRENDE SCHRAUBE FÜR ALUMINIUM

ALUMINIUM

Selbstbohrende Spitze für Metall mit besonderer Ausräumgeometrie. Ideal zur Befestigung mit Klippverschlüssen an Unterkonstruktionen aus Aluminium.

ORGANISCHE FARB-BESCHICHTUNG

Schwarze Rostschutzbeschichtung, für Außenbereich in Nutzungsklasse 3 auf nicht säurehaltigen Hölzern (T3). Verdeckter Kopfabschluss an Unterkonstruktionen und dunkle Klippverschlüsse.

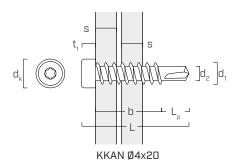
METALL-ALUMINIUM

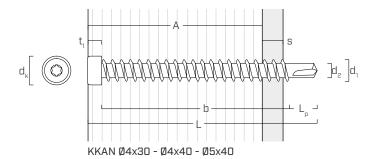
Ausführung mit reduzierter Länge, ideal zur Befestigung von Klippverschlüssen, Platten und Winkeln an Unterkonstruktionen aus Stahl oder Aluminium. Befestigung der Metall-Metall-Überlappungen möglich.

ANWENDUNGSGEBIETE

Für den Außenbereich. Aluminiumstärke < 3,2 mm (ohne Vorbohrung).

3
書
暑
20
雪
臺
檀
2
ڇ
圔
78
M
Ф


d_1	ARTNR.	L	b	Α	s	Stk.
[mm]		[mm]	[mm]	[mm]	[mm]	
4 TX 20	KKAN420	20	10	-	2 ÷ 3	200
	KKAN430	30	20	22	2 ÷ 3	200
	KKAN440	40	30	32	2 ÷ 3	200
5 TX 25	KKAN540	40	29	29	2 ÷ 3	200


bohrbare Stärke Stahlplatte S235/St37 bohrbare Stärke Aluminiumplatte

LANGER EINSATZ INBEGRIFFEN, Art, Nr. TX2050

GEOMETRIE

Nenndurchmesser	d_1	[mm]	4	5
Kopfdurchmesser	d_K	[mm]	6,30	6,80
Kerndurchmesser	d ₂	[mm]	2,80	3,50
Kopfstärke	t_1	[mm]	3,10	3,35
Länge der Spitze	L.	[mm]	5.5	6.5

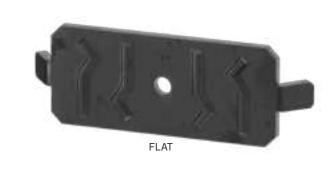
TVM COLOR

Ideal zur Befestigung von Standard-Klippverschlüssen von Rothoblaas (TVMN) an Aluminium. Langer Bit-Einsatz in der Packung enthalten.

| FLAT | FLIP

VERBINDER FÜR TERRASSEN

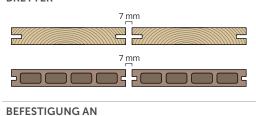
UNSICHTBAR


Vollkommen verdeckt. Die Ausführung in Aluminium mit schwarzer Verkleidung garantiert ein ansprechendes Äußeres; die Ausführung in verzinktem Stahl bietet eine gute Leistung bei geringeren Kosten.

SCHNELLE MONTAGE

Einfache und schnelle Montage dank Befestigung mit nur einer Schraube und integrierter Abstandszunge für präzise Fugen. Ideal zur Verwendung mit Abstandprofil PROFID.

SYMMETRISCH FRÄSUNG


Zum Verlegen von Brettern, unabhängig von der Position der Ausfräsung (symmetrisch). Oberfläche mit Rippen für hohe mechanische Festigkeit.

WPC

MATERIAL

Aluminium mit farbiger organischer Beschichtung

Elektroverzinkter Kohlenstoffstahl

ANWENDUNGSGEBIETE

Für den Außenbereich.

Befestigung der Holzdielen oder WPC-Dielen mit symmetrischer Ausfräsung auf einer Unterkonstruktion aus Holz, WPC oder Aluminium.

FLAT

Stk.

200

ARTNR. Material		PxBxs	Stk.
		[mm]	
FLAT	schwarzes Aluminium	54 x 27 x 4	200

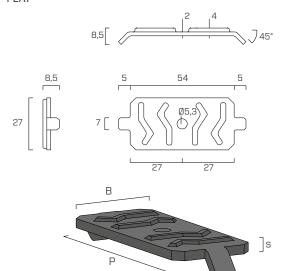
ARTNR. Material		PxBxs	Stk.
		[mm]	
FLIP	Feuerverzinkter Stahl	54 x 27 x 4	200

KKT COLOR

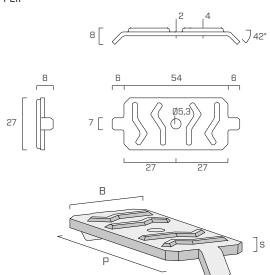
Befestigung an Holz und WPC für FLAT und FLIP

	d,	ARTNR.	L
	[mm]		[mm]
	5 TX 20	KKTN540	40
<u></u>			

KKA COLOR


FLIP

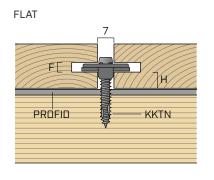
Befestigung an Aluminium für FLAT und FLIP

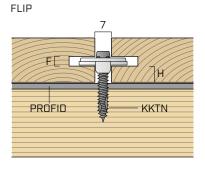

	d_{1}	ARTNR.	L	Stk.
	[mm]		[mm]	
	4 TX 20	KKAN420	20	200
		KKAN430	30	200
		KKAN440	40	200
	5 TX 25	KKAN540	40	200

■ GEOMETRIE

FLAT

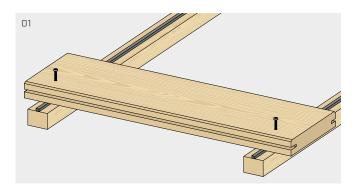
FLIP

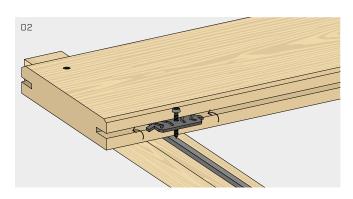




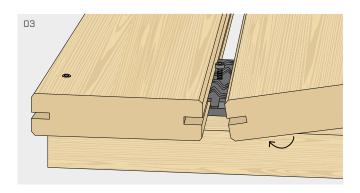
WOOD PLASTIC COMPOSITE (WPC)

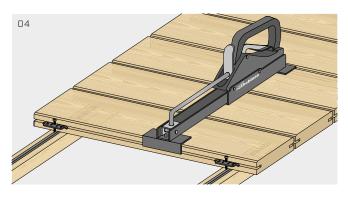
Ideal zur Befestigung von WPC-Brettern. Kann auch mit Schrauben KKA COLOR (KKAN440) an Aluminium befestigt werden.

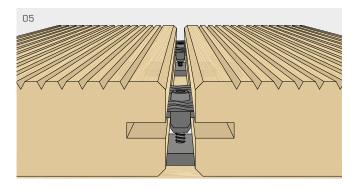

■ GEOMETRIE DER NUT



SYMMETRISCHE NUT		
Min. Stärke	F	4 mm
Empfohlene Mindesthöhe	Н	frei


MONTAGE


Das PROFID Abstandsprofil in der UK-Mitte anbringen. Erstes Brett entweder in Sicht oder mit den richtigen Werkzeugen verdeckt verschrauben.


Den FLAT/FLIP-Verbinder in die Nut so einsetzen, dass die Abstandszunge am Brett aufliegt.

Das nächste Brett platzieren, indem es in den FLAT/FLIP-Verbinder gesteckt wird.

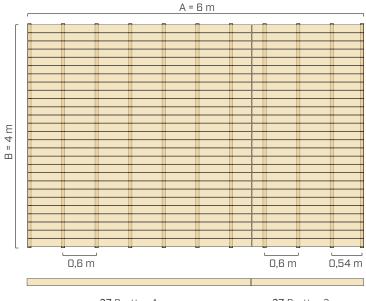
Die beiden Bretter mit der CRAB MINI oder CRAB MAXI Zwinge festklemmen, bis die Fuge zwischen den Brettern 7 mm beträgt (siehe Produkt S. 395).

Den Verbinder mit der KKTN-Schraube an der darunter liegenden

Ebenso mit den folgenden Brettern verfahren. Letztes Brett: Schritt 01 wiederholen.

BERECHNUNGSBEISPIEL

BERECHNUNG ANZAHL VERBINDER PRO m²



1m²/i/(L + f) = Stücke FLAT/FLIP pro m²

- i = Zwischenabstand UK
- **L** = Brettbreite
- **f** = Fugenbreite

■ PRAKTISCHES BEISPIEL

ANZAHL DER BRETTER UND LEISTEN

27 Bretter 4 m

27 Bretter 2 m

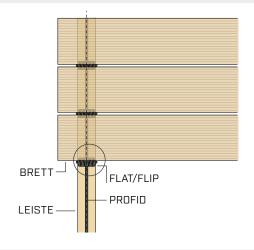
OBERFLÄCHE DER TERRASSE

 $S = A \cdot B = 6 \text{ m} \cdot 4 \text{ m} = 24 \text{ m}^2$

DACHSCHALUNG

UNTERKONSTRUKTION

b = 68 mm **h** = 38 mm **i** = 0,6 m


Anz. Bretter = [B/(L+f)]

= [4/(0,14+0,007)] = 27 Bretter


Anz. Bretter 4 m = **27 Bretter** Anz. Bretter 2 m = **27 Bretter**

Anz. Leisten = [A/i] + 1 = (6/0,6) + 1 = 11 Leisten

SCHRAUBENAUSWAHL

Stärke Schraubenkopf	$S_{Schraubenkopf}$		2,8 mm
Stärke Ausfräsung	F		4 mm
Höhe Ausfräsung	Н	(s-F)/2	7 mm
Stärke PROFID	S _{PROFID}		8 mm
Eindringlänge	L _{pen}	4 · d	20 mm

MINDESTLÄNGE DER SCHRAUBE

 $= S_{Schraubenkopf} + F + H + S_{PROFID} + L_{pen}$ = 2,8 + 4 + 7 + 8 + 20 = **41,8 mm**

GEWÄHLTE SCHRAUBE

KKTN550

BERECHNUNG DER ANZAHL DER FLAT/FLIP

BERECHNUNG ANZAHL VERBINDER

I = S/i/(L + f) = Stück FLAT/FLIP

 $I = 24 \text{ m}^2/0.6 \text{ m}/(0.14 \text{ m} + 0.007 \text{ m}) = 272 \text{ Stk. FLAT/FLIP}$

5 % Zuschlag

 $I = 272 \cdot 1,05 = 286 \text{ Stk. FLAT/FLIP}$

ANZAHL FLAT/FLIP = 286 Stk.

I = 286 Stk. FLAT/FLIP

MENGE NACH ANZAHL DER SCHNITTPUNKTE

 $I = Anzahl\ Bretter\ mit\ FLAT/FLIP\ Anzahl\ Leisten = \ Stücke\ FLAT/FLIP$

Anzahl Bretter mit FLAT/FLIP = (Anzahl Bretter - 1) = (27 - 1) = 26 Bretter Anzahl Leisten = (A/i) + 1 = (6/0,6) + 1 = 11 Leisten

Anzahl Schnittpunkte = I = $26 \cdot 11 = 286$ Stk. FLAT/FLIP

I = 286 Stk. FLAT/FLIP

ANZAHL SCHRAUBEN = Nr. FLAT/FLIP = 286 Stk. KKTN550

SNAP

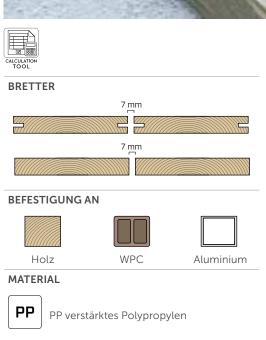
VERBINDER UND ABSTANDHALTER FÜR TERRASSEN

VIELSEITIGKEIT

Verwendbar sowohl als verdeckter Verbinder für Dielen als auch als Abstandhalter zwischen Diele und Unterkonstruktion. SNAP wurde für die einzelne wie auch gekoppelte Verwendung entwickelt. In diesem Fall haben die SNAP eine doppelte Funktion als Verbinder und Abstandhalter für höchste Effizienz und Zweckmäßigkeit.

MIKROBELÜFTUNG

Bei der Verwendung als Abstandhalter verhindert SNAP die Stagnation von Wasser dank der unter den Terrassendielen entstehenden Mikrobelüftung.


LANGLEBIGKEIT

Das Material PP (mit Glasfaser verstärktes Polypropylen) garantiert ausgezeichnete Haltbarkeit zu einem erschwinglichen Preis.

ANWENDUNGSGEBIETE

Für den Außenbereich.

Befestigung der Holzdielen oder WPC-Dielen mit symmetrischer Ausfräsung auf einer Unterkonstruktion aus Holz, WPC oder Aluminium.

ARTIKELNUMMERN UND ABMESSUNGEN

ARTNR.	Material	PxBxs	f	Ø	Stk.
		[mm]	[mm]	[mm]	
SNAP	Polypropylen	70 x 28 x 4	7	5,5	100

KKT COLOR

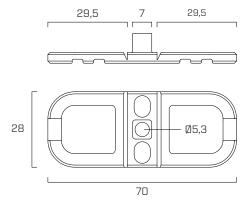
Befestigung an Holz

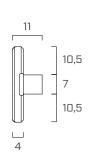
d ₁ [mm]	ARTNR.	L [mm]	Stk.
5	KKTM550	53	200
TX 20	KKTM560	60	200

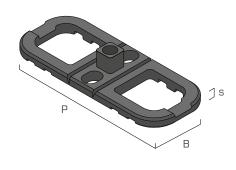
KKZ A2 | AISI304

Befestigung auf Hartholz

	d_1	ARTNR.	L	Stk.
	[mm]		[mm]	
	5	KKZ550	50	200
TX 25	KKZ560	60	200	

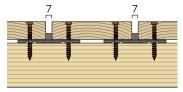

KKZ EVO C5

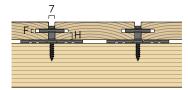

Befestigung auf Hartholz



d_1	ARTNR.	L	Stk.
[mm]		[mm]	
5	KKZEVO550C5	50	200
TX 25	KKZEVO560C5	60	200
TX 25	KKZEVO560C5	60	200

GEOMETRIE





MONTAGE

SICHTBARE BEFESTIGUNG

NUTBREITE		
Min. Stärke	F	4 mm
Empfohlene Mindesthöhe	Н	7 mm

KOMPLETTSYSTEM

SNAP, Schrauben KKT, Klebeband TERRA BAND UV und der Unterboden für Unterkonstruktionen GRANULO oder NAG sind die besten Produkte, um eine robuste und langlebige Terrasse schnell und kostengünstig zu realisieren.

TVM

VERBINDER FÜR TERRASSEN

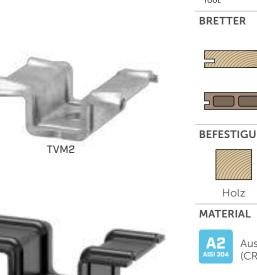
VIER AUSFÜHRUNGEN

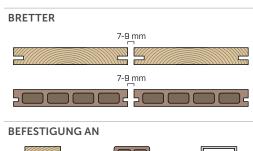
Unterschiedliche Abmessungen für die Verwendung von Brettern mit unterschiedlicher Stärke und variabler Fugenbreite. Schwarze Ausführung für eine vollkommen verdeckte Ausführung.

LANGLEBIGKEIT

Edelstahl garantiert hohe Korrosionsfestigkeit. Die Belüftung zwischen den Brettern trägt zu einer langen Lebensdauer der Holzelemente bei.

ASYMMETRISCHE AUSFRÄSUNG


TVM1


TVM3

Ideal für Bretter mit asymmetrischer Nut. Die Rippen an der Oberfläche des Verbinders sichern eine optimale Stabilität.

Austenitischer Edelstahl A2 | AISI304 (CRC II)

Edelstahl mit farbiger, organischer Beschichtung

TVMN4

ANWENDUNGSGEBIETE

Verwendung im Außenbereich mit aggressiven Bedingungen. Befestigung der Holzdielen oder WPC-Dielen auf einer Unterkonstruktion aus Holz, WPC oder Aluminium.

ARTIKELNUMMERN UND ABMESSUNGEN

TVM A2 | AISI304

ARTNR.	Material	PxBxs	Stk.
		[mm]	
TVM1	A2 AISI304	22,5 x 31 x 2,4	500
TVM2	A2 AISI304	22,5 x 28 x 2,4	500
TVM3	A2 AISI304	30 x 29,4 x 2,4	500

KKT X

Befestigung an Holz und WPC für TVM A2 | AISI304

	d_1	ARTNR.	L	Stk.
	[mm]		[mm]	
薑		KKTX520A4	20	200
	5 TX 20	KKTX525A4	25	200
		KKTX530A4	30	200
		KKTX540A4	40	100

KKA AISI410

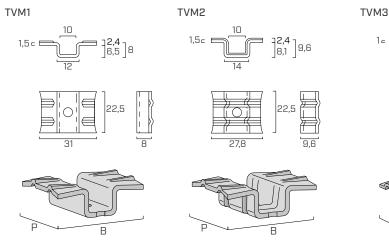
Befestigung an Aluminium für TVM A2 | AISI304

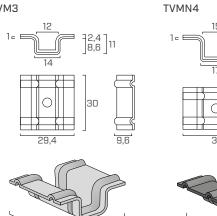
TVM COLOR

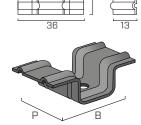
ARTNR.	Material	PxBxs	Stk.
		[mm]	
TVMN4	A2 AISI304 mit schwarzer Beschich- tung	23 x 36 x 2,4	200

KKT COLOR

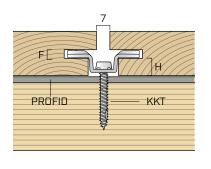
Befestigung an Holz und WPC für TVM COLOR

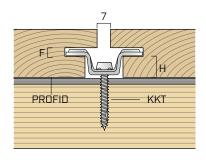

	d ₁ [mm]	ARTNR.	L [mm]	Stk.
	5 TX 20	KKTN540	40	200


KKA COLOR


Befestigung an Aluminium für TVM COLOR

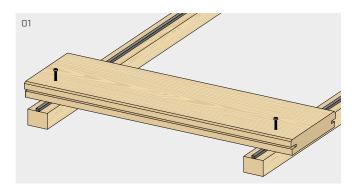
GEOMETRIE

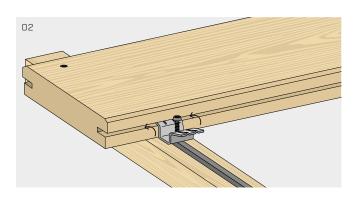



12 14,4

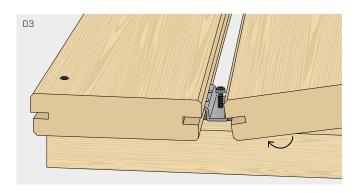
KKA

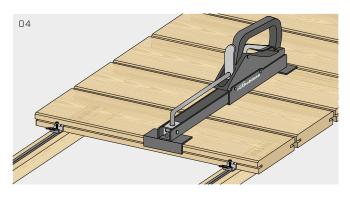
Kann auch an Aluminiumprofilen mit Schrauben KKA AISI410 oder KKA COLOR befestigt werden.

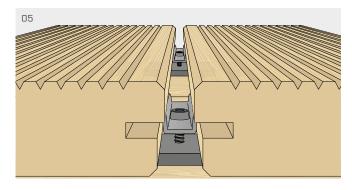

■ GEOMETRIE DER NUT

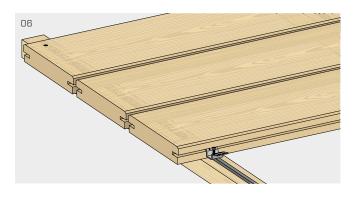


ASYMMETRISCHE NUT		
Min. Stärke	F	3 mm
Empfohlene Mindesthöhe TVM1	Н	7 mm
Empfohlene Mindesthöhe TVM2	Н	9 mm
Empfohlene Mindesthöhe TVM3	Н	10 mm
Empfohlene Mindesthöhe TVMN	Н	13 mm


MONTAGE


Das PROFID Abstandsprofil in der UK-Mitte anbringen. Erstes Brett: mit geeigneten Schrauben befestigen, die sichtbar bleiben.


Den TVM-Verbinder so in die Nut einsetzen, dass der seitliche Abstandshalter an der Ausfräsung des Brettes anliegt.


Das nächste Brett in den TVM-Verbinder stecken und positionie-

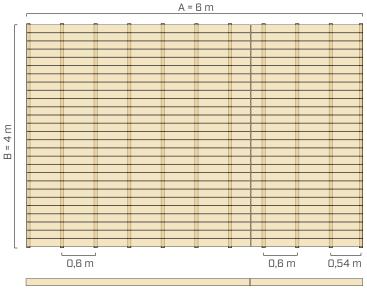
Die beiden Bretter mit der CRAB MINI oder CRAB MAXI Zwinge festklemmen, bis die Fuge zwischen den Brettern 7 mm beträgt (siehe Produkt S. 395).

Den Verbinder mit der KKT-Schraube an der darunter liegenden

Ebenso mit den folgenden Brettern verfahren. Letztes Brett: Schritt 01 wiederholen.

BERECHNUNGSBEISPIEL

BERECHNUNG ANZAHL VERBINDER PRO m²



 $1m^2/i/(L+f) = Stk. TVM pro^2$

- i = Zwischenabstand UK
- **L** = Brettbreite
- **f** = Fugenbreite

■ PRAKTISCHES BEISPIEL

ANZAHL DER BRETTER UND LEISTEN

27 Bretter 4 m

27 Bretter 2 m

OBERFLÄCHE DER TERRAS-SF

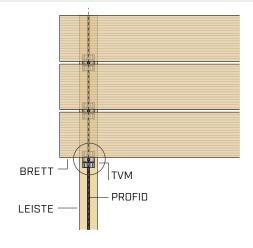
S

 $S = A \cdot B = 6 \text{ m} \cdot 4 \text{ m} = 24 \text{ m}^2$

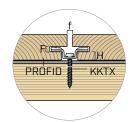
DACHSCHALUNG

UNTERKONSTRUKTION

b = 60 mm **h** = 30 mm **i** = 0,6 m


Anz. Bretter = [B/(L+f)]

= [4/(0,14+0,007)] = 27 Bretter


Anz. Bretter 4 m = 27 BretterAnz. Bretter 2 m = 27 Bretter

Anz. Leisten = [A/i] + 1 = (6/0,6) + 1 = 11 Leisten

SCHRAUBENAUSWAHL

Stärke Schraubenkopf	$S_{Schraubenkopf}$		2,8 mm
Stärke Ausfräsung	F		4 mm
Höhe Ausfräsung	Н		10 mm
Stärke PROFID	S _{PROFID}		8 mm
Eindringlänge	L_pen	4 · d	20 mm

MINDESTLÄNGE DER SCHRAUBE

 $= S_{Schraubenkopf} + H + S_{PROFID} + L_{pen}$ = 2,8 + 10 + 8 + 20 = **40,8 mm**

GEWÄHLTE SCHRAUBE

KKTX540A4

BERECHNUNG TVM-ANZAHL

BERECHNUNG ANZAHL VERBINDER

I = S/i/(L + f) = Stück TVM

 $I = 24 \text{ m}^2/0.6 \text{ m}/(0.14 \text{ m} + 0.007 \text{ m}) = 272 \text{ Stk. TVM}$

5 % Zuschlag

 $I = 272 \cdot 1,05 = 286 \text{ Stk. TVM}$

I = 286 Stk. TVM

MENGE NACH ANZAHL DER SCHNITTPUNKTE

I = Anzahl Bretter mit TVM Anzahl Leisten = Stücke TVM

Anzahl Bretter mit TVM= (Anzahl Bretter - 1) = (27 - 1) = 26 Bretter Anzahl Leisten = (A/i) + 1 = (6/0,6) + 1 = 11 Leisten

Anzahl Schnittpunkte = I = 26 · 11 = 286 Stk. TVM

I = 286 Stk. TVM

ANZAHL TVM = 286 Stk. ANZAHL SCHRA

ANZAHL SCHRAUBEN= Nr. TVM = 286 Stk. KKTX540A4

GAP

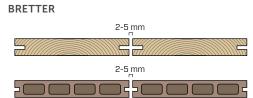
VERBINDER FÜR TERRASSEN

ZWEI AUSFÜHRUNGEN

Erhältlich in Edelstahl A2 | AISI304 für eine ausgezeichnete Korrosionsfestigkeit (GAP3) oder in verzinktem Kohlenstoffstahl (GAP4) für eine gute Leistung bei geringeren Kosten.

ENGE FUGEN

Besonders geeignet für Bodenbeläge mit kleinen Fugen (3,0 mm) zwischen den Brettern. Die Befestigung erfolgt vor der Positionierung der Bretter.


WPC UND HARTHÖLZER

Ideal für Bretter mit symmetrischer Nut, wie WPC-Bretter oder Hartholzbretter.

BEFESTIGUNG AN

MATERIAL

ANWENDUNGSGEBIETE

Verwendung im Außenbereich mit aggressiven Bedingungen. Befestigung der Holzdielen oder WPC-Dielen auf einer Unterkonstruktion aus Holz, WPC oder Aluminium.

ARTIKELNUMMERN UND ABMESSUNGEN

GAP 3 A2 | AISI304

ARTNR.	Material	PxBxs	Stk.
		[mm]	
GAP3	A2 AISI304	40 x 30 x 11	500

SCI A2 | AISI304

Befestigung an Holz und WPC für GAP 3

	d ₁ [mm]	ARTNR.	L [mm]	Stk.
	3,5	SCI3525	25	500
	TX 10	SCI3535	35	500

SBN A2 | AISI304

Befestigung an Aluminium für GAP 3

	d ₁ [mm]	ARTNR.	L [mm]	Stk.
	3,5 TX 15	SBNA23525	25	1000

GAP 4

ARTNR.	Material	PxBxs	Stk.
		[mm]	
GAP4	Feuerverzinkter Stahl	41,5 x 42,5 x 12	500

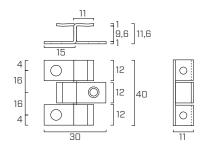
Zn ELECTRO PLATED

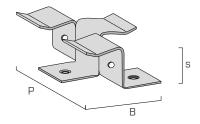
HTS

Befestigung an Holz und WPC für GAP 4

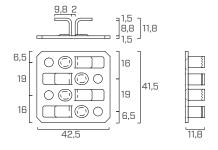
	d₁ [mm]	ARTNR.	L [mm]	Stk.
	3,5	HTS3525	25	1000
	TX 15	HTS3535	35	500

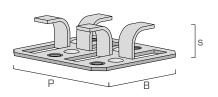
SBN


Befestigung an Aluminium für GAP 4

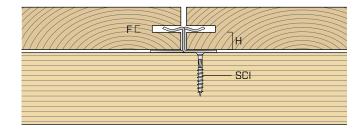

Ī	

d ₁ [mm]	ARTNR.	L [mm]	Stk.
3,5 TX 15	SBN3525	25	500

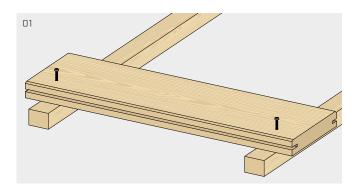

GEOMETRIE


GAP 3 A2 | AISI304

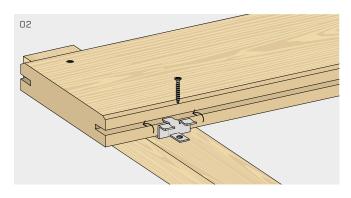
GAP 4



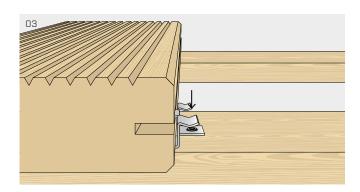
WOOD PLASTIC COMPOSITE (WPC)

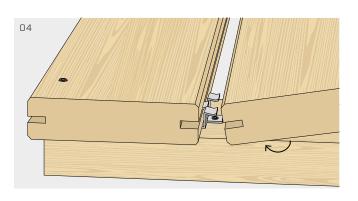

Ideal zur Befestigung von WPC-Brettern. Kann auch mit Schrauben SBN A2| AISI304 an Aluminium befestigt werden.

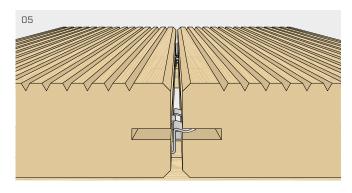
■ GEOMETRIE DER NUT GAP 3

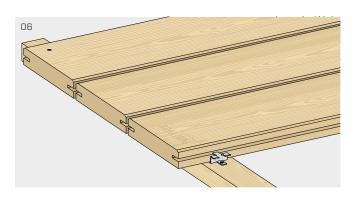


SYMMETRISCHE NUT			
Min. Stärke	F	3 mm	
Empfohlene Mindesthöhe GAP 3	Н	8 mm	

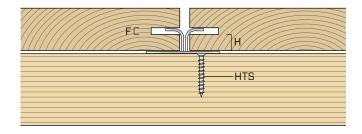

MONATGE GAP 3


Erstes Brett entweder in Sicht oder mit den richtigen Werkzeugen verdeckt verschrauben.

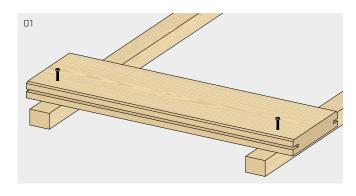

Den GAP3-Verbinder so in die Nut einsetzen, dass der mittlere Zahn des Klippverschlusses an der Ausfräsung des Brettes anliegt.


Die Schrauben in der mittleren Bohrung befestigen.

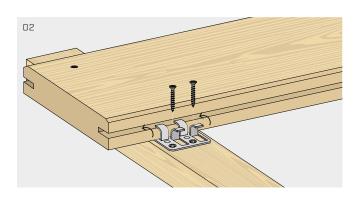
Das nächste Brett so in den GAP3-Verbinder schieben, dass die beiden Zähne an der Ausfräsung des Brettes anliegen.



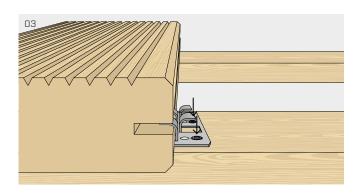
Die beiden Bretter mit der CRAB MINI Zwinge festklemmen, bis die Fuge zwischen den Brettern 3 oder 4 mm beträgt, je nach gewünschter Optik (siehe Produkt S. 395).

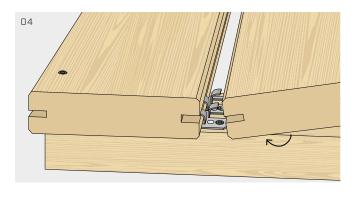

Ebenso mit den folgenden Brettern verfahren. Letztes Brett: Schritt 01 wiederholen.

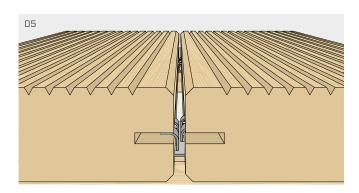
GEOMETRIE DER NUT GAP 4

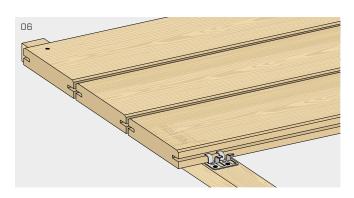


SYMMETRISCHE NUT		
Min. Stärke	F	3 mm
Empfohlene Mindesthöhe GAP 4	Н	7 mm


MONATGE GAP 4


Erstes Brett entweder in Sicht oder mit den richtigen Werkzeugen verdeckt verschrauben.


Den GAP4-Verbinder so in die Nut einsetzen, dass die mittleren Zähne des Klippverschlusses an der Ausfräsung des Brettes anliegen.


Die Schrauben in den beiden verfügbaren Bohrungen befestigen.

Das nächste Brett so in den GAP4-Verbinder schieben, dass die beiden Zähne an der Ausfräsung des Brettes anliegen.

Die beiden Bretter mit der CRAB MINI Zwinge festklemmen, bis die Fuge zwischen den Brettern 4-5 mm beträgt, je nach gewünschter Optik (siehe Produkt S. 395).

Ebenso mit den folgenden Brettern verfahren. Letztes Brett: Schritt 01 wiederholen.

TERRALOCK

VERBINDER FÜR TERRASSEN

UNSICHTBAR

Vollkommen verdeckt - eine garantiert optimale Optik. Sowohl für Terrassen als auch Fassaden ideal. In Metall und Kunststoff erhältlich.

BELÜFTUNG

Durch die Belüftung unter den Brettern wird die Ansammlung von Wasser verhindert und eine ausgezeichnete Beständigkeit garantiert. Kein Quetschen der Unterkonstruktion dank der großzügigen Auflagefläche.

PRAKTISCH

Montageanschlag für genaue Platzierung des Verbinders. Langlöcher gleichen die Holzbewegungen aus. Austausch einzelner Bretter möglich.

BRETTER 2-10 mm 2-10 mm

BEFESTIGUNG AN

MATERIAL

Kohlenstoffstahl mit farbiger ELECTRO Rostschutzbeschichtung

Polyamid/braunes Nylon

ANWENDUNGSGEBIETE

Für den Außenbereich. Befestigung der Holzdielen oder WPC-Dielen auf einer Unterkonstruktion aus Holz, WPC oder Aluminium. Bei nicht formstabilen Hölzern empfiehlt sich die Verwendung der Metallausführung.

ARTIKELNUMMERN UND ABMESSUNGEN

TERRALOCK

ARTNR.	Material	PxBxs	Stk.
		[mm]	
TER60ALU	Feuerverzinkter Stahl	60 x 20 x 8	100
TER180ALU	Feuerverzinkter Stahl	180 x 20 x 8	50
TER60ALUN	schwarzer verzinkter Stahl	60 x 20 x 8	100
TER180ALUN	schwarzer verzinkter Stahl	180 x 20 x 8	50

Auf Anfrage, bei Mengen über 20.000 Stück, auch aus Edelstahl A2 | AISI304 erhältlich. (Art.-Nr. TER60A2 e TER180A2).

TERRALOCK PP

Stk.	PxBxs	Material	ARTNR.
	[mm]		
100	60 x 20 x 8	braunes Nylon	TER60PPM
50	180 x 20 x 8	braunes Nylon	TER180PPM
	180 x 20 x 8	,	TER180PPM

Bei nicht formstabilen Hölzern empfiehlt sich die Verwendung der Metallausführung.

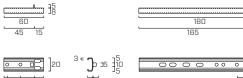
KKT A4 | AISI316/KKT COLOR

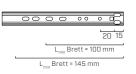
Befestigung an Holz und WPC für TERRALOCK

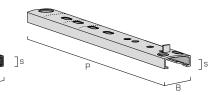
d ₁	ARTNR.	L	Stk.
[mm]		[mm]	
	KKTX520A4	20	200
-	KKTX525A4	25	200
5 TX 20	KKTX530A4	30	200
17.20	KKTX540A4	40	100
	KKTN540	40	200

KKF AISI410

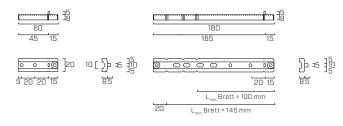
Befestigung an Holz und WPC für TERRALOCK PP

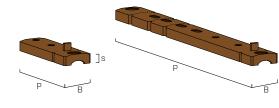



] = }


d_1	ARTNR.	L	Stk.
[mm]		[mm]	
4,5	KKF4520	20	200
TX 20	KKF4540	40	200

GEOMETRIE


TERRALOCK



TERRALOCK PP

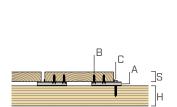
TERRALOCK PP

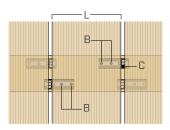
Ausführung in Kunststoff, ideal für Terrassen in der Nähe von Gewässern. Garantiert zeitbeständig durch die Hinterlüftung unter den Brettern. Vollkommen verdeckte Befestigung.

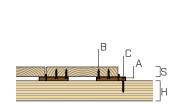
Bei nicht formstabilen Hölzern empfiehlt sich die Verwendung der Metallausführung.

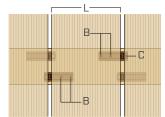
AUSWAHL DES VERBINDERS

TERRALOCK 60


A. Verbinder Terralock 60: 2 Stk. **B.** obere Schrauben: 4 Stk. C. untere Schrauben: 1 Stk.


TERRALOCK PP 60

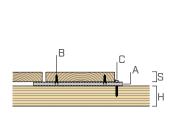

A. Verbinder Terralock PP 60: 2 Stk.

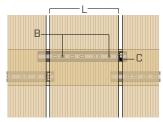

B. obere Schrauben: 4 Stk.

C. untere Schrauben: 1 Stk.

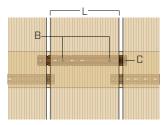
Typ obere Schraube	Mindestbreite Brett	Typ untere Schraube	Mindesthöhe Leiste
В		С	
KKTX 5 x 20	S > 21 mm	KKT 5 x 40	H > 40 mm
KKTX 5 x 25	S > 26 mm	KKT 5 x 50	H > 50 mm
KKTX 5 x 30	S > 31 mm	KKT 5 x 60	H > 60 mm

Typ obere Schraube	Mindestbreite Brett	Typ untere Schraube	Mindesthöhe Leiste
В		С	
KKF 4,5 x 20	S > 19 mm	KKF 4,5 x 40	H > 38 mm

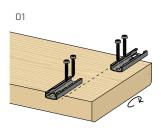

TERRALOCK 180


A. Verbinder Terralock 180: 1 Stk. B. obere Schrauben: 2 Stk. C. untere Schrauben: 1 Stk.

TERRALOCK PP 180

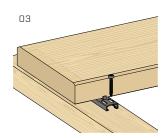

A. Verbinder Terralock PP 180: 1 Stk. B. obere Schrauben: 2 Stk.

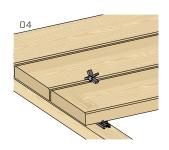
C. untere Schrauben: 1 Stk.



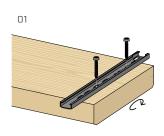
Typ obere Schraube	Mindestbreite Brett	Typ untere Schraube	Mindesthöhe Leiste
В		С	
KKTX 5 x 20	S > 21 mm	KKT 5 x 40	H > 40 mm
KKTX 5 x 25	S > 26 mm	KKT 5 x 50	H > 50 mm
KKTX 5 x 30	S > 31 mm	KKT 5 x 60	H > 60 mm

В С	
KKF 4,5 x 20 S > 19 mm KKF 4,5 x 40	H > 38 mm


MONTAGE TERRALOCK 60

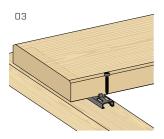

An jedem Befestigungspunkt zwei Verbinder einsetzen.

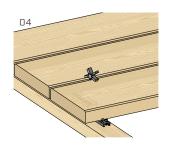
Das Brett drehen und unter das zuvor an der Unterkonstruktion befestigte Brett legen.



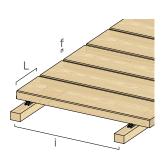
Jeden Verbinder an der Unterkonstruktion mit einer KKTX-Schraube in einem der beiden Langlöcher fixieren.

Es wird der Einsatz von STAR Abstandhaltern zwischen den Brettern empfohlen.


MONTAGE TERRALOCK 180


An jedem Brett einen Verbinder einsetzen und mit zwei KKTX-Schrauben fixieren.

Das Brett drehen und unter das zuvor an der Unterkonstruktion befestigte Brett legen.



Jeden Verbinder an der Unterkonstruktion mit einer KKTX-Schraube in einem der beiden Langlöcher fixieren.

Es wird der Einsatz von STAR Abstandhaltern zwischen den Brettern empfohlen.

BERECHNUNGSBEISPIEL

i = Zwischenabstand Leisten | L = Brettbreite | f = Fugenbreite

CALCULATION

TERRALOCK 60

i = 0,60 m | L = 140 mm | f = 7 mm

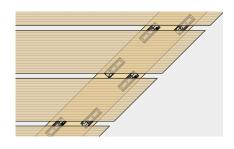
$1m^2 / i / (L + f) \cdot 2 = Stk. pro m^2$

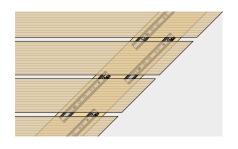
 $1m^2/0.6 \text{ m} / (0.14 \text{ m} + 0.007 \text{ m}) \times 2 = 23 \text{ Stk.} / m^2 + 46 \text{ Stk.}$ obere Schrauben Typ B / m^2

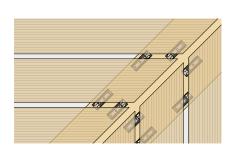
+ 12 Stk. untere Schrauben Typ C / m²

TERRALOCK 180

i = 0,60 m | L = 140 mm | f = 7 mm


$1m^2/i/(L + f) = Stk. pro m^2$


 $1m^2/0.6 \text{ m}/(0.14 \text{ m} + 0.007 \text{ m}) = 12 \text{ Stk. }/m^2$


- + 24 Stk. obere Schrauben Typ B / m^2
- + 12 Stk. untere Schrauben Typ C / m^2

TERRASSEN MIT BESONDEREN GEOMETRIEN

Aufgrund der besonderen geometrischen Konfiguration können mit dem TERRALOCK-Verbinder Terrassen mit formgebenden Geometrien gefertigt werden, um jedem ästhetischen Anspruch gerecht zu werden. Mit den beiden Langlöchern und der optimalen Anschlagposition ist eine Montage auch mit geneigter Unterkonstruktion möglich.

JFA

JUSTIERBARER STELLFUSS FÜR TERRASSEN

NIVELLIERUNG

Da der Träger höhenverstellbar ist, ist er ideal, um schnell die Höhenunterschiede des Untergrundes auszugleichen. Durch die Erhöhung entsteht außerdem eine Belüftung unter den Leisten.

DOPPELTE REGULIERUNG

Kann sowohl von unten mit einem Maulschlüssel SW 10, als auch von oben mit einem flachen Schraubenzieher eingestellt werden. Schnelles, praktischen und vielseitiges System.

AUFLAGER

Die Auflage aus TPV-Kunststoffmaterial verringert den Trittschall und ist UV-beständig. Die Gelenkbasis passt sich an geneigte Oberflächen an.

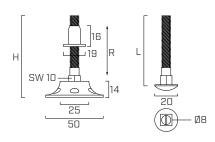
HÖHE

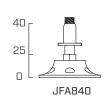
Einstellmöglichkeit von oben und unten

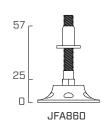
ANWENDUNG

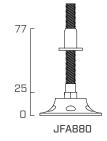
MATERIAL

Elektroverzinkter Kohlenstoffstahl


ANWENDUNGSGEBIETE

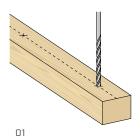

Erhöhung und Nivellierung der Unterkonstruktion.

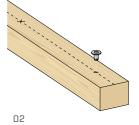

ARTIKELNUMMERN UND ABMESSUNGEN


ARTNR.	Schraube Ø x L	R	Stk.
	[mm]	[mm]	
JFA840	8 x 40	25≤ R≤ 40	100
JFA860	8 x 60	25≤ R≤ 57	100
JFA880	8 x 80	25≤ R≤ 77	100

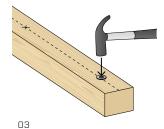
GEOMETRIE

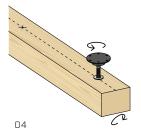
■ TECHNISCHE DATEN

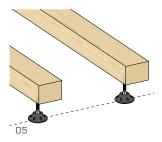

ARTNR.			JFA840	JFA860	JFA880
Schraube Ø x L		[mm]	8 x 40	8 x 60	8 x 80
Montagehöhe	R	[mm]	$25 \le R \le 40$	$25 \le R \le 57$	25 ≤ R ≤ 77
Winkel			+/- 5°	+/- 5°	+/- 5°
Vorbohrung für die Hülse		[mm]	Ø10	Ø10	Ø10
Einstellmutter			SW 10	SW 10	SW 10
Gesamthöhe	Н	[mm]	51	71	91
Zulässige Last	F_{adm}	kN	0,8	0,8	0,8


UNEBENE OBERFLÄCHEN

Die Verstellbarkeit von oben nach unten ermöglicht maximale Präzision bei der Verlegung der Terrassen auf unebenen Flächen.


JFA-MONTAGE MIT EINSTELLUNG VON UNTEN


Die Mittellinie der Leiste anzeichnen, die Position der Bohrungen markieren, dann ein Loch mit einem Durchmesser von 10 mm vorbohren.

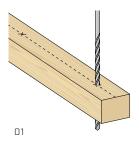

Die Tiefe der Vorbohrung entspricht der Montagehöhe R und muss mindesten 16 mm betragen (Raumbedarf der Hülse).

Die Hülse mit einem Hammer einsetzen.

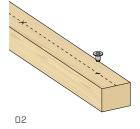
Die Halterung in der Hülse einschrauben und die Leiste umdrehen.

Die Leiste auf dem Unterboden parallel zu der zuvor montierten Leiste positionieren.

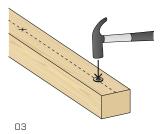
Die Höhe der Stütze einstellen, dazu von unten mit Maulschlüssel SW 10 mm arbeiten.

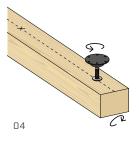


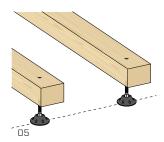
Detail der Einstellung von unten.

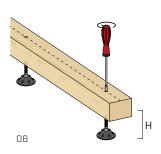


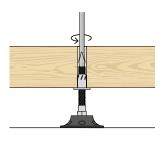
Es ist möglich, dem Verlauf des Untergrunds zu folgen, in dem die einzelnen Stützen unabhängig eingestellt werden.

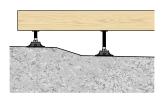

JFA-MONTAGE MIT EINSTELLUNG VON OBEN


Die Mittellinie der Leiste anzeichnen, die Position der Bohrungen markieren, dann eine durchgehende Bohrung mit einem Durchmesser von 10 mm vorbohren.


Es wird ein maximaler Abstand von 60 cm zwischen den Trägern empfohlen, der je nach Belastung zu überprüfen ist.


Die Hülse mit einem Hammer einsetzen.


Die Halterung in der Hülse einschrauben und die Leiste umdrehen.


Die Leiste auf dem Unterboden parallel zu der zuvor montierten Leiste positionieren.

Die Höhe der Stütze mit einem flachen Schraubenzieher einstellen.

Detail der Einstellung von oben.

Es ist möglich, dem Verlauf des Untergrunds zu folgen, in dem die einzelnen Stützen unabhängig eingestellt werden.

BERECHNUNGSBEISPIEL

Die Anzahl der Träger pro m² muss je nach wirkender Last und Abstand zwischen den UK berechnet werden.

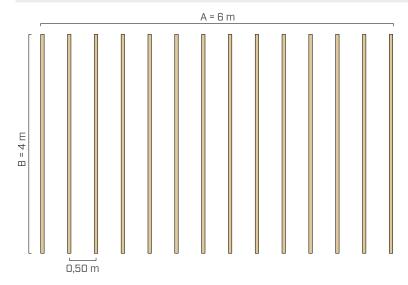
ANTEIL HALTERUNGEN (I):

$$I = q/F_{adm} = Stk. JFA pro m^2$$

$$\mathbf{q} = \text{Last [kN/m}^2]$$

MAXIMALER ABSTAND ZWISCHEN DEN TRÄGERN (a):

$$a = \min \begin{bmatrix} a_{max, JFA} \\ a_{max, Leiste} \end{bmatrix}$$


mit:
$$a_{max, JFA} = 1/Stk./m^2/i$$

$$a_{\text{max, Leiste}} = \sqrt[3]{\frac{E \cdot J \cdot 384}{f_{\text{lim}} \cdot 5 \cdot q \cdot i}} = \frac{I_{\text{lim}}}{E}$$

$$\boldsymbol{E} = \text{Elastizit"atsmodul Material}$$

PRAKTISCHES BEISPIEL

PROJEKTDATEN

OBERFLÄCHE DER TERRAS-

SE S = A x B = 6 m x 4 m = 24
$$m^2$$

UNTERKONSTRUKTION

b $= 50 \, \text{mm}$ h = 30 mm30 mm

LASTEN

Verkehrslast

Verwendungskategorie: Kategorie A (Balkonen)

4,00 kN/m²

(EN 1991-1-1)

Zulässige Last JFA-Träger

 F_{adm} 0,80 kN

C20 (EN 338:2016) Material der Leisten

Maximale sofortige Durchbiegung zwischen den Auflagern	f _{lim}	a/400	-
Elastizitätsmoment Material	E _{0,mean}		9,5 kN/mm ²
Trägheitsmoment Leistenquerschnitt	J	(b · h ³)/12	112500 mm ⁴
Maximale Durchbiegung Leiste	f _{max}	$(5/384)\cdot (q\cdot i\cdot a^4)/(E\cdot J)$	-

BERECHNUNG JFA-ANZAHL

ANTEIL

 $I = q/F_{adm} = Stk. JFA pro m^2$

 $I = 4.0 \text{ kN/m}^2/0.8 \text{ kN} = 5.00 \text{ Stk./m}^2$

ANZAHL DER JFA-TRÄGER

 $n = I \cdot S \cdot Zuschlag = Stk. JFA$

 $n = 5.00 \text{ Stk./m}^2 \cdot 24 \text{ m}^2 \cdot 1.05 = 126 \text{ Stk. JFA}$

5 % Zuschlag

BERECHNUNG DES MAXIMALEN ABSTANDS ZWISCHEN DEN HALTERUNGEN

BIEGEGRENZE LEISTE

$$f_{lim} = f_{max}$$
 daher: $a_{max, Leiste} = \sqrt[3]{\frac{E \cdot J \cdot 384}{400 \cdot 5 \cdot q \cdot i}}$

Leiste =
$$\sqrt[3]{\frac{9.5 \cdot 112500 \cdot 384}{400 \cdot 5 \cdot (4.0 \cdot 10^{-6}) \cdot 500}} \cdot 10^{-3} = 0.47 \text{ m}$$

FESTIGKEITSGRENZE TRÄGER

$$a_{\text{max, JFA}} = 1/n/i$$

$$a_{\text{max, JFA}} = 1/5,00/0,5 = 0,40 \text{ m}$$

$$a = min \begin{bmatrix} a_{max, JFA} \\ a_{max, Leiste} \end{bmatrix} = min \begin{bmatrix} 0,40 \text{ m} \\ 0,47 \text{ m} \end{bmatrix} = 0,40 \text{ m}$$

maximaler Abstand zwischen den JFA-Trägern

SUPPORT

JUSTIERBARER STELLFUSS FÜR TERRASSEN

DREI AUSFÜHRUNGEN

Die Ausführung Small (SUP-S) erlaubt Erhöhungen bis 37 mm, Ausführung Medium (SUP-M) bis 220 mm und Ausführung Large (SUP-L) bis zu 1025 mm. Alle Ausführungen sind höhenverstellbar.

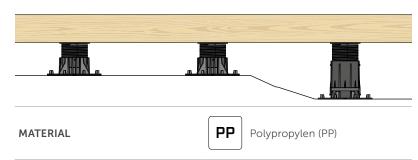
FESTIGKEIT

Robustes System, für hohe Lasten geeignet. In den Ausführungen Small (SUP-S) und Medium (SUP-M) mit bis zu 400kg belastbar. Die Ausführung Large (SUP-L) hält bis zu 1000 kg stand.

ZUSAMMENSETZBAR

Alle Ausführungen können mit einem speziellen Kopfteil kombiniert werden, wodurch die seitliche oder obere Befestigung an den Unterkonstruktionen aus Holz oder Aluminium erleichtert wird. Auf Anfrage auch mit Adapter für Fliesen lieferbar.

NEUER SUP-L "ALL IN ONE"


Neben einer hervorragenden Einstellbarkeit und Tragfähigkeit verfügt er über vielseitige, selbstnivellierende Köpfe, die automatisch die Neigung unregelmäßiger Oberflächen um bis zu 5% ausgleichen können. Mit dem Schlüssel SUPLKEY kann er von oben eingestellt werden und bietet maximale Stabilität bei Fliesenbelägen.

ANWENDUNG

ANWENDUNGSGEBIETE

Erhöhung und Nivellierung der Unterkonstruktion. Für den Außenbereich.

LANGLEBIGKEIT

UV-beständiges Material, das auch in aggressiven Umgebungen eingesetzt werden kann. Ideal in Kombination mit ALU TERRACE und KKA Schrauben, um ein System mit ausgezeichneter Lebensdauer zu realisieren.

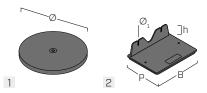
VON OBEN VERSTELLBAR

Mit dem Schlüssel SUPLKEY kann er von oben eingestellt werden und bietet maximale Stabilität bei Fliesenbelägen.

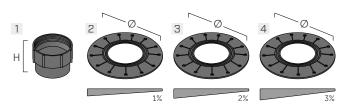
ARTIKELNUMMERN UND ABMESSUNGEN SUP-S

ARTNR.	Ø	Н	Stk.
	[mm]	[mm]	
1 SUPS2230	150	22 - 30	20
2 SUPS2840	150	28 - 40	20

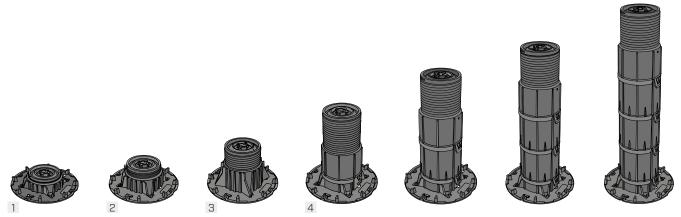
EINGESPANNTE KOPFVERBINDUNG FÜR SUP-S


ARTNR.	Ø	$\emptyset_{_1}$	Stk.
	[mm]	[mm]	
1 SUPSLHEAD1	70	3 x 14	20

ARTIKELNUMMERN UND ABMESSUNGEN SUP-M


ARTNR.	Ø	Н	
	[mm]	[mm]	
1 SUPM3550	200	35 - 50	25
2 SUPM5070	200	50 - 70	25
3 SUPM65100	200	65 - 100	25
4 SUPM95130	200	95 - 130	25
5 SUPM125160	200	125 - 160	25
6 SUPM155190	200	155 - 190	25
7 SUPM185220	200	185 - 220	25

SPANNKOPF FÜR SUP-M


	ARTNR.	BxPxH	Ø	$\emptyset_{_1}$	Stk.
		[mm]	[mm]	[mm]	
1	SUPMHEAD1	-	120	-	25
2	SUPMHEAD2	120 x 90 x 30	-	3 x 14	25

VERLÄNGERUNGEN UND NEIGUNGSAUSGLEICH FÜR SUP-M

	ARTNR.	Н	Ø	\geq	Stk.
		[mm]	[mm]	%	
1	SUPMEXT30	30	-	-	25
2	SUPCORRECT1	-	200	1	20
3	SUPCORRECT2	-	200	2	20
4	SUPCORRECT3	-	200	3	20

ARTIKELNUMMERN UND ABMESSUNGEN SUP-L

	ARTNR.	Ø	Н	Stk.
		[mm]	[mm]	
1	SUPL3750(*)	200	37 - 50	20
2	SUPL5075(*)	200	50 - 75	20
3	SUPL75125(*)	200	75 - 125	20
4	SUPL125225	200	125 - 225	20
5	SUPL225325	200	225 - 325	20
6	SUPL325425	200	325 - 425	20
7	SUPL425525	200	425 - 525	20
8	SUPL525625	200	525 - 625	20
9	SUPL625725	200	625 - 725	20
10	SUPL725825	200	725 - 825	20
11	SUPL825925	200	825 - 925	20
12	SUPL9251025	200	925 - 1025	20

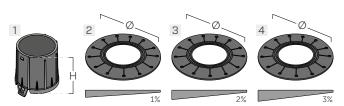
^(*) Verlängerung SUPLEXT100 nicht verwendbar.

Kopf muss separat bestellt werden.

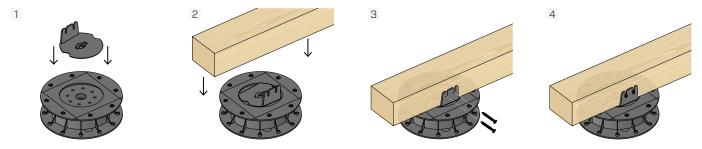
Die Art.-Nr. 5-12 bestehen aus dem Produkt SUPL125225 und einer Anzahl von Verlängerungen SUPLEXT100, um den angegebenen Höhenbereich zu erreichen.

SPANNKÖPFE FÜR SUP-L

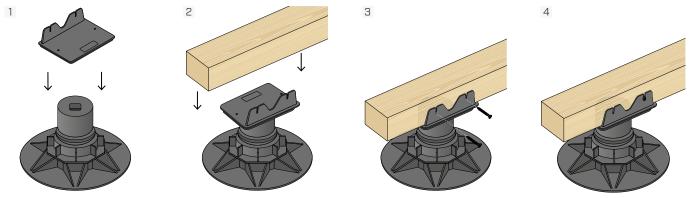
	ARTNR.	Anwendung	BxP	Ø	Ø ₁	Stk.
			[mm]	[mm]	[mm]	
1	SUPLHEAD1	Unterkonstruktionen aus Holz/Aluminium	70 x 110	-	3 x 14	20
2	SUPLHEAD2	Unterkonstruktionen aus Holz/Aluminium	60 x 40	-	-	20
3	SUPLHEAD3	Fliesen	-	120	-	20


ZUBEHÖR FÜR SUP-L

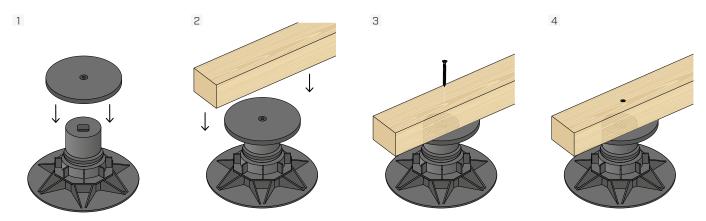
	ARTNR.	Beschreibung	Stk.
1	SUPLRING1	Sicherungsring Kante	20
2	SUPLKEY	Schlüssel zum Einstellen von oben	1
3	SUPLRING2	Sicherungsring gegen Verdrehen	5


SUPLKEY und SUPLRING2 sind nur mit dem Kopf SUPLHEAD3 kompatibel. SUPLRING1 und SUPLRING2 werden mit den Köpfen geliefert.

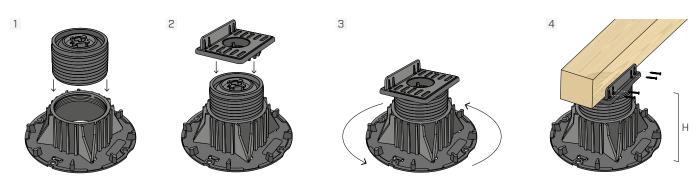
VERLÄNGERUNGEN UND NEIGUNGSAUSGLEICH FÜR SUP-L


	ARTNR.	Н	Ø		Stk.
		[mm]	[mm]	%	
1	SUPLEXT100	100	-	-	20
2	SUPCORRECT1	-	200	1	20
3	SUPCORRECT2	-	200	2	20
4	SUPCORRECT3	-	200	3	20

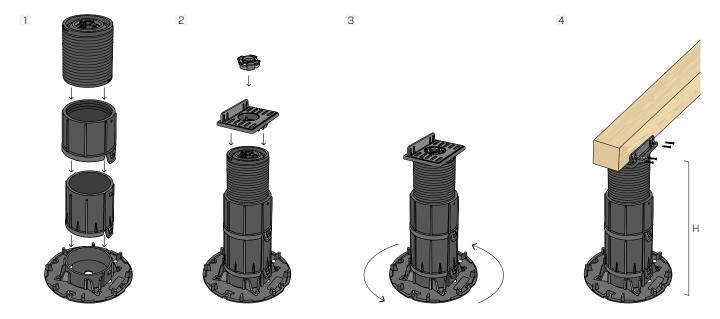
MONTAGE SUP-S MIT KOPF SUPSLHEAD1


Den Kopf SUPSLHEAD1 auf SUP-S einspannen und die Unterkonstruktion mit KKF-Schrauben, Durchmesser 4,5 mm, befestigen.

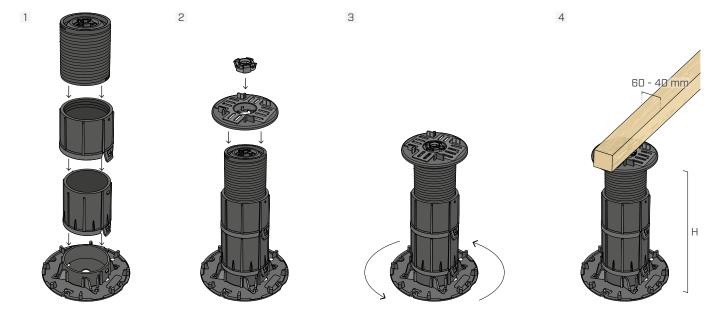
■ MONTAGE SUP-M MIT KOPF SUPMHEAD2


Den Kopf SUPMHEAD2 auf SUP-M einspannen und die Unterkonstruktion seitlich mit KKF-Schrauben, Durchmesser 4,5 mm, befestigen.

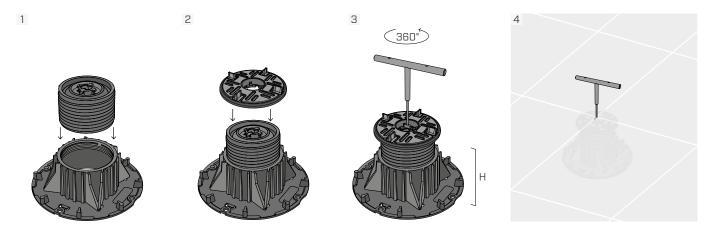
MONTAGE SUP-M MIT KOPF SUPMHEAD1


Den Kopf SUPMHEAD1 auf SUP-M einspannen und die Unterkonstruktion mit KKF-Schrauben, Durchmesser 4,5 mm, befestigen.

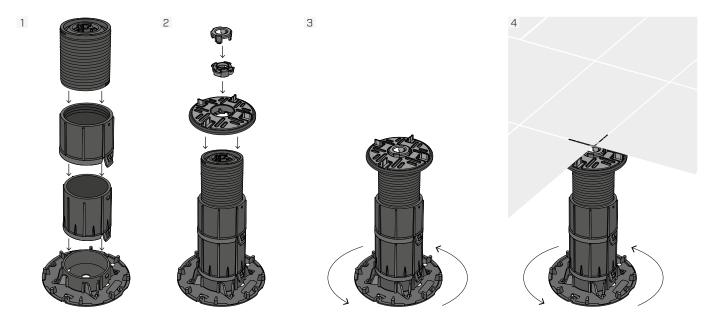
MONTAGE SUP-L MIT KOPF SUPLHEAD1


Den Kopf SUPLHEAD1 auf SUP-L einspannen, die Höhe wie gewünscht einstellen und die Unterkonstruktion seitlich mit KKF-Schrauben, Durchmesser 4,5 mm befestigen. Der schwenkbare Kopf ermöglicht die Selbstnivellierung beim Verlegen für Neigungen bis zu 5%.

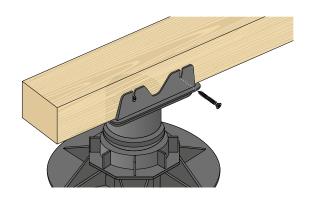
MONTAGE SUP-LMIT KOPF SUPLHEAD1 UND SUPLRING1


Falls vorgesehen, die Verlängerung SUPLEXT100 dem Träger SUP-L hinzufügen und danach den Kopf SUPLHEAD1 einspannen. Um die Schwenkbewegung des selbstnivellierenden Kopfes zu arretieren, diesen mit SUPLRING1 befestigen. Die Höhe wie gewünscht einstellen und die Leiste seitlich mit KKF-Schrauben, Durchmesser 4,5 mm, befestigen.

MONTAGE SUP-L MIT KOPF SUPLHEAD2 UND SUPLRING1


Falls vorgesehen, die Verlängerungen SUPLEXT100 dem Träger SUP-L hinzufügen und danach den Kopf SUPLHEAD2 einspannen. Um die Schwenkbewegung des selbstnivellierenden Kopfes zu arretieren, diesen mit SUPLRING1 befestigen. Die Höhe nach Bedarf einstellen und die Leiste innerhalb der Flügel platzieren.

■ MONTAGE SUP-L MIT KOPF SUPLHEAD3 | HÖHENEINSTELLUNG VON OBEN


Den Kopf SUPLHEAD3 auf SUP-L einspannen. Die Höhe des Stellfußes mit dem Schlüssel SUPLKEY einstellen. Die Fliesen auf den Stellfüßen absetzen. Den Boden nivellieren, indem die Höhe der Stellfüße von oben mit dem SUPLKEY eingestellt wird, ohne die bereits verlegten Fliesen zu entfernen. Der schwenkbare Kopf ermöglicht die Selbstnivellierung beim Verlegen für Neigungen bis zu 5%.

■ MONTAGE SUP-L MIT KOPF SUPLHEAD3 | HÖHENEINSTELLUNG VON UNTEN

Falls vorgesehen, die Verlängerung SUPLEXT100 dem Träger SUP-L hinzufügen und danach den Kopf SUPLHEAD3 einspannen. Um die Schwenkbewegung des selbstnivellierenden Kopfes zu arretieren, diesen mit SUPLRING1 befestigen. Den SUPLRING2 aufstecken. Die Höhe nach Bedarf einstellen und den Bodenbelag verlegen.

ARTIKELNUMMERN UND ABMESSUNGEN DER BEFESTIGUNG

KKF AISI410

d₁ [mm]	ARTNR.	L [mm]	Stk.
	KKF4520	20	200
	KKF4540	40	200
4,5	KKF4545	45	200
TX 20	KKF4550	50	200
	KKF4560	60	200
	KKF4570	70	200

VERLEGEANLEITUNG

I ALU TERRACE

ALUMINIUMPROFIL FÜR TERRASSEN

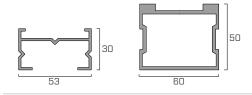
ZWEI AUSFÜHRUNGEN

Ausführung ALUTERRA30 für Standardbelastungen. Ausführung ALU-TERRA50 in schwarzer Farbe, für sehr hohe Lasten. Kann beidseitig benutzt werden

AUFLAGER ALLE 1.10 m

ALUTERRA50 wurde für eine sehr hohe Trägheit entworfen, wodurch die Träger SUPPORT alle 1,10 m (auf der Mittellinie der Leiste) positioniert werden können und zwar auch bei hohen Lasten (4,0 kN/m²).

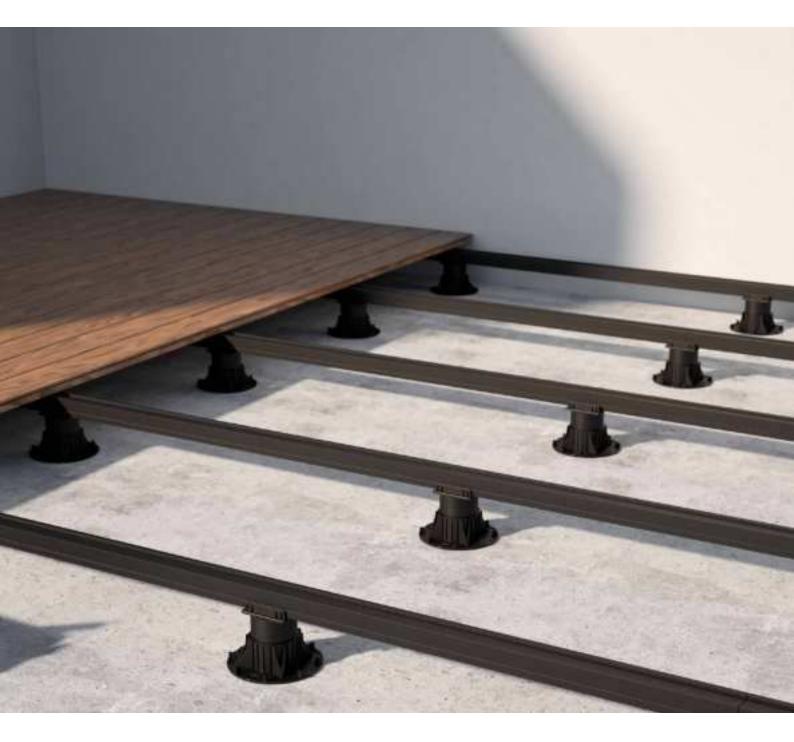
LANGLEBIGKEIT


Die Unterkonstruktion aus Aluminiumprofilen garantiert eine ausgezeichnete Beständigkeit der Terrasse. Das Wasser kann dank der Abflussrinne ablaufen und schafft eine wirksame Belüftung.

QUERSCHNITTE [mm]

NUTZUNGSKLASSE

MATERIAL



Aluminium mit Anodisierung, Klasse 15, Farbe Graphitschwarz

ANWENDUNGSGEBIETE

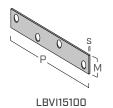
Unterkonstruktion von Terrassen. Für den Außenbereich.

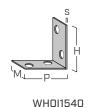
ABSTAND 1,10 m

Mit einem Zwischenabstand von 80 cm zwischen den Profilen (Belastung 4,0 kN/m²) können die SUPPORT Auflager in Abständen von 1,10 m und auf der Mittellinie von ALUTERRACE50 positioniert werden.

KOMPLETTSYSTEM

Ideal in Kombination mit SUPPORT, seitlich mit KKA-Schrauben befestigt. Das System hat eine ausgezeichnete Lebensdauer.





Unterkonstruktion aus Aluminium aus ALUTERRA30 und Auflagerung auf GRANULO PAD

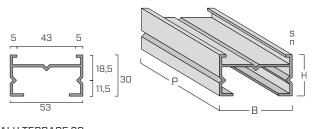
■ ARTIKELNUMMERN UND -ABMESSUNGEN DES ZUBEHÖRS

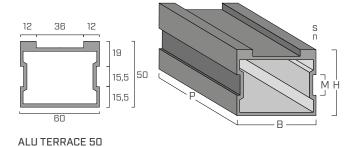
FLIP

FLAT

ARTNR.	ARTNR. Material		М	Р	Н	Stk.
		[mm]	[mm]	[mm]	[mm]	
LBVI15100	A2 AISI304	1,75	15	100	-	50
WHOI1540	A2 AISI304	1,75	15	40	40	50

ARTNR.	Material	Stk.
FLAT	schwarzes Aluminium	200
FLIP	Feuerverzinkter Stahl	200

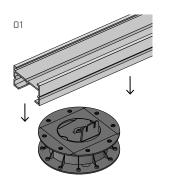

KKA COLOR


	$d_{_1}$	ARTNR.	L	Stk.
	[mm]		[mm]	
	_	KKAN420	20	200
Ĭ	4 TX 20	KKAN430	30	200
•	17.20	KKAN440	40	200
	5 TX 25	KKAN540	40	200

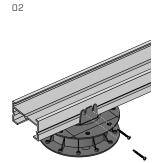
KKA AISI410

GEOMETRIE

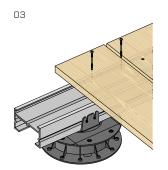
ALU TERRACE 30

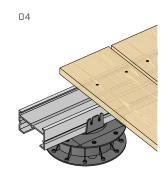

ARTIKELNUMMERN UND ABMESSUNGEN

ARTNR.	s	В	B P		Stk.
	[mm]	[mm]	[mm]	[mm]	
ALUTERRA30	1,8	53	2200	30	1

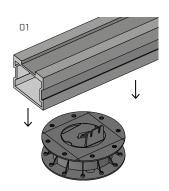

ARTNR.	s B P		Н	Stk.	
	[mm] [mm]		[mm]	[mm]	
ALUTERRA50	2,5	60	2200	50	1

ANMERKUNGEN: Auf Anfrage ist auch P = 3000 mm Version erhältlich.

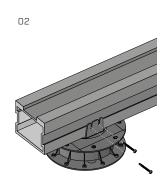

BEISPIEL EINER BEFESTIGUNG MIT SCHRAUBEN UND ALUTERRA30


ALU-TERRACE auf SUP-S positionieren, das mit dem Kopf SUPSLHEAD1 ausgestattet ist.

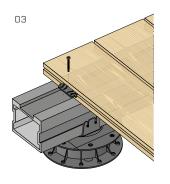
ALU TERRACE mit KKAN, Durchmesser 4,0 mm, befestigen.

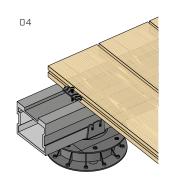


Die Holz- oder WPC-Bretter direkt an ALU TERRACE mit KKA-Schrauben, Durchmesser 5,0 mm, befestigen.

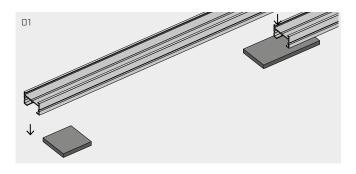


Ebenso mit den folgenden Brettern verfahren.

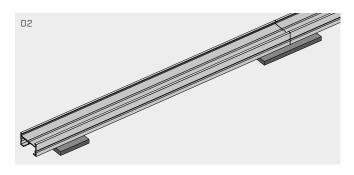

BEISPIEL EINER BEFESTIGUNG MIT KLIPPVERSCHLUSS UND ALUTERRA50


ALU-TERRACE auf SUP-S positionieren, das mit dem Kopf SUPSLHEAD1 ausgestattet ist.

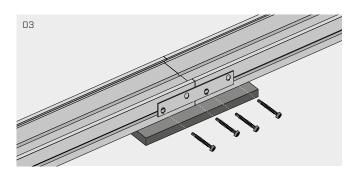
ALU TERRACE mit KKAN, Durchmesser 4,0 mm, befestigen.



Die Bretter mit verdeckten Klippverschlüssen FLAT und Schrauben KKAN, Durchmesser 4,0 mm, befestigen.

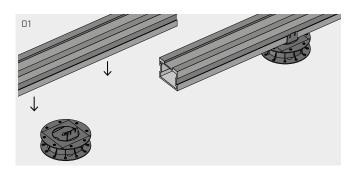


Ebenso mit den folgenden Brettern verfahren.

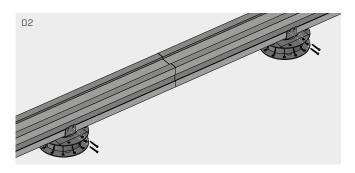

■ BEISPIEL FÜR AUFLAGER AUF GRANULO PAD


Es können mehrere ALUTERRA30 in Längsrichtung durch Edelstahlplättchen miteinander verbunden werden. Die Verbindung ist fakultativ.

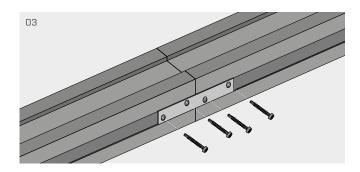
Den Kopf von 2 Profilen aneinander legen.

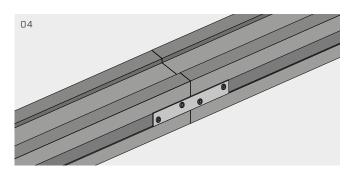


Plättchen LBVI15100 aus Edelstahl an den Aluminiumprofilen positionieren und mit KKA-Schrauben 4.0×20 befestigen.



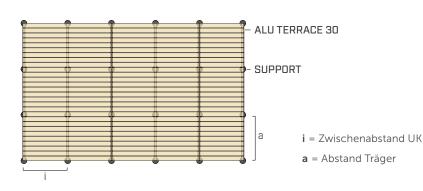
Den Vorgang auf beiden Seiten ausführen, um die Stabilität zu maximieren.

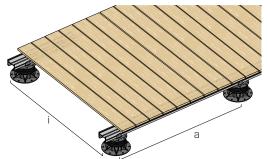

■ BEISPIEL FÜR AUFLAGER AUF SUPPORT


Es können mehrere ALUTERRA50 in Längsrichtung durch Edelstahlplättchen miteinander verbunden werden. Die Verbindung ist fakultativ, falls diese mit dem Auflager auf SUPPORT übereinstimmt.

Die Aluminiumprofile mit KKAN-Schrauben, Durchmesser 4,0 mm, verbinden und den Kopf 2 Profilen aneinander legen.

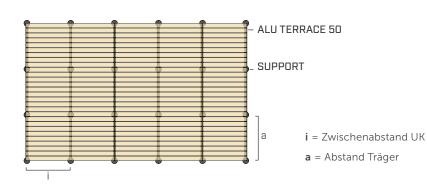
Plättchen LBVI15100 aus Edelstahl seitlich an den Einbuchtungen der Aluminiumprofile positionieren und mit KKA-Schrauben 4.0×20 oder KKAN, Durchmesser 4.0 mm, befestigen.

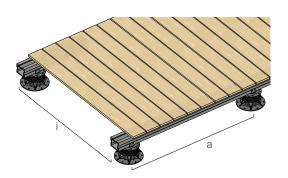



Den Vorgang auf beiden Seiten ausführen, um die Stabilität zu maximieren.

■ MAXIMALER ABSTAND ZWISCHEN TRÄGERN (a)

ALU TERRACE 30





VERKEHRSLAST		a [m]									
[kN/m ²]	i=0,4 m	i=0,45 m	i=0,5 m	i=0,55 m	i=0,6 m	i=0,7 m	i=0,8 m	i=0,9 m	i=1,0 m		
2,0	0,77	0,74	0,71	0,69	0,67	0,64	0,61	0,59	0,57		
3,0	0,67	0,65	0,62	0,60	0,59	0,56	0,53	0,51	0,49		
4,0	0,61	0,59	0,57	0,55	0,53	0,51	0,48	0,47	0,45		
5,0	0,57	0,54	0,53	0,51	0,49	0,47	0,45	0,43	0,42		

ALU TERRACE 50

VERKEHRSLAST		a [m]									
[kN/m²]	i=0,4 m	i=0,45 m	i=0,5 m	i=0,55 m	i=0,6 m	i=0,7 m	i=0,8 m	i=0,9 m	i=1,0 m		
2,0	1,70	1,64	1,58	1,53	1,49	1,41	1,35	1,30	1,25		
3,0	1,49	1,43	1,38	1,34	1,30	1,23	1,18	1,14	1,10		
4,0	1,35	1,30	1,25	1,22	1,18	1,12	1,07	1,03	1,00		
5,0	1,25	1,21	1,16	1,13	1,10	1,04	1,00	0,96	0,92		

ANMERKUNGEN

- Beispiel mit Verformung Grenze L/300;
- Nutzlast gemäß EN 1991-1-1;

 - Bereiche in Kategorie A = 2,0 ÷ 4,0 kN /m²; Bereiche, die zu Andrang neigen C2 = 3,0 ÷ 4,0 kN /m²; Bereiche, die zu Andrang neigen C3 = 3,0 ÷ 5,0 kN /m²;

Die Berechnung wurde zugunsten der Sicherheit mit einem statischen Schema des Balkens an einer Spannweite mit einfachem Auflager ausgeführt, der mit einer gleichmäßig verteilten Last belastet wird.

I GROUND COVER

BEWUCHSSCHUTZFOLIE FÜR DEN UNTERGRUND

WASSERDURCHLÄSSIG

Die Bewuchsschutzfolie verhindert den Wuchs von Gras und Wurzeln und schützt die Unterkonstruktion der Terrasse vor dem Boden. Wasserdurchlässig, das heißt, das Wasser kann ablaufen.

WIDERSTANDSFÄHIG

Durch den Vliesstoff aus Polypropylen mit einem Gewicht von 50 g/m² kann die Unterkonstruktion der Terrasse wirkungsvoll vom Boden getrennt werden. Abmessungen für Terrassen (1,6 m x 10 m) optimiert.

ARTNR.	Material	g/m²	HxL	Α	Stk.
			[m]	$[m^2]$	
COVER50	TNT	50	1,6 x 10	16	1

NAG

JUSTIERENDES PAD

ÜBERLAPPBAR

In 3 Stärken (2,0, 3,0 und 5,0 mm) erhältlich, können auch untereinander überlapppt werden, um unterschiedliche Stärken zu erhalten und um die Unterkonstruktion der Terrasse zu nivellieren.

LANGLEBIGKEIT

Das EPDM-Material garantiert eine hohe Beständigkeit, Formstabilität und UV-Beständigkeit.

ARTNR.	BxLxs	Dichte	shore	Stk.
	[mm]	[kg/m ³]		
NAG60602	60 x 60 x 2	1220	65	50
NAG60603	60 x 60 x 3	1220	65	30
NAG60605	60 x 60 x 5	1220	65	20

Anwendungstemperatur von -35°C | $+90^{\circ}\text{C}$

GRANULO

UNTERBODEN AUS GUMMIGRANULAT

DREI FORMATE

Erhältlich als Platte (GRANULOMAT 1,25 x 10 m), als Rolle (GRANULO-ROLL und GRANULO100) oder als Pad (GRANULOPAD 8 x 8 cm). Dank der verschiedenen Formate ist eine vielseitige Verwendung möglich.

GUMMIGRANULAT

Aus wiederverwertetem Gummigranulat, mit Polyurethan durch Wärmebehandlung gebunden. Gegen chemische Wechselwirkungen beständig, dauerhaft und ist zu 100% wiederverwertbar.

SCHWINGUNGSDÄMPFEND

Die durch Wärmebehandlung gebundene Gummigranulate dämpfen Schwingungen und Trittschall. Auch als Distanzhalter oder als resilienter Streifen bei Schalltrennungen.

GRANULO MATT

ARTNR.	В	L	s	Stk.
	[mm]	[m]	[mm]	
GRANULO100	100	15	4	1
GRANULOPAD	80	0,08	10	20
GRANULOROLL	80	5	8	1
GRANULOMAT110	1000	10	6	1

s: Stärke | B: Basis | L: Länge

MATERIAL

Gummigranulate, mit Polyurethan durch Wärmebehandlung gebunden

ANWENDUNGSGEBIETE

Unterboden für Unterbauten aus Holz, Aluminium, WPC und PVC. Für den Außenbereich. Geeignet für Nutzungsklassen 1-2-3.

I TERRA BAND UV

BUTYL-KLEBEBAND

ARTNR.	s B		L	Stk.
	[mm]	[mm]	[m]	
TERRAUV75	0,8	75	10	1
TERRAUV100	0,8	100	10	1
TERRAUV200	0,8	200	10	1

s: Stärke | B: Basis | L: Länge

I PROFID

PROFIL-ABSTANDHALTER

ARTNR.	s	В	L	Dichte	shore	Stk.
	[mm]	[mm]	[m]	kg/m³		
PROFID	8	8	40	1220	65	8

s: Stärke | B: Basis | L: Länge

STAR

DISTANZHALTER-STERN

ARTNR.	Stärken	Stk.
	[mm]	
STAR	4.5.6.7.8	4

K

BROAD

SPITZE MIT VERSENKER FÜR KKT, KKZ, KKA

ARTNR.	Ø _{Spitze} [mm]	Ø _{Versenker} [mm]	L _{Spitze} [mm]	GL [mm]	Stk.
BROAD1	4	6,5	41	75	1
BROAD2	6	9,5	105	150	1

CRAB MINI

EINHAND-TERRASSEN-SPANNWERKZEUG

ARTNR.	Öffnung	Druckkraft	Stk.
	[mm]	[kg]	
CRABMINI	263 - 415	max. 200	1

I CRAB MAXI

DIELENZWINGE, GROSSES MODELL

ARTNR.	Öffnung [mm]	Stk.
CRABMAXI	200 - 770	1
ARTNR.	Stärke	Stk.
	[mm]	
CRABDIST6	6,0	10
CRABDIST8	8,0	10
CRABDIST10	10,0	10

SHIM

NIVELLIERKEILE

ARTNR.	Farbe	В	L	s	Stk.
		[mm]	[mm]	[mm]	
SHBLUE	Blau	22	100	1	500
SHBLACK	Schwarz	22	100	2	500
SHRED	rot	22	100	3	500
SHWHITE	Weiß	22	100	4	500
SHYELLOW	Gelb	22	100	5	500

I SHIM LARGE

NIVELLIERKEILE

ARTNR.	Farbe	В	L	s	Stk.
		[mm]	[mm]	[mm]	
LSHRED	rot	50	160	2	250
LSHGREEN	grün	50	160	3	250
LSHBLUE	Blau	50	160	5	250
LSHWHITE	Weiß	50	160	10	100
LSHYELLOW	Gelb	50	160	15	100
	. (1)				
LSHMIX	mix(*)	50	160	S.O.	80

^{(*) 20} Stk. Rot, 20 Stk. Grün, 20 Stk. Blau, 10 Stk. Weiß, 10 Stk. Gelb.

I THERMOWASHER

UNTERLEGSCHEIBE ZUM BEFESTIGEN VON DÄMMSTOFFEN AN HOLZ

BEFESTIGUNG MIT HBS SCHRAUBEN MIT CE

Die Unterlegscheibe Thermowasher ist mit Schrauben mit CE-Kennzeichnung nach ETA zu verwenden. Ideal in Kombination mit HBS Ø 6 oder Ø 8 Schrauben; Länge abhängig von der Stärke der zu befestigenden Dämmung.

VERHINDERUNG VON WÄRMEBRÜCKEN

Durch den integrierten Lochverschlussstopfen werden Wärmebrücken verhindert. Ausreichende Hohlräume gewährleisten die Haftung des Putzes. Verfügt über Haltelaschen, die ein unkontrolliertes Herausfallen der Schraube verhindert.

ARTIKELNUMMERN UND ABMESSUNGEN

ARTNR.	$d_{Schraube}$	d_{KOPF}	Stärke	Tiefe	Stk.
	[mm]	[mm]	[mm]	[mm]	
THERMO65	6÷8	65	4	20	700

NUTZUNGSKLASSE

MATERIAL

Polypropylen-System PP

ANWENDUNGSGEBIETE

Die Unterlegscheibe aus Polypropylen mit einem Außendurchmesser von 65 mm ist mit den Schrauben mit Durchmesser 6 und 8 mm kompatibel. Ideal für jeden Dämmstoff und jedes Anbauteil.

ISULFIX

DÜBEL ZUM BEFESTIGEN VON DÄMMSTOFFEN AM MAUERWERK

ZERTIFIKAT

Dübel mit CE-Kennzeichnung gemäß ETA mit zertifizierten Festigkeitswerten. Der Doppelspreizdübel mit vormontierten Stahlnägeln ermöglicht eine schnelle und vielseitige Befestigung an Beton und Mauerwerk.

DOPPELSPREIZDÜBEL

Doppelspreizdübel aus PVC Ø8, mit vormontierten Stahlnägeln zum Befestigen an Beton und Mauerwerk. Bei besonders weichen Dämmstoffen kann eine zusätzlichen Unterlegscheibe benutzt werden.

ARTIKELNUMMERN UND ABMESSUNGEN

ARTNR.	d_{KOPF}	L	$d_{BOHRLOCH}$	Α	Stk.
	[mm]	[mm]	[mm]	[mm]	
ISULFIX8110		110		80	250
ISULFIX8150	60	150	8	120	150
ISULFIX8190		190		160	100

A = maximale Klemmdicke

ARTNR.	d _{KOPF} [mm]	Beschreibung	Stk.
ISULFIX90	90	Zusätzliche Unterlegscheibe für weiche Dämmstoffe	250

NUTZUNGSKLASSE

MATERIAL

PVC-System mit Nagel aus Kohlenstoffstahl

ANWENDUNGSGEBIETE

Der Dübel ist in verschiedenen Abmessungen für unterschiedliche Dämmstoffstärken erhältlich. Anwendbar mit zusätzlicher Unterlegscheibe für die Anwendung an weichen Dämmstoffen. Zertifizierte Anwendungsart und Verlegungsmöglichkeit, im entsprechenden ETA-Dokument angegeben.

WRAF

VERBINDER FÜR HOLZ-DÄMMSTOFF-ZEMENT-WÄNDF

HOLZ-DÄMMSTOFF-ZEMENT-HÜLLE

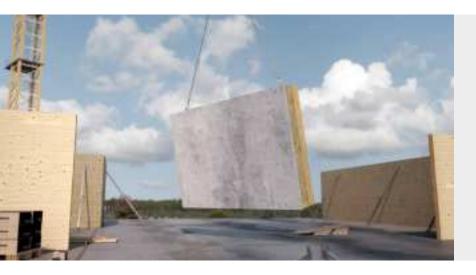

Das Produkt wurde zur Verfestigung der Zementdeckschicht mit der Unterkonstruktion aus Holz von vorgefertigten Wänden aus Holz-Dämmstoff-Zement-Hüllen entwickelt.

REDUZIERTE ZEMENTSCHICHT

Die Omega-Form des Verbinders ermöglicht, dass der Schraubenkopf mit der Verstärkung der Zementschicht abschließt und selbst bei geringen Stärken nicht hervorragt (bis zu 20 mm). Außerdem erlaubt er das Einschrauben einer geneigten Schraube in einem Winkel von 0° bis 45°, um die Ausziehfestigkeit des Schraubengewindes maximal zu nutzen.

ANHEBEN VON VORGEFERTIGTEN WÄNDEN

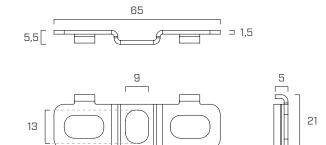
Durch die Reduzierung der Zementdeckschicht wird auch das Gewicht der Schicht reduziert, sodass der Massenmittelpunkt bei Handhabung und Transport der vorgefertigten Wände wieder auf dem Holz liegt.


MATERIAL

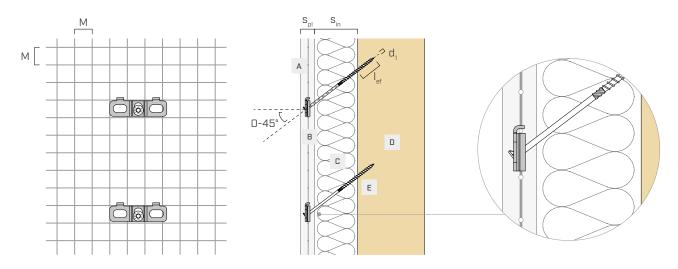
Austenitischer Edelstahl A2 | AISI304 (CRC II)

Polypropylen

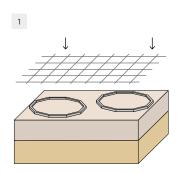
ANWENDUNGSGEBIETE


- Leichtbau-Unterkonstruktionen
- Unterkonstruktionen aus Holzwerkstoffplatten, LVL, CLT, NLT
- starrer und weicher Dämmstoff
- Deckschichten auf Zementbasis (Putz, Beton, Leichtbeton usw.)
- Metallverstärkungen (elektrogeschweißtes
- Kunststoffverstärkungen

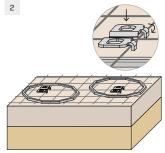
ARTIKELNUMMERN UND ABMESSUNGEN


ARTNR.	Material	Stk.
WRAF	A2 AISI304	50
WRAFPP	Polypropylen	50

GEOMETRIE

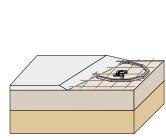

MONTAGEPARAMETER

A NACHBEARBEITUNG	Putz, Beton, Leichtbeton, Zementmörtel	S _{pl,min}	[mm]	20	Mindeststärke
B NETZ	Stahl Ø2 mm	М	[mm]	20 ÷ 30	Maschenweite
c DÄMMSTOFF	Aufsparrendämmung mit durchgängig verlegtem Dämmstoff (weich oder starr)	S _{in,max}	[mm]	400	Stärke
UNTERKONSTRUKTION	Massivholz, Brettschichtholz, BSP, LVL	l _{ef,min}	[mm]	$4 \cdot d_1$	min. Einschraubtiefe
E SCHRAUBEN	HBS, HBS EVO, SCI	d ₁	[mm]	6 ÷ 8	Durchmesser



ANMERKUNG: Die Anzahl und Anordnung der Befestigungen hängen von der Flächengeometrie, der Art des Dämmstoffs und den wirkenden Kräften ab.

MONTAGEANLEITUNGEN


Das Netz für die Deckschicht auf den Dämmstoff legen und mit den entsprechenden Stützen distanzieren.

Die Unterlegscheiben WRAF entsprechend der festgelegten Anordnung anbringen und in das Netz einhaken.

Die Unterlegscheiben WRAF mit den Schrauben an der Unterkonstruktion befestigen.

Die Deckschicht an der Wand

ZUSATZPRODUKTE

I ZUSATZPRODUKTE

A 12 BOHRSCHRAUBER MIT AKKU
A 18 ASB 18 BOHRSCHRAUBER MIT AKKU
KMR 3373 AUTOMATISCHER LADER
KMR 3372 AUTOMATISCHER LADER
KMR 3352 SCHRAUBER MIT AUTOMATISCHEM LADER
KMR 3338 SCHRAUBER MIT AUTOMATISCHEM LADER
KMR 3371 AKKU-STREIFENSCHRAUBER405
B 13 B BOHRSCHRAUBER
D 38 RLE 4-GANG BOHRSCHRAUBER
CATCH EINSCHRAUBWERKZEUG
TORQUE LIMITER DREHMOMENTBEGRENZER
JIG VGU MONTAGELEHRE FÜR UNTERLEGSCHEIBE VGU
JIG VGZ 45° Schablonen für 45° Kanten
BIT STOP EINSATZHALTER MIT TIEFENANSCHLAG UND KUPPLUNG410
DRILL STOP VERSENKER MIT TIEFENANSCHLAG
JIG ALU STA BOHRSCHABLONE FÜR ALUMIDI UND ALUMAXI
COLUMN STARRER UND KIPPBARER BOHRSTÄNDER
BEAR DREHMOMENTSCHLÜSSEL
CRICKET 8-FACH RATSCHE
WASP TRANSPORTANKER FÜR HOLZELEMENTE
RAPTOR TRANSPORTPLATTE FÜR HOLZELEMENTE

LEWIS SPITZEN FÜR TIEFLOCHBOHRUNGEN IN WEICH- UND EUROPÄISCHEM HARTHOLZ
SNAIL HSS SPIRALBOHRER FÜR HARTHOLZ, BESCHICHTETE PLATTEN U.V.M
SNAIL PULSE HARTMETALL HAMMERBOHRER MIT SDS BOHRFUTTERAUFNAHME
BIT TORX-EINSÄTZE41

| A 12

BOHRSCHRAUBER MIT AKKU

Weiches / hartes Drehmoment: 18/45 Nm
Nominales Minimum 1. Gang: 0 - 510 (1/min)

• Nominales Minimum 2. Gang: 0 - 1710 (1/min)

Nennspannung: 12 VGewicht (inkl. Akku): 1,0 kg

ARTIKELNUMMERN

ARTNR.	Beschreibung	Stk.
MA91D001	Akku-Bohrschrauber A 12 in T-MAX	1

Für Zubehör siehe Katalog "Werkzeuge für den Holzbau", erhältlich auf der Website www.rothoblaas.de.

| A 18 | ASB 18

BOHRSCHRAUBER MIT AKKU

- Elektronische Anti-Kickback-Funktion
- Weiches / hartes Drehmoment: 65/130 Nm
- Nominales Minimum 1. Gang: 0 560 (1/min)
- Nominales Minimum 2. Gang: 0 1960 (1/min)
- Nennspannung: 18 V
- Gewicht (inkl. Akku): 1,8 kg / 1,9 kg

ARTIKELNUMMERN

ARTNR.	Beschreibung	Stk.
MA91C801	Akku-Bohrschrauber A 18 in T-MAX	1
MA91C901	Schlagbohrer ASB 18 in T-MAX	1

I KMR 3373

AUTOMATISCHER LADER

- Schraubenlänge: 25 50 mm
- Schraubendurchmesser: 3,5 4,2 mm
- Kompatibel mit Schrauber A 18

ARTIKELNUMMERN

ARTNR.	Beschreibung	Stk.
HH3373	Lader für Akkuschrauber	1

Für Zubehör siehe Katalog "Werkzeuge für den Holzbau", erhältlich auf der Website www.rothoblaas.de.

MINEO

I KMR 3372

AUTOMATISCHER LADER

- Schraubenlänge: 40 80 mm
- Schraubendurchmesser: 4,5 5 mm, 6 mm mit HZB6PLATE
- Kompatibel mit Schrauber A 18

■ ARTIKELNUMMERN

ARTNR.	Beschreibung	Stk.
HH3372	Lader für Akkuschrauber	1

KMR 3352

SCHRAUBER MIT AUTOMATISCHEM LADER

• Schraubenlänge: 25 - 50 mm

• Schraubendurchmesser: 3,5 - 4,2 mm

• Leistung: 0 - 2850/750 (1/min/W)

• Gewicht: **2,2 kg**

ARTIKELNUMMERN

ARTNR.	Beschreibung	Stk.
HH3352	Automatischer Schrauber	1

Für Zubehör siehe Katalog "Werkzeuge für den Holzbau", erhältlich auf der Website www.rothoblaas.de.

I KMR 3338

SCHRAUBER MIT AUTOMATISCHEM LADER

• Schraubenlänge: 40 - 80 mm

• Schraubendurchmesser: 4,5 - 5 mm, 6 mm mit HZB6PLATE

• Leistung: 0 - 2850/750 (1/min/W)

• Gewicht: 2,9 kg

ARTIKELNUMMERN

ARTNR.	Beschreibung	Stk.
HH3338	Automatischer Schrauber	1

Anwendungsbeispiel mit Verlängerung HH14411591.

KMR 3371

AKKU-STREIFENSCHRAUBER

- Vorsatz für die Verarbeitung von Gipskarton- und Gipsfaserplatten auf Holz und Metallunterkonstruktionen
- Lieferung im Koffer, mit Ladegerät und zwei Akkus
- Schraubenlänge: 25 55 mm
- Schraubendurchmesser: **3,5 4,5 mm**
- Geschwindigkeit: 0 1800/500 (U/min)
- Gewicht: 2,4 kg

ARTIKELNUMMERN

ARTNR.	Beschreibung	Stk.
HH3371	Akkuschrauber + Streifenschraubervorsatz	1
TX20L177	Einsatz TX20 für KMR 3371	5

Für Zubehör siehe Katalog "Werkzeuge für den Holzbau", erhältlich auf der Website www.rothoblaas.de.

B 13 B

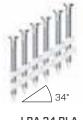
BOHRSCHRAUBER

- Nennaufnahmeleistung: 760 W
- Drehmoment: 120 Nm
- Gewicht: 2,8 kg
- Ø Schaft: 43 mm
- Nominales Minimum 1. Gang: 0 170 (1/min)
- Nominales Minimum 2. Gang: 0 1320 (1/min)
- Schrauber ohne Vorbohrung: Schrauben 11 x 400 mm

ARTIKELNUMMERN

ARTNR.	Beschreibung	Stk.
DUB13B	Bohrschrauber	1

ANKERNAGLER


HH3522 TJ100091 HH12100700

ARTIKELNUMMERN UND ABMESSUNGEN

ARTNR.	Beschreibung	Bindung	d _{1 Nagel} [mm]	d _{1 Nagel} [mm]	L _{Nagel} [kg]	Verbrauch [l//]	Verpackung	Stk.
HH3731	Faustnagler	Lose Nägel	4 - 6	-	-	(1)	im Koffer	1
ATEU0116	Streifenmagazin- Ankernagler 34°	Kunststoff	4	40 - 60	2,36	4,60	aus Karton	1
HH3722	Streifenmagazin- Ankernagler 25°	Kunststoff	4	40 - 50	2,55	1,73	aus Karton	1
HH3522	Streifenmagazin- Ankernagler 25°	Kunststoff	4	40 - 60	4,10	2,80	aus Karton	1
TJ100091	Rundmagazin- Ankernagler 15°	Kunststoff (BC-Coil)	4	40 - 60	2,30	2,50	im Koffer	1
HH12100700	Streifenmagazin- Gas-Ankernagler 34°	Kunststoff/Papier	4	40 - 60	4,02	(2)	im Koffer	1

■ ZUGEHÖRIGE PRODUKTE

LBA 34 PLA

LBA COIL

⁽¹⁾Abhängig vom Nageltyp.
(2)Circa 1200 Schuss pro Gaskartusche und circa 8000 Schuss pro Akkuladung.

D 38 RLE

4-GANG BOHRSCHRAUBER

- Nennaufnahmeleistung: 2000 W
- Zum Einsetzen von langen Schrauben und Gewindestangen
- Drehzahl bei Nennlast

1. / 2. / 3. / 4. Gang: **120 - 210 - 380 - 650 U/min**

- Gewicht: 8,6 kg
- Werkzeugaufnahme: Morsekegel MK 3

ARTIKELNUMMERN UND ABMESSUNGEN

ARTNR.	Beschreibung	Stk.
DUD38RLE	4-Gang-Bohrschrauber	1

DUD38RLE	4-Gang-Bohrschrauber

■ ZUBEHÖR

KUPPLUNG

- Auslösemoment 200 Nm
- Aufnahme 1/2" Vierkant

ARTNR.	Stk.
DUVSKU	1

SCHRAUBHANDGRIFF

• Höhere Sicherheit

ARTNR.	Stk.
DUD38SH	1

BOHRFUTTER

• Spannweite 1-13 mm

ARTNR.	Stk.
ATRE2014	1

ADAPTER 1

• Für MK3

ARTNR.	Stk.
ATRE2019	1

ADAPTER 2

• Für Steckhülsen

ARTNR.	Stk.
ATCS2010	1

MUFFEN

• FÜR RTR

ARTNR.	Ø	Stk.
ATCS007	16 mm	1
ATCS008	20 mm	1

■ ZUGEHÖRIGE PRODUKTE

RTR ARMIERUNGSSYSTEM

Seite 196

CATCH

EINSCHRAUBWERKZEUG

- Mit dem CATCH lassen sich auch lange Schrauben schnell und sicher einschrauben, ohne dass der Bit abrutschen kann.
- Besonders hilfreich bei Verschraubung in einem Winkel, bei dem keine große Kraft zum Einschrauben aufgebracht werden kann.

ARTIKELNUMMERN UND ABMESSUNGEN

ARTNR.	passende Schrauben			Stk.
	HBS	VGS	VGZ	
	[mm]	[mm]	[mm]	
CATCH	Ø8	Ø9	Ø9 [mm]	1
CATCHL	Ø10 Ø12	Ø11 Ø13	-	1

Weitere Anwendungshinweise finden Sie im entsprechendem Handbuch und unter www.rothoblaas.de.

I TORQUE LIMITER

DREHMOMENTBEGRENZER

- Er koppelt aus, sobald das maximale Drehmoment erreicht ist, und schützt so die Schraube vor übermäßiger Belastung, vor allem bei Anwendungen mit Metallplatten.
- Ebenfalls kompatibel mit CATCH und CATCHL.

ARTNR.	Version	Stk.
TORLIM18	18 Nm	1
TORLIM40	40 Nm	1

I JIG VGU

MONTAGELEHRE FÜR UNTERLEGSCHEIBE VGU

- Die Montagelehre JIG VGU garantiert eine präzise Vorbohrung und erleichtert die Befestigung der VGS-Schrauben im 45°-Winkel in der Unterlegscheibe.
- Unverzichtbar für eine perfekte Zentrierung der Bohrung.
- Für Durchmesser von 9 bis 13 mm

ARTIKELNUMMERN UND ABMESSUNGEN

ARTNR.	R. Unterlegscheibe		d_V	Stk.
	[mm]	[mm]	[mm]	
JIGVGU945	VGU945 - VGU945DE	5,5	5	1
JIGVGU1145	VGU1145 - VGU1145DE	6,5	6	1
JIGVGU1345	VGU1345 - VGU1345DE	8,5	8	1

ANMERKUNG: Weitere Informationen auf Seite 190.

I JIG VGZ 45°

SCHABLONEN FÜR 45° KANTEN

- Für Durchmesser von 7 bis 11 mm
- Längenanzeige der Schraube
- Es können Schrauben mit doppelter Neigung auf 45° eingefügt werden

ARTIKELNUMMERN UND ABMESSUNGEN

ARTNR.	Beschreibung	
JIGVGZ45	Montagelehre aus Stahl für 45° Schrauben	1

Für nähere Informationen zur Verwendung der Montagelehre siehe Montageanleitung auf der Website (www.rothoblaas.de).

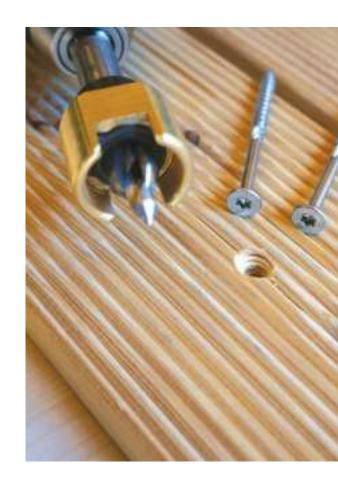
BIT STOP

EINSATZHALTER MIT TIEFENANSCHLAG UND **KUPPLUNG**

- Mit O-Ring, damit das Holz beim Anschlag nicht beschädigt wird
- Durch die eingebaute Kupplung stoppt der Bit-Halter automatisch beim Erreichen der Tiefe

ARTIKELNUMMERN UND ABMESSUNGEN

ARTNR.	Ø Bohrer	Ø Versenker	Stk.
	[mm]	[mm]	
AT4030	Tiefe einstellbar	5	1


DRILL STOP

VERSENKER MIT TIEFENANSCHLAG

- Besonders gut für den Terrassenbau geeignet
- Der drehgelagerte Tiefenanschlag bleibt bei Auftreten am Werkstück stehen und hinterlässt so keine Spuren am Material

ARTNR.	Ø Bohrer	Ø Versenker	Stk.
	[mm]	[mm]	
F3577040	4	12	1
F3577050	5	12	1
F3577060	6	12	1
F3577504	Set 4, 5, 6	12	1

JIG ALU STA

VIDEO

BOHRSCHABLONE FÜR ALUMIDI UND ALUMAXI

- Anlegen Bohren Fertig. Mit der Bohrschablone können die Dübellöcher schnell, einfach und präzise gebohrt werden
- Mit der JIG ALU können sowohl die Löcher für den ALUMIDI als auch für den ALUMAXI in einer Schablone hergestellt werden

ARTIKELNUMMERN UND ABMESSUNGEN

ARTNR.	В	L	s	Stk.
	[mm]	[mm]	[mm]	
JIGALUSTA	164	298	3	1

COLUMN

STARRER UND KIPPBARER BOHRSTÄNDER

• Positionsgenaues Bohren in exakt 90° Anstellwinkel

	ARTNR.	Version	Für Bohrerlänge	Bohrtiefe [mm]	GL [mm]	Stk.
1	F1403462	starr	460	310	ca. 630	1
2	F1404462	kippbar	460	250	ca. 630	1
3	F1403652	starr	650	460	ca. 810	1
4	F1404652	kippbar	650	430	ca. 810	1

BEAR

DREHMOMENTSCHLÜSSEL

- Präzise Regelung des Drehmoments.
- Unverzichtbar beim Einschrauben von Vollgewindeschrauben in eine Metallplatte
- Großer Einstellbereich

BEAR2

ARTIKELNUMMERN UND ABMESSUNGEN

ARTNR.	Abmessungen	ungen Gewicht Drehmoment		Stk.
	[mm]	[g]	[Nm]	
BEAR	395 x 60 x 60	1075	10 - 50	1
BEAR2	535 x 60 x 60	1457	40 - 200	1

Mit 1/2"-Vierkant-Antrieb.

CRICKET

8-FACH RATSCHE

- 8 verschiedene Schlüsselgrößen auf einer Ratsche mit durchgehender Bohrung
- Anstatt 4 verschiedenen Ringschlüsseln wird nur noch einer benötigt

ARTNR.	Größen / Gewinde	Länge	Stk.
	[SW / M]	[mm]	
CRICKET	10 / M6 - 13 / M8 14 / (M8) - 17 / M10	— 340	
	19 / M12 - 22 / M14 24 / M16 - 27 / M18		

WASP

TRANSPORTANKER FÜR HOLZELEMENTE

- Befestigung mit nur einer Schraube: Große Zeitersparnis dank schneller Montage und Demontage.
- Der Anker kann zum Heben von Axial- und Querlasten verwendet werden.
- Gemäß Maschinenrichtlinie 2006/42/EG zertifiziert

ARTIKELNUMMERN UND ABMESSUNGEN

ARTNR.	max. Tragkraft	passende Schrauben	Stk.
WASP	1300 kg	VGS Ø11 - HBS Ø10	2
WASPL	1600ka	VGS Ø11 - VGS Ø13 - HBS Ø12	1

IANUALS ANNUAL REPORT REUSABLE 20

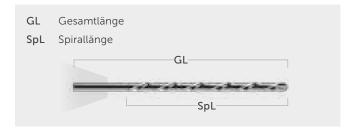
RAPTOR

TRANSPORTPLATTE FÜR HOLZELEMENTE

- Vielfältige Einsatzmöglichkeiten dank der Wahl von 2, 4 oder 6 Schrauben, abhängig von der Belastung.
- Die Hubplatte kann zum Heben von Axial- und Querlasten verwendet werden.
- Gemäß Maschinenrichtlinie 2006/42/EG zertifiziert

ARTNR.	max. Tragkraft	passende Schrauben	Stk.
RAP220100	3150 kg	HBS PLATE Ø10mm	1

LEWIS


SPITZEN FÜR TIEFLOCHBOHRUNGEN IN WEICH- UND EUROPÄISCHEM HARTHOLZ

- Aus legiertem Werkzeugstahl
- Mit runder Spiralnut, Gewindespitze, Hauptschneide und Vorschneider in Spitzenqualität
- Ausführung mit abgesetztem Kopf und Sechskantschaft (ab Ø8 mm)

ARTNR.	Ø Bohrer	Ø Schaft	GL	SpL	Stk.
	[mm]	[mm]	[mm]	[mm]	
F1410205	5	4,5	235	160	1
F1410206	6	5,5	235	160	1
F1410207	7	6,5	235	160	1
F1410208	8	7,8	235	160	1
F1410210	10	9,8	235	160	1
F1410212	12	11,8	235	160	1
F1410214	14	13	235	160	1
F1410216	16	13	235	160	1
F1410218	18	13	235	160	1
F1410220	20	13	235	160	1
F1410222	22	13	235	160	1
F1410224	24	13	235	160	1
F1410228	28	13	235	160	1
F1410230	30	13	235	160	1
F1410232	32	13	235	160	1
F1410242	42	13	235	160	1
F1410305	5	4,5	320	255	1
F1410306	6	5,5	320	255	1
F1410307	7	6,5	320	255	1
F1410308	8	7,8	320	255	1
F1410309	9	8	320	255	1
F1410310	10	9,8	320	255	1
F1410312	12	11,8	320	255	1
F1410314	14	13	320	255	1
F1410316	16	13	320	255	1
F1410318	18	13	320	255	1
F1410320	20	13	320	255	1
F1410322 F1410324	22 24	13 13	320 320	255 255	1
F1410324 F1410326	26	13	320	255	1
F1410328	28	13	320	255	1
F1410328	30	13	320	255	1
F1410332	32	13	320	255	1
F1410407	7	6,5	460	380	1
F1410408	8	7,8	460	380	1
F1410410	10	9,8	460	380	1
F1410412	12	11.8	460	380	1
F1410414	14	13	460	380	1
F1410416	16	13	460	380	1
F1410418	18	13	460	380	1
F1410420	20	13	460	380	1
F1410422	22	13	460	380	1
F1410424	24	13	460	380	1
F1410426	26	13	460	380	1

ARTNR.	Ø Bohrer	Ø Schaft	GL	SpL	Stk.
	[mm]	[mm]	[mm]	[mm]	
F1410428	28	13	460	380	1
F1410430	30	13	460	380	1
F1410432	32	13	460	380	1
F1410440	40	13	460	380	1
F1410450	50	13	460	380	1
F1410612	12	11,8	650	535	1
F1410614	14	13	650	535	1
F1410616	16	13	650	535	1
F1410618	18	13	650	535	1
F1410620	20	13	650	535	1
F1410622	22	13	650	535	1
F1410624	24	13	650	535	1
F1410626	26	13	650	535	1
F1410628	28	13	650	535	1
F1410630	30	13	650	535	1
F1410632	32	13	650	535	1
F1410014	14	13	1080	1010	1
F1410016	16	13	1080	1010	1
F1410018	18	13	1080	1010	1
F1410020	20	13	1080	1010	1
F1410022	22	13	1080	1010	1
F1410024	24	13	1080	1010	1
F1410026	26	13	1080	1010	1
F1410028	28	13	1080	1010	1
F1410030	30	13	1080	1010	1
F1410032	32	13	1080	1010	1
F1410134	34	13	1000	535	1
F1410136	36	13	1000	535	1
F1410138	38	13	1000	535	1
F1410140	40	13	1000	535	1
F1410145	45	13	1000	535	1
F1410150	50	13	1000	535	1

LEWIS - SET

ARTIKELNUMMERN UND ABMESSUNGEN

ARTNR.	Set Ø	GL	SpL	Stk.
	[mm]	[mm]	[mm]	
F1410200	10, 12, 14, 16, 18, 20, 22, 24	235	160	1
F1410303	10, 12, 14, 16, 18, 20, 22, 24	320	255	1
F1410403	10, 12, 14, 16, 18, 20, 22, 24	460	380	1

I SNAIL HSS

SPIRALBOHRER FÜR HARTHOLZ, BESCHICHTETE PLATTEN U.V.M.

- Hochwertige Ausführung in vollgeschliffener Qualität mit 2 Hauptschneiden und 2 Vorschneidern
- Spezialspirale innen geschliffen für besseren Spanabtransport
- Ideal für den Freihandbetrieb und im stationären Einsatz

ARTIKELNUMMERN UND ABMESSUNGEN

ARTNR.	Ø Bohrer	Ø Schaft	GL	SpL	Stk.
	[mm]	[mm]	[mm]	[mm]	
F1594020	2	2	49	22	1
F1594030	3	3	60	33	1
F1594040	4	4	75	43	1
F2108005	5	5	85	52	1
F2108006	6	6	92	57	1
F2108008	8	8	115	75	1
F1594090	9	9	125	81	1
F1594100	10	10	130	87	1
F1594110	11	11	140	94	1
F1594120	12	12	150	114	1
F1599205	5	5	250	180	1
F1599206	6	6	250	180	1
F1599207	7	7	250	180	1
F1599208	8	8	250	180	1

ARTNR.	Ø Bohrer	Ø Schaft	GL	SpL	Stk.
	[mm]	[mm]	[mm]	[mm]	
F1599209	9	9	250	180	1
F1599210	10	10	250	180	1
F1599212	12	12	250	180	1
F1599214	14	13	250	180	1
F1599216	16	13	250	180	1
F1599605	5	5	460	380	1
F1599606	6	6	460	380	1
F1599607	7	7	460	380	1
F1599608	8	8	460	380	1
F1599609	9	9	460	380	1
F1599610	10	10	460	380	1
F1599612	12	12	460	380	1
F1599614	14	13	460	380	1
F1599616	16	13	460	380	1

SNAIL HSS - SET

ARTNR.	Set Ø		
	[mm]		
F1594835	3, 4, 5, 6, 8	1	
F1594510	3, 4, 5, 6, 8, 10, 12, 13, 14, 16	1	

I SNAIL PULSE

HARTMETALL HAMMERBOHRER MIT SDS BOHRFUTTERAUFNAHME

- Für Bohrungen in Beton, armierten Beton, Mauerwerk und Naturstein.
- 4-spiralige Vollhartmetallschneiden sorgen für einen schnellen Vortrieb.

ARTNR.	Ø Bohrer	GL	Stk.
	[mm]	[mm]	
DUHPV505	5	50	1
DUHPV510	5	100	1
DUHPV605	6	50	1
DUHPV610	6	100	1
DUHPV615	6	150	1
DUHPV810	8	100	1
DUHPV815	8	150	1
DUHPV820	8	200	1
DUHPV840	8	400	1
DUHPV1010	10	100	1
DUHPV1015	10	150	1
DUHPV1020	10	200	1
DUHPV1040	10	400	1
DUHPV1210	12	100	1
DUHPV1215	12	150	1
DUHPV1220	12	200	1
DUHPV1240	12	400	1
DUHPV1410	14	100	1
DUHPV1420	14	200	1
DUHPV1440	14	400	1
DUHPV1625	16	250	1
DUHPV1640	16	400	1
DUHPV1820	18	200	1
DUHPV1840	18	400	1
DUHPV2020	20	200	1
DUHPV2040	20	400	1
DUHPV2240	22	400	1
DUHPV2440	24	400	1
DUHPV2540	25	400	1
DUHPV2840	28	400	1
DUHPV3040	30	400	1

BIT

TORX-EINSÄTZE

■ ARTIKELNUMMERN UND ABMESSUNGEN

EINSATZ C 6.3

L	ARTNR.	Einsatz	Farbe	Geometrie	Stk.
[mm]					
	TX1025	TX 10	Gelb		10
	TX1525	TX 15	Weiß		10
	TX2025	TX 20	orange		10
25	TX2525	TX 25	rot		10
	TX3025	TX 30	Violett		10
	TX4025	TX 40	Blau		10
	TX5025	TX 50	grün		10
	TX1550	TX 15	Weiß		5
	TX2050	TX 20	orange		5
	TX2550	TX 25	rot		5
50	TX3050	TX 30	Violett		5
	TX4050	TX 40	Blau		5
	TX4050L(*)	TX 40	Blau		5
	TX5050	TX 50	grün		5
	TX1575	TX 15	Weiß		5
75	TX2075	TX 20	orange		5
	TX2575	TX 25	rot		5

^(*)Spezialbit für CATCH L.

EINSATZ E 6.3

L	ARTNR.	Einsatz	Farbe	Geometrie	Stk.
[mm]					
50	TXE3050	TX 30	Violett		5
50	TXE4050	TX 40	Blau		5

LANGER EINSATZ

L [mm]	ARTNR.	Einsatz	Farbe	Geometrie	Stk.
150	TX25150	TX 25	rot		1
200	TX30200	TX 30	Violett		1
350	TX30350	TX 30	Violett		1
150	TX40150	TX 40	Blau		1
200	TX40200	TX 40	Blau		1
350	TX40350	TX 40	Blau		1
520	TX40520	TX 40	Blau		1
150	TX50150	TX 50	grün		1

EINSATZHALTER

ARTNR.	Beschreibung	Geometrie	Stk.
TXHOLD	60 mm - magnetisch		5

Die Rotho Blaas GmbH, die als technisch-kommerzielle Dienstleistung im Rahmen der Verkaufsaktivitäten indikative Werkzeuge zur Verfügung stellt, garantiert nicht die Einhaltung der gesetzlichen Vorschriften und/oder die Übereinstimmung der Daten und Berechnungen mit dem Entwurf.

Rotho Blaas GmbH verfolgt eine Politik der kontinuierlichen Weiterentwicklung seiner Produkte und behält sich daher das Recht vor, deren Eigenschaften, technische Spezifikationen und andere Unterlagen ohne Vorankündigung zu ändern.

Der Benutzer oder verantwortliche Planer ist verpflichtet, bei jeder Nutzung die Übereinstimmung der Daten mit den geltenden Vorschriften und dem Projekt zu überprüfen. Die letztendliche Verantwortung für die Auswahl des geeigneten Produkts für eine bestimmte Anwendung liegt beim Benutzer/Designer.

Die aus den "experimentellen Untersuchungen" resultierenden Werte basieren auf den tatsächlichen Testergebnissen und sind nur für die angegebenen Testbedingungen gültig.

Rotho Blaas GmbH garantiert weder für Schäden, Verluste und Kosten oder andere beliebige Folgen (Mängelgewährleistung, Garantie für Fehlfunktionen, Produkt- oder Rechtshaftung usw.), die mit dem Gebrauch oder der Unmöglichkeit des Gebrauchs der Produkte zu einem beliebigen Zweck bzw. mit der nicht konformen Verwendung des Produkts zusammenhängen, noch kann das Unternehmen in diesen Fällen verantwortlich gemacht werden; Rotho Blaas GmbH haftet nicht für eventuelle Druck- und/oder Tippfehler. Bei inhaltlichen Unterschieden zwischen den Versionen des Katalogs in den verschiedenen Sprachen ist der italienische Text verbindlich und hat Vorrang vor den Übersetzungen. Die neueste Fassung der verfügbaren technischen Datenblätter ist auf der Rotho Blaas-Website einsehbar.

Die Abbildungen enthalten teilweise nicht inbegriffenes Zubehör. Alle Abbildungen dienen lediglich illustrativen Zwecken. Die Verwendung von Logos und Warenzeichen Dritter in diesem Katalog ist, sofern mit dem Händler nicht anders vereinbart, für die in den Allgemeinen Einkaufsbedingungen angegebenen Zeiträume und Modalitäten vorgesehen. Die Verpackungseinheiten können variieren.

Dieser Katalog ist alleiniges Eigentum der Rotho Blaas GmbH. Die Vervielfältigung, Reproduktion oder Veröffentlichung, auch nur auszugsweise, ist nur nach vorheriger schriftlicher Genehmigung durch Rotho Blaas gestattet. Jeder Verstoß wird strafrechtlich verfolgt.

Die allgemeinen Einkaufs- und Verkaufsbedingungen der Rotho Blaas sind auf der Website www.rothoblaas.de zu finden

Alle Rechte vorbehalten. Copyright © 2023 by Rotho Blaas GmbH Grafik © Rotho Blaas GmbH

- BEFESTIGUNG
- LUFTDICHTHEIT UND BAUABDICHTUNG
- SCHALLDÄMMUNG
- ABSTURZSICHERUNG
- WERKZEUGE UND MASCHINEN

Rothoblaas hat sich als multinationales Unternehmen der technologischen Innovation verpflichtet und avancierte im Bereich Holzbau und Sicherheitssysteme innerhalb weniger Jahre zur weltweiten Referenz. Dank unseres umfassenden Sortiments und eines engmaschigen und technisch kompetenten Vertriebsnetzes sind wir in der Lage, unseren Kunden unser Know-how im Bereich Holzbau zur Verfügung zu stellen und Ihnen als starker Partner zur Seite zu stehen. All diese Aspekte tragen zu einer neuen Kultur des nachhaltigen Bauens bei, die auf die Steigerung des Wohnkomforts und die Verringerung der CO₂-Emissionen ausgelegt ist.

Rotho Blaas GmbH

Etschweg 2/1 | I-39040, Kurtatsch (BZ) | Italien Tel: +39 0471 81 84 00 | Fax: +39 0471 81 84 84 info@rothoblaas.com | www.rothoblaas.de

